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Abstract—Statistical modeling of Synthetic Aperture Radar (SAR)
images is of great importance for speckle noise filtering, target
detection and classification, etc. Moreover, it can provide a
comprehensive understanding of terrain electromagnetics scattering
mechanism. Over the past three decades, many sophisticated models
have been developed for SAR images, such as Rayleigh, Gamma, K
and G etc. The G0 distribution is a special form of the G model,
which can model the speckle fluctuations of many classes of objects
like homogeneous, heterogeneous and extremely heterogeneous ones,
and is widely used in SAR images interpretation. However, as many
improvements have been performed on SAR sensors, the traditional
parameter estimation methods of the G0 distribution may be not
sufficient, notably in high resolution SAR images. They cannot arrive
at a solution frequently when modeling regions in high resolution SAR
images, especially the extremely homogeneous regions. In order to
deal with this problem, this paper proposes an improved parameter
estimation scheme of the G0 distribution, which combines the classical
moment estimation with the mellin transform. To quantitatively assess
the fitting precision of the proposed method, we adopt the Kullback-
Leibler (KL) distance, Kolmogorov-Smirnov (KS) test and Mean
Square Error (MSE) as similarity measurements. The advantage of this
proposed parameter estimation method becomes evident through the
analysis of a variety of areas (ground vegetation, trees and buildings)
in two high resolution SAR images.
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1. INTRODUCTION

With the development of remote sensing technique, earth observation
and environmental monitoring [1] have been known a considerable
boom in various applications. SAR [2] is one of the most important
active sensors for earth observation and environmental monitoring,
can detect electromagnetic radiation emitted or reflected by objects,
and plays an important role in detecting [3, 4] and discriminating
targets [5–7]. The advantage of SAR compared with other positive
sensors lies in its capability of imaging weather and illumination
independent. The precise knowledge of the statistical properties of
SAR data and backscattering model [8–15] plays a central role in
SAR image processing and understanding [16]. Therefore, statistical
modeling of SAR images has become an active research field and
numbers of well-known statistical models have been proposed over the
past three decades.

The existing statistical models of SAR images are customarily
divided into two categories: nonparametric and parametric models [17].
There exist several representative nonparametric models, such as the
artificial neural networks (ANN) [18–22], the support vector machine
(SVM) [23, 24], the parzen window [25], etc. The essentially part of
these nonparametric models is using the weighted sum of different
kernel functions to approximate the statistical distribution of SAR
images. The merit of nonparametric modeling is suitable for estimating
the complex unknown probability density function (PDF) and has
relatively high estimation accuracy. However, it needs a mass of sample
data set as well as involves complex computation. Consequently,
parametric modeling has been intensively studied. The underlying idea
of parametric modeling is choosing an appropriate statistical model
from several given ones to approximate the statistical distribution
of SAR images. Currently, most widely used statistical models are
developed from the product speckle model, which is based on the
assumption that the observed data results from the product between
the speckle noise and the terrain backscatter. Several distributions
have been used for the backscatter, aiming at modeling different
types of classes and their characteristic degrees of homogeneity, such
as Rayleigh distribution [26] for single-look amplitude SAR images
and Gamma distribution [27] for multi-look amplitude SAR images.
The K distribution [28, 38] is deduced from the assumption that the
intensity of radar cross section (RCS) fluctuations has a Gamma
distribution in heterogeneous regions. It has multiplicative fading
statistical characteristics which usually provides a good fitness to
heterogeneous terrains. Therefore, the K distribution has become a
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well-known statistical model recently. However, the K distribution
cannot model extremely heterogeneous objects in high resolution SAR
images. To solve this problem, the G distribution [16] is proposed
by assuming a Gamma distribution for the speckle noise and a
square root of generalized inverse Gaussian (SRGIG) distribution
for the terrain backscatter of multi-look SAR images. It is first
presented by the G distribution that SAR image scenes can be divided
into homogeneous, heterogeneous and extremely heterogeneous parts
according to their homogeneous degrees. The K and G0 distributions
are just the two special forms of the G distribution [16], where the K
distribution is suitable for modeling heterogeneous regions while the
G0 distribution is suitable for modeling multilook clutter with widely
varying degrees of homogeneity. Compared with the G distribution,
the G0 distribution does not involve complex Bessel functions. So the
parameter estimation of the G0 distribution is relatively easy, and the
computational complexity is low. Consequently, the G0 distribution
has become one of the most promising statistical models in recent
years [29, 30].

The essential part of the G0 distribution is parameter estimation.
Several strategies have been proposed to deal with parameter
estimation problem, such as the method of moments (MoM) [16, 29, 31–
33] and mellin transform (MT) based parameter estimation [34].
However, the fitting precision of the MoM is low. The MT based
method can not model extremely homogeneous regions although it has
a high estimation precision.

This paper proposes a new parameter estimation method by
combing use of the MoM and the MT. The structure of this paper is as
follows. In Section 2, methods like the MoM, MT and our proposed are
introduced. In Section 3, experimental results of parameter estimation
are discussed and the KL distance KS test and MSE are used to
quantitatively assess the fitting precision of the above mentioned
methods. In Section 4, conclusions are reached.

2. METHODOLOGY

In order to retrieve the “unspeckled” radar backscatter component
from an observed SAR image data, a model combining an underlying
RCS component with an uncorrelated speckle component is used. The
most commonly used model is the product model, which expresses the
observed component Z as the product of the RCS component X and
the speckle noise component Y

Z = X · Y (1)



26 Cheng et al.

Frery et al. [16] deduced the G model by assuming a generalized
inverse Gaussian distribution for the RCS component and a Gamma
distribution for the speckle component of multi-look SAR images. The
intensity and amplitude PDF of the G distribution are
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(x) ∼ GI(α, γ, λ, n)

=
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where pZI
(x) is the intensity PDF, pZA

(x) is the amplitude PDF, x ∈ R
is the RCS component, n is the equivalent number of looks, λ, γ are
the scale parameters which have a relationship with the mean energy
of the observed region, Kα denotes the modified Bessel function of
the third kind, α indicates the degree of heterogeneity [16], and Γ(·)
denotes the Gamma function.

The K distribution is a particular form of the G model, which
assumes that both the RCS component and the speckle component as
Gamma distribution. If γ → 0, the intensity and amplitude PDF of
K distribution can be deduced from Equation (1), Equation (2) and
Equation (3) respectively
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, α, λ, n, x > 0 (5)

The Gamma distribution can describe the characteristics of the
RCS fluctuations of heterogeneous terrains well in high resolution SAR
images. But it cannot model extremely heterogeneous terrains like
urban regions containing many buildings.

The G0 distribution is another particular form of the G model,
which assumes that the RCS component as SRGIG distribution and
the speckle component as Gamma distribution. If λ → 0, the intensity
and amplitude PDF of the G0 distribution can be deduced from
Equation (1), Equation (2) and Equation (3) respectively

pZI
(x)∼G0

I(α, γ, n) =
nnΓ(n− α)xn−1

γαΓ(n)Γ(−α)(γ+nx)n−α
, −α, γ, n, x>0 (6)
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pZA
(x)∼G0

A(α, γ, n) =
2nnΓ(n− α)x2n−1

γαΓ(n)Γ(−α)(γ+nx2)n−α
, −α, γ, n, x>0 (7)

The SRGIG distribution is appropriate for modeling both
heterogeneous and extremely heterogeneous regions. Moreover, the
PDF given in Equation (6) and Equation (7) don’t involve the
complex Bessel functions. Thus, it potentially means simple parameter
estimation and is regarded as the universal model for speckled imagery
Figure 1(a) shows some examples of Equation (7) with n = 2
for different values of α, and Figure 1(b) shows some examples of
Equation (7) with α = −3 for different values of n. It can be seen that
parameter α is able to provide more flexibility to control the model
shape than parameter n.

As mentioned in the introduction section, the existing efficient
parameter estimation techniques for G0 distribution are the MoM
and MT based methods. In order to simplify the introduction, we
only discuss parameter estimation for the intensity PDF of the G0

distribution because the estimated values are same both for intensity
and amplitude data.

2.1. MoM Based Parameter Estimation

The k-th order moments of the G0 distribution are given by

E
(
xk
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=

∫ +∞
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dx, −α, γ, n, x > 0 (8)

(a)  (b)

Figure 1. The amplitude PDF of G0 distribution with γ = 5000 for
different values of n and α. (a) n = 2, α = {−1,−2,−3,−4,−5,−6}.
(b) n = {2, 3, 4, 5, 6, 7}, α = −3.
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After simplification, Equation (8) can be expressed as

E
(
xk

)
=

(γ

n

)k Γ(−α− k)Γ(n + k)
Γ(n)Γ(−α)

, −α, γ, n, x > 0 (9)

In order to estimate the parameters α, γ and n, two well-
known moment estimation methods exist [16, 29]. For intensity data,
assuming the equivalent number of looks n known, and using k = 1/2,
1 [16]. The estimator for the parameters of the G0 distribution are
given
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We call this moment estimation method as the classical MoM.
Assuming the equivalent number of looks n known, and using

k = 1, 2 [29]. The estimator for the parameters of the G0 distribution
are given 
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γ
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, α < −1, γ, n, x > 0 (11)

Both of these two moment estimation methods are taken the
equivalent number of looks n as known. However, the equivalent
number of looks of different regions varies greatly in a whole SAR
image. It is reasonless to replace the mean number of looks as the
number of looks of different regions, and is necessary to take n as an
estimation parameter.

In order to estimate three parameters α, γ and n, three Equations
are needed at least. Based on the property Γ(x + 1) = xΓ(x) of the
gamma function Γ(x) =

∫∞
0 tx−1e−tdt (x > 0), we deduce the iterative

form of moment calculation as
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Based on Equation (12) and by using k = 1, 2 and 3, the estimator
for the parameters of the G0 distribution are given
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We call this moment estimation method as the extended MoM.
However, both these two MoM based parameter estimation

methods of the G0 distribution mentioned above may be not sufficient
to model regions in high-resolution SAR images.

2.2. MT Based Parameter Estimation

For a function f defined over R+ only, the integral mellin transform of
f

MT[f ](x) =
∫ +∞

0
ux−1f(u)du (14)

As the intensity PDF of a SAR image is defined over R+, its
MT exists for all the values. It is obvious that Equation (14) has
strong relations with the fourier transform. All the principal statistical
moments of MT can be deduced from results of fourier transform [35].
The main functions of the G0 distribution like First second-kind
characteristic function, Second second-kind characteristic function,
rth-order second-kind characteristic moment and rth-order second-
kind characteristic cumulant are as follows respectively
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Combining Equation (15) and Equation (17), the first 3th-order
second-kind characteristic moment can be deduced




m̃1 =log(γ/n) + Ψ(n)−Ψ(−α)
m̃2 =Ψ(1)(n) + Ψ(1)(−α) + m̃1

2

m̃3 =Ψ(2)(n)−Ψ(2)(−α) + 3
(
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)
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2
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where Ψ(x) = Γ′(x)/Γ(x) (x > 0) is the digamma function, and
Ψ(k)(x) = (−1)k+1

∫∞
0

tke−xt

1−e−t dt is the kth-order digamma function
which is also called the polygamma function. As for regular moments,
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the relationships between the first 3th-order second-kind characteristic
moment and characteristic cumulant are [35]





k̃1 = m̃1

k̃2 = m̃2 − m̃1
2

k̃3 = m̃3 − 3m̃1m̃2 + 2m̃1
3

(20)

Combining Equation (19) and Equation (20), the following
Equations are obtained





k̃1 = log(γ/n) + Ψ(n)−Ψ(−α)
k̃2 = Ψ(1)(n) + Ψ(1)(−α)
k̃3 = Ψ(2)(n)−Ψ(2)(−α)

(21)

Define x1, x2, . . . , xN as N samples of the observed data, the first
3th-order second-kind characteristic cumulant are actually calculated
as 




k̃1 = 1
N
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log(xi)
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[(
log(xi)− k̃1

)2
]
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(22)

The solution of Equation (21) is usually done by calculating the
second and third expression firstly. Define two new functions by
replacing α as x in Equation (21)





f1(x) =
(
Ψ(1)

)−1
(
k̃2 −Ψ(1)(−x)

)

f2(x) =
(
Ψ(2)

)−1
(
k̃3 + Ψ(2)(−x)

) , x < 0 (23)

where (Ψ(1))−1(x) is the inverse 1th-order digamma function, and
(Ψ(2))−1(x) is the inverse 2th-order digamma function. According
to the property of the polygamma function, Ψ(1)(x) is completely
monotonic increase while Ψ(2)(x) is completely monotonic decrease.
Based on this fact, it is easy to see that f1(x) is completely
monotonic decrease while f2(x) is completely monotonic increase. The
intersection point of f1(x) and f2(x) is the estimated value of α. After
calculating the parameter α, n and γ are obtained by Equation (21).

The MT based parameter estimation method can model
homogeneous, heterogeneous and extremely heterogeneous regions of
SAR image, and has a high estimation precision. The key point of
all the merits mentioned above is based on the fact that functions
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f1(x) and f2(x) should have an intersection point. However, the
parameter α would be a large number when the observed region
is extremely homogeneous. If |α| → ∞, then Ψ(1)(x) → 0 and
Ψ(2)(x) → 0, consequently f1(∞) and f2(∞) would be constant as
f1(∞) → (Ψ(1))−1(k̃2) and f2(∞) → (Ψ(1))−1(k̃3). If f1(∞) > f2(∞),
there wouldn’t exist any intersection point, and Equation (21) is
unsolved.

2.3. Our Proposed Parameter Estimation

In order to obtain the parameters estimation of the G0 distribution
and satisfy the constraints of these parameters, we propose a novel
parameter estimation method, which combines the merits both from
the MoM and MT parameter estimation. Firstly, we convert
Equation (11) into




α =
2nE(x2)− (n + 1)E2(x)
(n + 1)E2(x)− nE(x2)

γ = −(α + 1)E(x)
, α < −1, γ, n, x > 0 (24)

Then, a new Equation is formed by substituting Equation (24) for
the second and third expressions of Equation (21)




log(γ/n) + Ψ(n)−Ψ(−α) = k̃1

α =
2nE(x2)− (n + 1)E2(x)
(n + 1)E2(x)− nE(x2)

γ = −(α + 1)E(x)

, α < −1, γ, n, x > 0 (25)

Also, we can deduce from Equation (24) that
γ

n
=

E(x2)E(x)
nE(x2)− (n + 1)E2(x)

, γ, n, x > 0 (26)

Thirdly, the parameter n is obtained by taking Equation (26)
and the second expression of Equation (25) into the fist expression
of Equation (25).

Finally, the parameter α and γ are obtained subsequently by
solving Equation (25).

Our parameter estimation method of the G0 distribution only
requires calculating the 1th-order and 2th-order moments while the
MoM based parameter estimation method needs to calculate the 3th-
order moment. Additionally, our method avoids the instance of no
solution when modeling the extremely homogeneous regions in high
resolution SAR images.

For convenience of comparison, the parameter estimation methods
of the G0 distribution mentioned above are summarized in Table 1.
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Table 1. The expressions of four methods for parameter estimation
of the G0 distribution mentioned in this paper.

Methods Expressions

The

classical

MoM

k=1/2, 1





Γ2(−α−1/2)Γ2(n + 1/2)

Γ(−α−1)Γ(n+1)Γ(−α)Γ(n)
=

E2
(
x1/2

)

E(x)

γ = n

(
E(x)Γ(−α)Γ(n)

Γ(−α− 1)Γ(n + 1)

)2
, −α, γ, n, x>0

The

extended

MoM

k=1, 2, 3





E(x) = − γ

α + 1

E(x2) =
(n + 1)(a + 1)

n(a + 2)
E2(x)

E(x3) =
(n + 2)(a + 1)

n(a + 3)
E2(x)E(x)

, −α, γ, n, x > 0

MT





log( γ
n
) + Ψ(n)−Ψ(−α) = 1

N

N∑
i=1

log(xi) = k̃1

Ψ(1)(n) + Ψ(1)(−α) = 1
N

N∑
i=1

[
(log(xi)− k̃1)

2
]

Ψ(2)(n)−Ψ(2)(−α) = 1
N

N∑
i=1

[
(log(xi)− k̃1)

3
]

Our

proposed





log(γ/n) + Ψ(n)−Ψ(−α) = k̃1

α =
2nE(x2)− (n + 1)E2(x)

(n + 1)E2(x)− nE(x2)

γ = −(α + 1)E(x)

, α < −1, γ, n, x > 0

Figure 2. Original SAR image collected by the miniSAR of Sandia
National Laboratories, and red rectangles (R1 to R4) indicate the four
selected representative regions, which are ground, vegetation, trees and
buildings respectively.
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3. RESULTS AND DISCUSSION

The proposed parameter estimation method is test in real SAR
images. Two SAR images taken from different sensors are used in
the experiment. The first one was collected by the Ku-band miniSAR

Figure 3. Original SAR image collected by an airborne SAR of China
Electronics Technology Group Corporation No. 38 Research Institute,
and red rectangles (R1 to R4) indicate the four selected representative
regions, which are airdrome ground vegetation, trees and buildings
respectively.

Table 2. Parameter estimation results in four regions of Figure 2.

Regions Methods
Parameters

n α γ

R1

The classical MoM 4.4 2.9 ∗ 105 −6.8 ∗ 108

The extended MoM 4.4 1.7 ∗ 103 −4.0 ∗ 106

MT Unsolved Unsolved Unsolved

Our proposed 4.5 −577.5 1.3 ∗ 106

R2

The classical MoM 3.1 2.3 ∗ 105 −1.9 ∗ 108

The extended MoM 7.3 −8.0 5.8 ∗ 103

MT 4.7 −14.2 1.1 ∗ 104

Our proposed 5 −11.5 8.7 ∗ 103

R3

The classical MoM 1.2 1.2 ∗ 105 −1.7 ∗ 108

The extended MoM 1.3 −30.8 4.2 ∗ 104

MT 2.2 −3.7 3.9 ∗ 103

Our proposed 1.6 −9.4 1.2 ∗ 104

R4

The classical MoM 0.2 7.0 ∗ 104 −1.2 ∗ 108

The extended MoM 0.4 −3.9 5.1 ∗ 103

MT 13.8 −1.6 1.2 ∗ 103

Our proposed 2.0 −2.4 2.4 ∗ 103



34 Cheng et al.

of Sandia National Laboratories over the region of Eubank Gated
Entrance, KAFB, USA on 19 May 2005. Its size is 2510 × 1638
pixels with a pixel size of about 0.1 m (see Figure 2). The other
one was taken by an airborne X-band SAR of China Electronics
Technology Group Corporation No. 38 Research Institute over the
region of Hefei, Anhui province, China on 6 and 8 November 2005. Its
size is 1840× 907 pixels with a pixel size of about 1 m (see Figure 3).
Four representative regions (see red rectangles R1 to R4 in Figure 1
and Figure 2 respectively) are chosen from each SAR image, where R1
is the extremely homogeneous region, R2 is the homogeneous region,
R3 is the heterogeneous region, and R4 is the extremely heterogeneous
region. All the experiments are run on P(R) dual-core 2.8 GHz CPU,
with 2 GB SDRAM, and the software platform is Matlab R2007b.

3.1. Parameter Estimation Experiments

In order to explore the effectiveness of our proposed method, the
comparison with other parameter estimation methods is made like
the classical MoM [29], our deduced the extended MoM and MT [34].
Table 2 shows the comparative results of these parameter estimation

Table 3. Parameter estimation results in four regions of Figure 3.

Regions Methods
Parameters

n α γ

R1

The classical MoM 3.2 9.3 ∗ 104 −1.1 ∗ 108

The extended MoM 4.1 −21.2 2.3 ∗ 104

MT Unsolved Unsolved Unsolved

Our proposed 3.8 −28.3 3.1 ∗ 104

R2

The classical MoM 2.2 8.5 ∗ 104 −1.7 ∗ 108

The extended MoM 3.5 −9.9 1.8 ∗ 104

MT Unsolved Unsolved Unsolved

Our proposed 2.6 −22.8 4.4 ∗ 104

R3

The classical MoM 0.3 2.7 ∗ 104 −4.7 ∗ 107

The extended MoM 0.4 −5.7 8.1 ∗ 103

MT 1.4 −1.4 875.9

Our proposed 0.8 −3.1 3.7 ∗ 103

R4

The classical MoM 0.1 4.0 ∗ 104 −5.8 ∗ 107

The extended MoM 0.1 −7.9 9.9 ∗ 103

MT 2.5 −0.9 211.8

Our proposed 0.6 −2.3 1.9 ∗ 103
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Table 4. Time consuming of the four mentioned methods in four
regions of Figure 2.

Region R1 R2 R3 R4

Size (pixels) 235× 235 235× 235 235× 235 235× 235

Time

consuming

(s)

The classical MoM 0.38 0.36 0.37 0.39

The extended MoM 0.55 0.62 0.67 0.68

MT 263 387 325 3.09

Our proposed 0.01 0.01 0.02 0.04

algorithms of four representative regions in Figure 2, and Table 3 shows
the comparative results of these parameter estimation algorithms of
four representative regions in Figure 3.

According to Equation (10), the estimated parameters should
meet the requirement that α is negative and γ, n, x are positive.
However, it can be seen that the parameters like α and γ obtained by
the classical MoM exceed the range of the requirement of Equation (10)
both in Table 2 and Table 3. The parameters like α and γ obtained
by the extended MoM seldom exceed the range of definition except in
the region of R1 in Table 2.

The key-point of MT based parameter estimation is calculating
the intersection point of the inverse digamma function f1(x) and f2(x).
When modeling the extremely homogeneous regions, MT cannot arrive
at a solution, and sometime the same thing is met when modeling
the homogeneous region. To deeply evaluate the MT based method,
we draw the curves of f1(x) and f2(x). Figure 4 shows the inverse
digamma function curves f1(x) and f2(x) in four regions of Figure 2,
and Figure 5 shows the inverse digamma function curves f1(x) and
f2(x) in four regions of Figure 3. It can be seen that the two
curves f1(x) andf2(x) don’t intersect in Figure 4(a), Figure 5(a) and
Figure 5(b). It means that no solution is arrived at, which is consistent
with the MT parameters estimation results of R1 in Table 2, and R1
and R2 in Table 3.

Compared with the above three methods, the parameters obtained
by our proposed method are met with the requirement of Equation (10)
both in Table 2 and Table 3. According to literature [16] stated, the
degree of heterogeneity can be measured with the estimated value of
α, i.e., if estimation is performed over two areas α1 and α2 are the
estimated parameters, then α1 > α2 suggests that the first area is
more heterogeneous than the second one. Figure 6 shows parameter α
estimated by our method over a variety of areas (ground vegetation,
trees and buildings) in two high resolution SAR images Figure 2 and
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(a)                                                          (b) 

(c)                                                           (d) 

Figure 4. MT based α and n estimation method by calculating the
intersection point of f1(x) and f2(x) in four regions (R1 to R4) of
Figure 2, the blue curve represents f1(α) and the red curve represents
f2(α). (a) R1. (b) R2. (c) R3. (d) R4.

Figure 3. It can be seen that parameter α increases with degree of
heterogeneity. The results of Figure 6 are consistent with the statement
of literature [16].

Table 4 and Table 5 show the time consumed in estimating
parameters in these eight regions of Figure 2 and Figure 3. The
MT costs the longest time owing to the time-consuming computation
of inverse digamma functions. The time-consuming of the classical
MoM and the extended MoM is medial, and the extended MoM
costs more time than the classical MoM because of higher order
moments calculation. Our proposed is the fastest one among these four
parameter estimation methods due to no higher moments calculation
and inverse digamma function computation.

3.2. Fitting Precision Experiments

In order to evaluate the performance of our algorithm thoroughly,
we adopt three well-known parameters like the KL distance [36], KS
test [37] and MSE [35] as goodness of fit measurements.
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(a)                                                            (b) 

(c)                                                            (d) 

Figure 5. MT based α and n estimation method by calculating the
intersection point of f1(x) and f2(x) in four regions (R1 to R4) of
Figure 3, the blue curve represents f1(α) and the red curve represents
f2(α). (a) R1. (b) R2. (c) R3. (d) R4.

(a) (b) 

Figure 6. Parameter α estimated by our method over four areas
(ground vegetation, trees and buildings) in two high resolution SAR
images. (a) Four areas in Figure 2. (b) Four areas in Figure 3.

3.2.1. KL Distance Measurement

Given the theoretical PDF p(w) and the estimated PDF q(w), the
traditional KL distance between these two densities p and q is expressed



38 Cheng et al.

Table 5. Time consuming of the four mentioned methods in four
regions of Figure 3.

Region R1 R2 R3 R4

Size (pixels) 78× 282 133× 200 133× 157 192× 192

Time

consuming

(s)

The classical MoM 0.12 0.22 0.15 0.24

The extended MoM 0.41 0.45 0.42 0.48

MT 1.74 2.52 2.38 2.22

Our method 0.01 0.01 0.01 0.02

(a)

(c)  (d) 

(b) 

Figure 7. Fitting results of four regions histogram in Figure 2. (a) R1
the extremely homogeneous region. (b) R2 the homogeneous region.
(c) R3 the heterogeneous region. (d) R4 the extremely heterogeneous
region.
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as

D(q‖p) =
∫

q(w) log2

(
q(w)
p(w)

)
dw (27)

Usually, the calculation of D(q‖p) is given by approximate calculation:

D(q‖p)=
∑

q(w)∆w log2

(
q(w)∆w

p(w)∆w

)
=

∑
Q(w) log2

(
Q(w)
P (w)

)
(28)

where P (w) and Q(w) are the values of probability. Because D(q‖p)
is asymmetrical, the KL distance is customarily expressed as a
symmetrical form

Dkl = D(q‖p) + D(p‖q) (29)

The KL distance reflects the similarity of the theoretical and
estimated densities. When the estimated PDF equals the theoretical

(a)

(c)  (d) 

(b) 

Figure 8. Fitting results of four regions histogram in Figure 3. (a) R1
the extremely homogeneous region. (b) R2 the homogeneous region.
(c) R3 the heterogeneous region. (d) R4 the extremely heterogeneous
region.
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PDF, Dkl is zero. Otherwise, it is positive. The smaller the value of
the KL distance is obtained the higher similarity they have.

3.2.2. KS Test

The KS test is based on the empirical cumulative distribution function
(CDF) of the observed data. Given N observations R1, R2, . . . , RN

with continuous distributions, statistical goodness-of-fit is used to
choose between hypothesis H0, an assertion that the data obeys
distribution q; and an alternative hypothesis H1, an assertion that
the data does not obey distribution q. The empirical CDF P̂R(w) is a
piecewise constant function

P̂R(w) =





0, w →∞
k
N , Rk < w ≤ Rk+1, k ≤ N − 1
1, w > RN

(30)

The KS test Dks is defined as the supremum of the magnitude
difference between the empirical CDF P̂R(w) and the cumulative
distribution under hypothesis H0, QR(w)

Dks = sup
w

∣∣∣P̂R(w)−QR(w)
∣∣∣ (31)

The KS test reflects the maximal deviation between the actual
CDF and hypothetical CDF. The smaller the value of the KS test is
obtained the higher goodness-of-fit they have. It is complementary for
the KL distance measurement.

3.2.3. MSE Measurement

Given N discrete samples r1, r2, . . . , rN with the theoretical PDF p(w)
and the estimated PDF q(w), the MSE measurement is expressed as

Dmse =
1
N

N∑

k=1

‖p(rk)− q(rk)‖2 (32)

where ‖ · ‖ denotes the Euclidean norm and the estimated PDF q(w)
can be deduced from the histogram of the sample values. The MSE
measurement reflects the mean deviation between theoretical PDF and
the estimated PDF. The smaller the value of the MSE Measurement
is the higher goodness-of-fit they have.

Figure 7 and Figure 8 show the fitting results of histogram in
eight regions of Figure 2 and Figure 3 by using the classical MoM,
the extended MoM, MT and our proposed method. In Figure 7 and
Figure 8, the horizontal axis represents the amplitude of pixel, and the
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Table 6. The quantity comparison of fitting results of the histogram in
Figure 2 based on these four parameter estimation methods, where Dkl

denotes the KL distance, Dks denotes the KS test, and Dmse denotes
the MSE measurement.

Regions Methods
Measurements

Dkl Dks Dmse

R1

The classical MoM Unsolved Unsolved Unsolved

The extended MoM Unsolved Unsolved Unsolved

MT Unsolved Unsolved Unsolved

Our proposed 0.02 0.02 1.7 ∗ 10−9

R2

The classical MoM Unsolved Unsolved Unsolved

The extended MoM 0.02 0.02 3.1 ∗ 10−9

MT 0.00 0.00 4.5 ∗ 10−10

Our proposed 0.00 0.01 7.1 ∗ 10−10

R3

The classical MoM Unsolved Unsolved Unsolved

The extended MoM 0.12 0.03 5.8 ∗ 10−9

MT 0.05 0.03 6.4 ∗ 10−9

Our proposed 0.06 0.02 5.4 ∗ 10−9

R4

The classical MoM Unsolved Unsolved Unsolved

The extended MoM 1.3 0.3 2.6 ∗ 10−7

MT 0.03 0.02 6.0 ∗ 10−9

Our proposed 0.23 0.08 3.7 ∗ 10−8

vertical axis represents the PDF. Based on Equations (29), (31) and
(32), the KL distance, the KS test, and the MSE measurement of the
fitting results shown in Figure 7 are compared in Table 6, and these
shown in Figure 8 are compared in Table 7. In Figure 7(a), it can
be seen that only the G0 distribution density function solved by our
proposed method can fit the normalized histogram of the extremely
homogeneous SAR regions. The G0 distribution density function
solved by the extended MoM based method can model most of regions,
but the fitting precisions are relatively low. The G0 distribution
density function solved by the MT based method agrees well with the
histogram of the heterogeneous and extremely heterogeneous regions
in Figure 7(d) and Figure 8(d). Because the parameters estimated
by the classical MoM method exceed the range of the requirement
of Equation (10), the G0 distribution density function of these eight
regions has no solution. The quantity evaluation results of goodness-of-
fit in Table 6 and Table 7 agree well with the fitness of the normalized
histogram of these eight different degrees of heterogeneity regions in
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Table 7. The fitting results of the histogram in Figure 3 based on
these four parameter estimation methods, where Dkl denotes the KL
distance, Dks denotes the KS test, and Dmse denotes the MSE.

Regions Methods
Measurements

Dkl Dks Dmse

R1

The classical MoM Unsolved Unsolved Unsolved

The extended MoM 0.01 0.01 3.9 ∗ 10−9

MT Unsolved Unsolved Unsolved

Our proposed 0.01 0.01 4.7 ∗ 10−9

R2

The classical MoM Unsolved Unsolved Unsolved

The extended MoM 0.07 0.02 8.0 ∗ 10−9

MT Unsolved Unsolved Unsolved

Our proposed 0.05 0.03 1.3 ∗ 10−8

R3

The classical MoM Unsolved Unsolved Unsolved

The extended MoM 0.87 0.15 2.7 ∗ 10−7

MT 0.23 0.07 1.3 ∗ 10−7

Our proposed 0.34 0.07 1.4 ∗ 10−7

R4

The classical MoM Unsolved Unsolved Unsolved

The extended MoM 2.72 0.33 7.9 ∗ 10−7

MT 0.10 0.05 5.0 ∗ 10−8

Our proposed 1.07 0.16 3.4 ∗ 10−7

Figure 7 and Figure 8.
From these experimental analyses, some conclusions can be drawn:

(1) Our parameter estimation scheme of the G0 distribution has a
wider modeling ability and lower computation time than the other
three methods, but the fitting precision of which is lower than
the MT based method when modeling the heterogeneous and
extremely heterogeneous regions.

(2) The classical MoM based method can not model any regions of
these two high resolution SAR images.

(3) The extended MoM based method is able to model most regions
of these two high resolution SAR images, but the goodness-of-fit
of which is the worst among these four methods.

(4) The MT based method has a higher fitting precision than
the others when modeling the heterogeneous and extremely
heterogeneous regions, but the calculation time of which is the
longest among these four methods. Furthermore, it can not
model the extremely homogeneous regions in high resolution SAR
images.
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4. CONCLUSIONS

Aiming at having a wider modeling ability in high resolution SAR
images, this paper has proposed an improved parameter estimation
scheme of the G0 distribution, which combines the merits from the
classical moment estimation and the mellin transform. Results show
that our proposed method is suitable for modeling multilook clutter
with widely various degrees of homogeneity, and has lower computation
time than the other mentioned methods.

The next step is to increase the fitting precision when modeling
the heterogeneous and extremely heterogeneous regions. It would also
be interesting to use the proposed method for objects classification in
high resolution SAR images.
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