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Abstract—Low-frequency ultra-wideband synthetic aperture radar
is a promising technology for landmine detection. According to
the scattering characteristics of body-of-revolution (BOR) along with
azimuth angles, a discriminator based on Bayesian decision rule is
proposed, which uses sequential features, i.e., double-hump distance.
First, the algorithm estimates the target scatterings in all azimuth
angles based on regions of interest. Second, sequential aspect features
are extracted by sparse time-frequency representation. Third, the
distributions of features are obtained by training samples, and then
the posterior probability of landmine class is computed as an input
to the classifier adopting Mahalanobis distance. The experimental
results indicate that the proposed algorithm is effective in BOR target
discrimination.

1. INTRODUCTION

Landmines have been widely used in wars for theirs destructive and
easily laid, and lots of them are left after the wars. Both of them cause
enormous civilian casualties and economic loss [1–3]. So Landmine
detection and clearance have become the urgent need to address
problem in the view either humanitarian or military applications. But
detection and clearance of landmine are known to be an extremely
challenging task, which is response to the complexity of environment
compounded by soil, weather, terrain, and so on.

Many kinds of sensors are under investigation for landmine
detection, e.g., multispectral sensor [4], hyperspectral sensor [5],
infrared sensor [6], and ground penetrating radar (GPR) [7]. GPR
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is a promising technology which can detect both plastic and metal
landmines. As a promotion technology of GPR, low-frequency
ultra-wideband synthetic aperture radar (LFUWB-SAR) has been an
important tool for landmine detection over the last several decades [8–
10], which offers the advantage of a significant standoff distance to
perform large areas detection quickly from its high resolution image.

Like the classical method of target detection in SAR image [11, 12],
landmine detection is often accomplished in two stages. The first stage
is prescreening, which extracts some small size images, each of which
contains a suspicious target and is denoted as region of interest (ROI),
from the large terrain through a simple local gray feature. The second
stage is discrimination, which uses the ROI features to distinguish
clutters from targets. This method is effective since the prescreening
is used to reduce the calculation amount and the discrimination is
used to discard false alarms. Because there always exist a large variety
of strong scattering clutters in observation scene such as stones, pits,
tree trunks, and so on, the major challenge for LFUWB-SAR landmine
detection is too many false alarms in final detection results. Therefore,
the extraction of features used for discrimination is the key point to
reduce false alarm rate.

Features extraction and discrimination have been extensively
explored and there are still under investigation in methodological
aspect. Gray and geometric features in time domain are always the
first consideration to be extracted, like the maximum amplitude of
ROI pixel, signal-to-clutter ratio (SCR), double-hump signature, et al..
Spectrum-based features are another consideration due to the wide
bandwidth of radar. For example, the features of subbands with good
target-to-clutter contrast are input into a classifier designed based
on Fischer’s linear discriminant in [13]. The time-frequency (TF)
analysis [14, 15] can extract the target features of the time domain and
the frequency domain simultaneously, which yields a potentially more
revealing image of the ROI range components. A lot of discriminators
which are suitable for corresponding features have been designed just
like the generalized ratio test (GLRT) detector [9] and the hypersphere
support vector machine (HS-SVM) [16]. However, these studies do
not provide much attention to the azimuth characteristics of target
scatterings.

The aim of this paper is to provide a method to extract the
features of scattering for landmine discrimination. Due to the wide
accumulating angle of azimuth and wide bandwidth of LFUWB-SAR,
aspect TF features of scatterings abound with a large amount of target
information. At present, the sub-aperture method [17, 18] is the main
method to extract the sequential aspect features. At the expense of
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image resolution and target SCR, the sub-aperture method leads to
the following questions: (1) The more sub-aperture, the worse features
accuracy subject to the limitations of SCR and resolution; (2) the fewer
sub-aperture, the worse robustness of sequential variation although the
features accuracy of single ROI improve.

In fact, the echo can be considered as the accumulation of
reflection caused by points which have the same distance from
themselves to the radar antenna. So it is difficult to separate the
target scatterings from echoes. To address the above issues, we
present an algorithm that separates the scatterings using the entire
aperture ROI image. The target reflection in the two-dimensional
image is relatively stronger than in the one-dimensional echo for
coherent accumulation of all azimuth angles. So we can segment the
target ROI more easily by prescreening. In terms of imaging mode,
we can take advantage of the relation between the image and the
echo to reconstruct landmine scatterings. TF analysis is illustrated to
be suitable for target subscription, but the conventional TF analysis
algorithm is defective just like that Wigner-Ville distribution has cross-
components [19]. A sparse TF representation [20, 21] based on the
overcomplete dictionary with Gabor atoms is adopted, and the atom
parameters are taken as features. Statistic diversity of feature is the
significant characteristic between targets and clutters, and it has been
widely applied in target discriminating. A discriminator based on
Bayesian decision rule is designed using the sequential aspect features
(SAF) which consists of sparse TF atoms.

The remainder of this paper is organized as follows. In Section 2,
we give a description on the flow of how the scatterings of target
are estimated using the entire aperture ROI image. In Section 3,
the processing of sequential features extracted by sparse TF is
introduced in details. Section 4 discusses the Bayesian decision rule
based discriminator via above features. The experimental results are
discussed in Section 5. Finally, the conclusion is given in Section 6.

2. SCATTERINGS ESTIMATION

In order to estimate the landmine scatterings, we firstly introduce
imaging model in brief. LFUWB-SAR adopts side looking strip
imaging mode. The electromagnetic wave transmitting and receiving
work in a cycle while the flight states are “go-stop-go”. In this mode,
as shown in Fig. 1, the direction of radar movement is orthogonal with
the antenna beam, where r, x denote the slant range and azimuth
position respectively, r-x the imaging plane, and ϕ the azimuth angle.
The constant integration angle back projection (CIABP) algorithm [22]
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Figure 1. Illustration of three-dimensional imaging geometry model.

is widely used for producing high resolution images in LFUWB-
SAR. We take an assumption that f(r, x) is SAR image acquired
through CIABP. The target echo is considered as the measurement of
scatterings in the frequency-azimuth angle domain, f -ϕ, with f being
frequency. Correspondingly, the imaging algorithm is a function that
maps data from f -ϕ to r-x, and the frequency domain echo s(f, ϕ) can
be expressed as s(t, u) in the time domain, where t is fast-time and u is
slow-time (or called azimuth aperture position). The CIABP formula
is.

f(r, x) =
∫∫

t2s(t, u)δ
(

t− 2
c
R

)
dtdu (1)

where c is the speed of light, R the distance from antenna to target,
and δ(·) Dirac Delta function.

Based on the CIABP imaging model [23], we have the following
relationship as {

k = 1
2

√
k2

x + k2
r

ϕ = arctan
(
−kx

kr

) (2)

where kx is the azimuth wave number, kr the slant wave number, and
k = 2πf/c. The value scope of ϕ is [−π

2 , π
2 ). Based on (2), we design

the flow of scatterings estimation as follows.

• The wave number image is acquired through 2-dimensional fast
Fourier transform (2D-FFT) based on target entire aperture ROI,
which is expressed as f(r, x) → S̄(kr, kx).

• We take advantage of (2) to map the S̄(kr, kx) into ŝ(f, θ).
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• By means of the 1-dimension inverse fast Fourier transform (IFFT)
along with the slant range, the ŝ(f, ϕ) can be transformed into
ŝ(t, ϕ).

ŝ(t, ϕ) is the estimation of scattering when azimuth angle is ϕ.
The process of obtaining the target ROI is equivalent to be filter in
the spatial domain, which can effectively inhibit the response of strong
scattering point with the same distance from target to antenna, and
then improve the accuracy of the estimation.

3. SPARSE TIME-FREQUENCY REPRESENTATION

There is existing double-dump in landmine reflection in both time
domain and frequency domain [24, 25], so its corresponding TF image
manifests a “#” structure, which has the sparse characteristic. The
sparse TF representation can be rewritten as

ŝϕ = Dα (3)

where D is overcomplete dictionary made up of TF atoms and α
the coefficients vector of the signal projecting in the dictionary. To
approximate the signal with fewer non-zero coefficients, (3) can be
transformed into an optimization formula:

min
α
‖α‖0 s.t. ŝϕ = Dα (4)

where || · ||0 indicates the norm of `0.
Gabor atom is a common TF atom [26], which is defined as

{
gρ(t) = 1√

a
g

(
t−b
a

)
eiτt

Gρ(w) =
√

aG[a(w − τ)]e−i(w−τ)b
(5)

where both g(t) and G(w) are Gauss function, and ρ = (a, b, τ) are
TF parameters which represent scaling factor, shift factor, and tuning
factor, respectively. By the modulation of ρ, we can control the
atom resolution in the time and the frequency domains, and also the
movement of the atom energy.

For solving the optimal coefficients in (4), the matching pursuit
(MP) [27] algorithm is often adopted. The MP algorithm is a heuristic
optimization algorithm involving atomic search problem. Taking into
account the double-dump characteristics of the landmine reflection in
time and frequency domain, the atoms are searched in accordance with
this regulation: (1) making traversal in time domain, we are apt to
identify the most closely atoms matching the time domain double-
dump, which are defined as ρ1 = (a1, b1, τ1) and ρ2 = (a2, b2, τ2);
(2) making traversal in frequency domain, we also want to identify



464 Wang et al.

Figure 2. Illustration of using sparse time-frequency representation.

the most closely atoms matching the frequency domain double-dump,
which are defined as ρ3 = (a3, b3, τ3) and ρ4 = (a4, b4, τ4). Fig. 2
shows that the relationship between TF atoms and the double-dump
in time or frequency domain. Because a landmine can be considered as
a BOR, the double-dump distances in both the time and the frequency
domains change regular along with azimuth angles, so we define two
variables as b21 = b2 − b1 and τ43 = τ4 − τ3. In terms of [24] and [25],
b21 and τ43 change with the relative position between the antenna and
the target. We modify these two features by the factor sin θ, namely
ρb = b21/ sin θ and ρτ = τ34 × sin θ, where θ is the indent angle. Let
ρϕ = [ρb, ρτ , ρ1, ρ2, ρ3, ρ4]H be a column vector for the azimuth angle
ϕ, which consists of I = 14 features.

For different azimuth angles, we can find different characteristic of
landmine scattering. So the SAF are formed by sampling of azimuth
angles in order. In this paper, the number of azimuth samples is
N = 11. Instead of the ϕ with the number of sampling, the SAF
can be defined as ρo = [ρ1,ρ2, . . . ,ρN ].

4. DISCRIMINATOR BASED ON BAYESIAN DECISION
RULE

In this section, we have the SAF of testing samples except for training
samples, and expect to make them classify accuracy. The minimum
error of Bayesian decision rule is classical method of discrimination
based on class probability density. Furthermore, a target will belong
to the class which has the maximum posterior probability. Define the
class of landmines is ω1 and the class of clutters is ω2.

For each feature in SAF, Kolmogorov-Smirnov (K-S) test algo-
rithm is adopted to obtain its conditional probability distribution [28].
Because landmines have similar characteristics in images and because
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clutters have great variety, the distributions of landmines are analyzed.
W is the number of landmines samples, and the feature i(1 ≤ i ≤ I)
of sample w(1 ≤ w ≤ W ) in azimuth sample n(1 ≤ n ≤ N) is vi

n(w),
then the maximum and minimum of samples are obtained via




vi
n(max) = arg max

1≤w≤W
(vi

n(w))

vi
n(min) = arg min

1≤w≤W
(vi

n(w)) (6)

We divide [vi
n(min), vi

n(max)] into equal intervals, where the cell length
is ∆ = vi

n(max)−vi
n(min)

L when the number is L. So the discrete
conditional probability P̃n,i(l|ω1) is calculated through

P̃n,i(vi
n|ω1) =

W∆ × L

(vi
n(max)− vi

n(min))×W
(7)

where W∆ is the number of samples crossed the value l and located
in the corresponding cell. Fitting a curve of real data, a continuous
probability density function (PDF) Pn,i(vi

n|ω1) can be obtained.
We denote a test sample SAF is vi

n(t), the posterior probability of
ω1 is

Pn,i(ω1|vi
n(t)) =

Pn,i(vi
n(t)|ω1)P (ω1)

Pn,i(vi
n(t))

(8)

where P (ω1) is the prior probability of ω1, Pn,i(vi
n(t)) the prior

probability of vi
n(t), and the values for both of them are hard to

decide. Besides, it is difficult to obtain the posterior probability
of ω2 since the distribution of clutters is unpredictable. In order
to solve above problems, we replace Pn,i(ω1|vi

n(t)) with the value
pn,i(t) = Pn,i(vi

n(t)|ω1). It can be seen that pn,i(t) is able to express
the occurrence probability of ω1, the higher pn,i(t), the greater the
probability of occurrence, on the contrary, the smaller probability
of occurrence. For simplicity, the following derivation still uses the
concept of probability.

Each row in SAF contains an azimuth sequence of feature (ASF)
which appears in order. It is a matter of observation that test sample
has more possibilities of being classified in ω1 when every feature in
ASF has higher pn,i(t), so the multiple multiplication method is used
to combine all ASFs. The function can be expressed as

P (ω1|vi(t)) =
N∏

n=1

pn,i(t) =
N∏

n=1

P (vi
n(t)|ω1) (9)

where P (ω1|vi(t)) is consideration as azimuth posterior probability
which depicts the possibility of test sample fell in ω1.
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On the basis of (9), we calculate the azimuth posterior probability
of each SAF in ρo. All P (ω1|vi(t)) (1 ≤ i ≤ I) will constitute
a new feature vector v. According to the extraction method, all
features have similar accuracy for target description. So we make a
classification with the combination of features using the Mahalanobis
distance [29]. The new feature vector of training samples is written as
V = {v1,v2, . . . ,vW }. Calculate the samples covariance matrix

ζ =
1

M − 1

M∑

m=1

(vm − v̄) (vm − v̄)T (10)

where v̄ is the mean of samples vm(1 ≤ m ≤ W ), v̄ = 1
W

W∑
m=1

vm. The

Mahalanobis distance between a sample and the samples set is given
by

d(vm, v̄) =
√

(vm − v̄)T ζ−1(vm − v̄) (11)

Figure 3. The procedure of discriminator based on Bayesian decision
rule.

Figure 4. The AMUSAR system.
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In comparison with target, clutter scatterings have dramatic
changes all over the azimuth angles, and the corresponding values of
P (ω1|vi(t)) are smaller. So the discarding of clutters can be considered
as one class classification problem. We make assumption that there
exists a hypersphere around clutters samples set, and the radius of
hypersphere is designed by the distribution of Mahalanobis distances
from all clutters to the clutters’ centre. Define dT to be the radius of
hypersphere. When vt is a test sample, it can be classified via

{
d(vt, v̄) > dT , vt ∈ ω1

d(vt, v̄) ≤ dT , vt ∈ ω2
(12)

Figure 3 depict the processing of the discriminator.

5. EXPERIMENTAL RESULTS

To demonstrate the effectiveness of the proposed discriminator, the
experimental results based on the measured data of Airship-Mounted
UWB SAR (AMUSAR) [30] are presented. The AMUSAR system
shown in Fig. 4 was developed in 2010 in China. AMUSAR equipped
a miniature stepped-frequency SAR with bandwidth of 2GHz. The
SAR image resolution is 0.02 m. We collect total 325 landmines chips
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Figure 5. The intermediate processing images of scatterings
estimation for landmine and clutter. (a) Original landmine ROI image
(size: 41× 41 pixels). (b) The kx-kr domain image of (a). (c) The f -ϕ
domain image of (a). (d) The t-ϕ domain image of (a). (e) Original
clutter ROI image (size: 41× 41 pixels). (f) The kx-kr domain image
of (e). (g) The f -ϕ domain image of (e). (h) The t-ϕ domain image of
(e).

and 1252 clutters chips. The landmines samples are collected manually
and the clutters samples collected based on the outputs of consistent
constant false alarm rate (CFAR) detector [31].

Figure 5 shows the intermediate processing images of scatterings
estimation for landmine and clutter respectively. The landmine ROI
and clutter ROI have similar structures (Fig. 5(a) and Fig. 5(e)).
But the landmine is a BOR, and the scatterings change regularly
along with incident angles induced by azimuth angles. Generally,
clutters, especially man-made objects, have dihedral angles structure,
which is quite different from landmines. Correspondingly, the variant
characteristics of scatterings for landmine and clutter are different.
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This concept is illustrated in Fig. 5, and Fig. 6 shows further evidence
of it. Fig. 6 gives three sparse TF representations for Fig. 5(d) and
Fig. 5(h) respectively when the azimuth angles are −0.2, 0, and 0.2.
As shown in Fig. 6, the sparse TF images of landmine have similarities
in different azimuth angles, but there exits huge change for clutter.

In this paper, the procedure of features processing consists of three
steps. First, features are extracted by sparse TF representation of
scatterings. Second, SAF are acquired by the combination of features
which are sampled in 11 azimuth angles. Third, the new features vector

(a) (b)

(c) (d)

(e) (f)

Figure 6. The corresponding sparse TF representations of ROIs in.
Fig. 5. (a) Landmine ROI, ϕ = −0.2. (b) Landmine ROI, ϕ = 0.
(c) Landmine ROI, ϕ = 0.2. (d) Clutter ROI, ϕ = −0.2. (e) Clutter
ROI, ϕ = 0. (f) Clutter ROI, ϕ = 0.2.
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Figure 7. The real data distributions of feature 1 and feature 2 in ρϕ

(ϕ = 0) and classical.
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Figure 8. The procedure of features evolution in this paper. (a) The
first feature distribution in ρϕ(ϕ = 0). (b) The second feature
distribution in ρϕ (ϕ = 0). (c) Combination distribution of the first
feature and the second feature in ρϕ (ϕ = 0). (d) Combination
logarithm distribution of the first feature and the second feature in
V.
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Table 1. The MSE between real data distribution and classical
probability density functions.

Feature type Gauss Rayleigh Weibull
Logarithmic

normal
Feature 1 0.52 3.21 0.64 0.96
Feature 2 1.34 6.51 1.62 2.34

is formed in the discriminator based on Bayesian decision rule.
In order to analyze the distribution of features in SAF, we adopt

the mean square error (MSE) to refine the approximation between real
data distribution and classical PDFs. Define the real data distribution
c1, and the classical probability density function is c2. Then the MSE
between them can be written as cmse = ‖c1 − c2‖2, where ||·||2 indicates
the norm of `2. As seen from Fig. 7, the classical PDFs contain Gauss,
Rayleigh, Weibull and Logarithmic normal [32, 33]. Table 1 shows that
Gauss function has the minimum MSE with the distributions of feature
1 and feature 2.

From Figs. 8(a)–(c), we can see that landmines can hardly been
separated from clutters especially when many clutters have similar
features’ values to landmines. But in Fig. 8(d), most clutters are far
away from the landmines through the three steps mapping of features,
where v1, v2 are the first and second features in V, respectively. With
the comparison of performances of features extracted in different steps,
Fig. 9 gives their receiver operator characteristic (ROC) curves. As
expected, the discriminator, proposed in this paper, produces the best
of the results.
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6. CONCLUSION

In this paper, accurate extraction of the scatterings is the key of the
landmine discrimination. As a BOR, the landmine scatterings change
regularly, and there are differences with the clutter azimuth scatterings.
First, this paper analyzes the relationship between entire aperture
ROI image and the scatterings of target, and then extracts SAF
using sparse TF representation. Second, a discriminator based on the
Bayesian decision rule has been designed. The posterior probabilities of
landmines class are calculated to discriminate suspicious targets with
SAF, and the Mahalanobis distance adopted for the final classification
easily achieves a good performance. The real data results show that the
method through three steps of features extraction or transformation
can effectively improve the performance of discrimination.
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