
Progress In Electromagnetics Research, Vol. 136, 61–77, 2013

COMPUTATIONAL PERFORMANCE OF A WEIGHTED
REGULARIZED MAXWELL EQUATION FINITE ELE-
MENT FORMULATION

Ruben Otin1, *, Luis E. Garcia-Castillo2,
Ignacio Martinez-Fernandez2, and Daniel Garcia-Doñoro2
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Abstract—The aim of this work is to asses the computational
performance of a finite element formulation based on nodal elements
and the regularized Maxwell equations. We analyze the memory
requirements and the condition number of the matrix when the
formulation is applied to electromagnetic engineering problems. As
a reference, we solve the same problems with the best known finite
element formulation based on edge elements and the double curl
Maxwell equations. Finally, we compare and discuss the computational
efficiency of both approaches.

1. INTRODUCTION

In this work we analyze the computational performance of a finite
element (FEM) formulation which solves numerically the regularized
time-harmonic Maxwell equations using nodal elements. This
formulation is described in [1]. There are several reasons to study
this approach: It offers spurious-free solutions and well-conditioned
matrices even at low frequencies [2, 3]. Only the three components
of E, or H, are the unknowns (there is no need of extra functions
such as Lagrange multipliers or scalar potentials [4]). Its integral
representation has a singular kernel of order 1 (instead of the order 3
exhibited by the double-curl formulation), which makes the regularized
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formulation well suited for hybridization with integral numerical
techniques [5–9]. The nodal solution of the electromagnetic problem
is easy to couple in multiphysics problems (thermal, mechanic,. . .)
which usually use nodal elements [10, 11]. Finally, we can also add
to the list curiosity, because the weighted regularized formulation has
not been properly investigated by the computational electromagnetic
community.

But, despite all the advantages enumerated above, several
drawbacks keeps this formulation out of the mainstream. The
main drawback is the special treatment that must be given to
the points of the domain where the field is singular and/or
discontinuous [1]. This special treatment is what makes its software
implementation and modeling more difficult than with the edge-
based FEM formulations [12, 13] and what dissuades computational
electromagnetic scientist from its use.

Therefore, although the regularized formulation had been applied
successfully to a wide variety of problems (e.g., specific absorption rate
computations [2, 14, 15], microwave engineering [1], electromagnetic
compatibility [16], electromagnetic forming [3]) there is a question that
remains unanswered: Is it worthy the investment of time and effort
in the more complex implementation and modeling of the regularized
formulation?. This is the question we try to answer in this work.

2. WEIGHTED REGULARIZED MAXWELL EQUATION
WITH NODAL ELEMENTS

Solving the regularized Maxwell equations [5] is equivalent to finding
E ∈ H0 (curl, div; Ω) such that ∀F ∈ H0 (curl, div; Ω) holds:

∫

Ω

1
µ

(∇×E) · (∇× F̄
)

+
∫

Ω

1
µεε̄

(∇ · (εE)) · (∇ · (ε̄ F̄
))

− ω2

∫

Ω
εE · F̄ + R.B.C.|∂Ω = iω

∫

Ω
J · F̄, (1)

where

H0 (curl, div; Ω)
: =

{
F∈L2(Ω) |∇×F∈L2(Ω), ∇·(εF)∈L2(Ω) , n̂×F=0 in PEC

}
,

L2(Ω) is the space of square integrable functions in the domain Ω,
L2(Ω) the space of vectorial functions with all its components belonging
to L2(Ω), ∂Ω the boundary of the domain Ω, PEC the perfect electric
conductor boundary, n̂ the unit normal to a surface, µ the magnetic
permeability, ε the electric permittivity, i =

√−1 the imaginary unit,
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ω the angular frequency, J an imposed current density, R.B.C.|∂Ω the
term, properly adapted to the regularization, that takes into account
the boundary conditions, and the bar over a magnitude denotes its
complex conjugate. Its general expression is

R.B.C.|∂Ω =
∫

∂Ω

1
µ

(n̂×∇×E) · F̄

−
∫

∂Ω

1
µεε̄

(∇ · (εE))
(
n̂ · (ε̄F̄))

. (2)

On the surface of a perfect electric conductor (PEC) we impose the
regularized version of the standard PEC boundary condition [5]

∇ · (εE) = 0,

n̂×E = 0,
(3)

On a boundary simulating a surface at infinity we impose the
regularized version [5] of the first order absorbing boundary condition
(1stABC)

n̂×∇×E = iω
√

ε0µ0 (n̂× n̂×E) ,

∇ ·E = iω
√

ε0µ0 (n̂ ·E) .
(4)

On the surface of a waveguide port with only the fundamental mode
propagating (e.g., TE10 in a rectangular waveguide, TEM in a coaxial
waveguide) we impose [12, 17]

n̂×∇×E = γ (n̂× n̂×E) + U,

n̂ ·E = 0,
(5)

where γ is the propagation constant of the fundamental mode Efm and

U = −2 γ (n̂× n̂×Efm),
U = 0

(6)

for the input and the output port, respectively (see [2] for more details).
In [5] it is demonstrated the equivalence of the above formulation

with the Maxwell equations and the absence of spurious solutions when
it is solved using nodal finite elements. In [5, 17] it is also shown that
the extended boundary conditions (3) to (5) are necessary to have a
well-posed problem. To implement the boundary conditions we only
have to impose the Dirichlet conditions (n̂×E = 0 or n̂ ·E = 0) with
the techniques explained in [17] and substitute the rest of the equalities
in the R.B.C.|∂Ω term defined in (2).

But, as shown in [18], if the analytical solution of the Maxwell
equations is singular at some point of the domain (as can happen, for
instance, in a PEC re-entrant corner [19]) we can not approximate
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this analytical solution with nodal elements and the regularized
formulation. This problem caused by the field singularities is
overridden in [18] by applying a weight in the divergence term of (1).
This weight depends on the order of the singularity [19] and tends to
zero when approaching to it.

In this work, we follow the approach explained in [1], which
is a simplification of the method developed in [18]. The simplified
approach [1] consists in removing the divergence term of (1) in a few
layers of elements around the singularity. In [1, 2, 6] it is shown that
accurate solutions can be obtained with second order tetrahedral nodal
elements if we cancel the divergence term in three layers. That is, we
must cancel the divergence term in the elements with a node resting on
reentrant corners and edges of PECs, corners and edges of dielectrics
and on the intersection of several dielectrics [19]. We also have to cancel
the divergence term in the elements which are in contact with the
previous elements and in the elements which are in contact with these
(3 layers). In [1] it is also explained the strategy to follow when the
field is discontinuous at the surfaces separating two different materials
or at the intersection of three or more different materials.

The above simplified formulation has been implemented in an in-
house code called ERMES (E lectric Regularized M axwell Equations
with S ingularities). ERMES [20] has an user-friendly interface based
on the commercial software GiD [21]. GiD is employed for geometrical
modeling, meshing and visualization of results. From the graphical
interface of GiD we obtain the elements and nodes which need a
special treatment. Then, ERMES, thanks to its C++ object oriented
implementation, is able to manage easily all the different types of
elements present in the regularized formulation.

Previous nodal-based approaches (double-curl formulation with
nodal elements) produced spurious solutions because they do not
guarantee a null divergence in the resultant discretized fields.
Therefore, its nodal discretization provided non-physical solutions
which were not a good numerical approximation of the original set of
Maxwell equations. It was necessary to use curl-conforming elements
with the double-curl formulation to obtain a discrete null divergence
solution (in a weak sense).

On the other hand, the penalized nodal-based approaches impose
explicitly in its formulation the null-divergence with an arbitrary
weighted divergence term in its weak form. But, they ignore some extra
boundary conditions which are necessary to set a well-posed problem
equivalent to the original Maxwell equations [5]. Also, they ignore
that we must take special care of the field singularities when imposing
the null-divergence. If the field is singular, the solution obtained with
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the penalized formulation can be globally wrong independently of the
mesh size or the polynomial order used in the discretization.

In some specific situations (for instance, in a problem with all
the boundaries PEC), the penalized formulations can be equivalent to
regularized formulation. Then, in both cases, if we do not pay attention
to the field singularities, wrong solutions can be obtained. In these
circumstances, the reason behind the wrong solution is not the non-null
divergence problem explained above. The real causa is the non-density
of the space spanned by the nodal basis inside H0 (curl, div; Ω) in non-
convex polyhedral domain (see [18]). Sometimes, the wrong solutions
obtained with penalized nodal-based approaches in these domains were
erroneously attributed to non-null divergence spurious modes instead
to the presence of field singularities.

The main differences of the formulation proposed in this work
with other nodal-based formulations is the way it imposes the null-
divergence of the fields and the special treatment given to the
singularities. The regularized formulation [5] imposes explicitly a
control over the divergence of the fields by means of the divergence
term appearing in the weak form (1) and the extended boundary
conditions (3) to (5). No extra unknowns (such as Lagrange
multipliers) or arbitrary weights are required. The extra term plus
the extended boundary conditions guarantee that the solution has
a null divergence and, therefore, it is free of spurious non-physical
modes. Moreover, we have added a weight function to the divergence
term [18, 1], that makes possible to converge to the physical solution
even when the field has a singularity.

The problem with the singularities is really a very peculiar and
unexpected problem. If you solve the regularized formulations without
taking care of the singularities you obtain solutions that, at first sight,
seem physically sounded but, that, after a more careful examination,
are globally wrong. Although, initially, you can think that the reason is
only a code bug or a spurious solution, the real reason rests deep inside
the functional framework of the regularized formulation. In [18, 1] are
exposed the reasons and solutions for this problem. Also, it can be
found a compressive exposition of the problem in the review [22].

As is mentioned in Section 1, the method presented here has been
validated in several applications but, of course, it is a rather new
approach and requires further research. In this paper, what we try
to evaluate is that if it is worthy to keep up with this research and
if it is profitable the extra effort of its more involved implementation
and modeling when we compare its computational performance with
the best known edge-based double-curl formulation.
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3. CURL-CURL MAXWELL EQUATION WITH EDGE
ELEMENTS

Solving the curl-curl Maxwell equations is equivalent to finding E ∈
H0 (curl; Ω) such that ∀F ∈ H0 (curl; Ω) holds:∫

Ω

1
µ

(∇×E) · (∇× F̄) − ω2

∫

Ω
εE · F̄ + B.C.|∂Ω = iω

∫

Ω
J · F̄, (7)

where

H0(curl; Ω) :={F ∈ L2(Ω)|∇×F∈L2(Ω), n̂× F=0 in PEC} (8)

and B.C.|∂Ω is the term that takes into account the boundary
conditions. The rest of the notation is the same as in Section 2. The
general expression for B.C.|∂Ω is

B.C.|∂Ω =
∫

∂Ω

1
µ

(n̂×∇×E) · F̄. (9)

On the surface of a perfect electric conductor (PEC) we impose

n̂×E = 0. (10)

On a boundary simulating a surface at infinity we impose the the first
order absorbing boundary condition (1stABC)

n̂×∇×E = iω
√

ε0µ0 (n̂× n̂×E) . (11)

On the surface of a waveguide port with only the fundamental mode
propagating we impose

n̂×∇×E = γ (n̂× n̂×E) + U, (12)

where γ and U are the same as in Section 2.
The classical FEM approach in computational electromagnetics

consists in solving the weak formulation (7) discretized with edge
elements [12, 13]. In this work, we use this approach as a reference.

4. NUMERICAL EXPERIMENTS

We calculated the electric field for several electromagnetic engineering
problems to test the computational performance of the nodal finite
element formulation of Section 2 (RM-Nodal). As a reference, we
computed identical problems using the curl-curl Maxwell formulation
of Section 3 (CC-Edge) with the same geometry, mesh and boundary
conditions.

All the geometries and meshes were generated with GiD version
10.0.5 for MS Windows 64 bits. These meshes were composed of
tetrahedra. Curved elements (second order approximation for the
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geometry) were used to fit curved boundaries. Also a second order
of interpolation was used for the finite element basis (nodal basis
functions [23] for the RM-Nodal formulation and curl conforming basis
functions[24, 13] for the CC-Edge formulation).

The accuracy of the solutions was checked by comparing the
results of both formulations between them and with those provided by
a benchmark. We also used a direct solver to check that the matrices
were correct. Once the accuracy of both approaches was guaranteed,
we examined the following parameters:

• Degrees of freedom (DOF): number of unknowns (complex
numbers) of the linear system.

• Non-zero entries (Non-Zero): number of elements (complex
numbers) of the matrix with an absolute value higher than 1e−16.

• Peak memory usage (RAM): maximum RAM memory (in kB)
required by the solver.

• Number of iterations (Iterations): number of iterations needed by
the iterative solver to reach a residual r = ||Ax − b||/||b|| lower
than 1e− 4.

• Solver time (Time): time required (in seconds) to solve the linear
system.

There are no data regarding the building of the matrices because no
significant differences were observed between the RM-Nodal and the
CC-Edge formulations.

The matrices were symmetric in all the problems analyzed,
therefore, only the diagonal and the upper half of the matrices were
considered for computation. The linear systems were solved with
a quasi-minimal residual (QMR) iterative solver [25] and a diagonal
preconditioner. The number of iterations needed by the QMR to reach
convergence was employed as an indicative measure of the condition
number of the matrices.

We also tested the conjugate gradient (CG) and the bi-conjugate
gradient (BiCG) solvers with a diagonal preconditioner. We observed
that the BiCG always converged faster than the CG despite the
oscillating value of the BiCG residual with the number of iterations.
Nevertheless, the use of the CG or the BiCG did not change the relative
number of iterations required to solve the matrix of one formulation
to respect the other. The reason to choose the QMR was because it
converged in a similar time and number of iterations than the BiCG
but with a steady decreasing of the residual. This feature makes easier
the prediction of its behavior.

The desktop computer utilized for the numerical experiments had
a CPU Intel Core 2 Quad Q9300 at 2.5 GHz, 8 GB of RAM memory and
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the operative system Microsoft Windows XP Professional x64 Edition
v2003. In the following we describe four representative examples of all
the simulations performed.

4.1. Ellipsoidal Phantom in Waveguide

In this example we computed the specific absorption rate (SAR) of
an ellipsoidal phantom placed inside a rectangular waveguide (see
Fig. 1). The ellipsoidal phantom is filled with a substance of electrical
permittivity ε = 43ε0 and conductivity σ = 0.97 S/m. The phantom
is placed at the center of a rectangular waveguide WR-975 and
illuminated with the fundamental mode TE10 at the frequency f =
900MHz. This experimental set-up is similar to those typically found
when studying the effect of radiation on small animals or biological
samples [26–28]. More details about the FEM modeling and validation
of results can be found in [2]. The computational parameters obtained
for this example are shown in Table 1.

Figure 1. Geometry set-up and SAR computed with ERMES for the
ellipsoidal phantom inside a rectangular waveguide. Results validated
in [2].

Table 1. Computational parameters obtained for the ellipsoidal
phantom inside a rectangular waveguide. The FEM mesh was
composed of 146 558 isoparametric second order tetrahedral elements.

DOF Non-Zero RAM (kB) Iterations Time (s)

CC-Edge 947 280 19 988 350 780 176 107 941 34 308

RM-Nodal 581 167 23 300 611 808 444 726 179
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Figure 2. Geometry set-up and transmission coefficient for the ridge
waveguide. The results obtained with ERMES are compared with the
measurements performed in [29].

Table 2. Computational parameters obtained for the ridge waveguide.
The FEM mesh was composed of 210 757 isoparametric second order
tetrahedral elements.

DOF Non-Zero RAM (kB) Iterations Time (s)

CC-Edge 1 425 208 26 121 205 1 055 336 189 750 95 260

RM-Nodal 813 276 30 512 483 1 068 536 1 113 372

4.2. Ridge Waveguide

In this example we calculated the fields for the ridge waveguide shown
in Fig. 2 at the frequency f = 14.15GHz. The computational
parameters obtained are shown in Table 2.

4.3. PMR Antenna near SAM Head

In this example we computed the SAR produced by a professional
mobile radio (PMR) antenna in a specific anthropomorphic mannequin
(SAM) head (see Figures 3 and 4). The PMR antenna was fed with
P0 = 2 W at a frequency of f = 390 MHz. The mass density of the SAM
head was ρ = 1000 kg/m3, and its electrical properties were ε = 45.5ε0
and σ = 0.7 S/m. More details about the FEM modeling a validation
can be found in [2]. The computational parameters obtained for this
example are shown in Table 3.
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Figure 3. Geometry set-up for the PMR antenna near SAM head and
detail of the coaxial feeding.

Figure 4. SAR distribution calculated with ERMES. Results
validated in [2].

Table 3. Computational parameters obtained for the PMR antenna
near SAM head. The FEM mesh was composed of 508 690
isoparametric second order tetrahedral elements.

DOF Non-Zero RAM (kB) Iterations Time (s)

CC-Edge 3 386 960 75 259 074 2 655 368 > 400 000 -

RM-Nodal 1 992 795 77 299 993 2 712 008 8 158 7 477

4.4. Hemispherical Dielectric Resonator Antenna

In this example we calculated the electric field at the frequency f =
3.65GHz for the hemispherical dielectric resonator antenna described
in [30] (see Figures 5 and 6). The computational parameters obtained
for this example are shown in Table 4.
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Figure 5. Geometry set-up and reflection coefficient for the
hemispherical dielectric resonator antenna. ERMES results are
compared with the simulations performed in [30].

Figure 6. Electric field at f = 3.65GHz calculated with ERMES for
the hemispherical dielectric resonator antenna.

Table 4. Computational parameters obtained for the hemispherical
dielectric resonator antenna. The FEM mesh was composed of 822 938
isoparametric second order tetrahedral elements.

DOF Non-Zero RAM (kB) Iterations Time (s)

CC-Edge 5 340 766 131 010 032 4 482 088 > 400 000 -

RM-Nodal 3 300 646 133 288 543 4 581 160 4 787 8 807

5. SUMMARY

The numerical experiments of Section 4 show that, for a given mesh,
the DOFs in the CC-Edge formulation are almost twice the DOFs in
the RM-Nodal formulation. However, the number of non-zero entries in
a CC-Edge matrix is only slightly smaller than the number of non-zero
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Table 5. Peak RAM memory usage (kB) for the examples of Section 4.

Ellipsoidal

phantom

Ridge

waveguide

PMR near

SAM head

Dielectric

antenna

CC-Edge 780 176 1 055 336 2 655 368 4 482 088

RM-Nodal 808 444 1 068 536 2 712 008 4 581 160

Table 6. Number of iterations needed by the diagonal preconditioned
QMR solver to reach convergence in the examples of Section 4.

Ellipsoidal

phantom

Ridge

waveguide

PMR near

SAM head

Dielectric

antenna

CC-Edge 107 941 189 750 > 400 000 > 400 000

RM-Nodal 726 1 113 8 158 4 787

entries in a RM-Nodal matrix. Therefore, we have different sparsity
patterns but similar memory requirements, as shown in Table 5.

On the other hand, the number of iterations of the QMR
solver presents large differences (see Table 6). Clearly, the
CC-Edge formulation needs to improve the solving technique
(using Lagrange multipliers to stabilize the solution or a better
preconditioning [31, 32, 22] or direct methods [33]) but, of course, at
the cost of increasing the computational demands. By contrast, the
RM-Nodal formulation is able to solve the problems effectively with a
very simple iterative solver (as it is also shown in [2, 14, 1, 16]). This
demonstrates the well-conditioning of the RM-Nodal matrices stated
in Section 1.

In Table 6 we can also observe the effect of the singularities in
the RM-Nodal formulation. Although the last example has more
unknowns than the PMR-SAM head example, it converges in less
iterations because it has fewer singular points. Nevertheless, the
number of iterations remains under practical levels even in the presence
of singularities [2].

Also there are differences in the values of the time per iteration (see
Table 7). The reason behind these differences seems to be the sparsity
patterns produced by each formulation. The RM-Nodal matrices have
less rows but with more non-zeros per row than the CC-Edge matrices.
When the sparse-matrix vector multiplication is carried out with the
RM-Nodal sparsity pattern, it incurs in much less loop overhead (i.e.,
branch instructions) per floating point operation. We believe that
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Table 7. Time per iteration (time (s)/iterations).

Ellipsoidal

phantom

Ridge

waveguide

PMR near

SAM head

Dielectric

antenna

CC-Edge 0.3178 0.5020 - -

RM-Nodal 0.2466 0.3342 0.9165 1.8398

is the most contributing factor to the observed differences in the
computational times.

More examples of similar characteristics were solved, and in
all the cases, the same pattern was observed for the computational
parameters. The well-conditioning of the RM-Nodal matrices remained
for bigger problems and even when the meshes had element sizes
differences of several orders of magnitude. For instance, the RM-Nodal
formulation can converge in less than 5000 QMR iterations in problems
with more than 2e6 second order elements (∼ 7e6 unknowns in the RM-
Nodal formulation, ∼ 12e6 unknowns in the CC-Edge formulation) and
element size differences of two orders of magnitude. The RM-Nodal
formulation was also applied to the computing of eddy currents and
Lorentz forces in the low frequency regime [3], retaining the same good
behavior.

6. CONCLUSION

In this paper we have shown that the reward of spending time
implementing and modeling with the RM-Nodal formulation is a
well-conditioned matrix easily solvable with lightly preconditioned
iterative solvers. This well-conditioning remains even in the presence
of singularities, in meshes with large element sizes differences and, also,
when solving low-frequency (quasi-static) problems. To minimize the
drawback of the complex implementation and modeling we only have
to use wisely the pre-processor. We can extract from the geometry
(with the CAD and mesher software) the elements which need special
treatment (elements with nodes near a singularity and/or resting on a
discontinuity surface). Then, with the proper implementation, we can
process independently each type of element without affecting the rest
of the FEM code.

By contrast, the CC-Edge formulation displays an easier
implementation and modeling but it requires more elaborate and
hardware demanding solvers. It has been shown that the CC-
Edge formulation needs stabilization terms (Lagrange multipliers or
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potentials) and/or better preconditioning (e.g., Multi-grid methods)
to solve its matrix with an iterative solver. These options represent
an increase in the computational cost respect to the RM-Nodal
formulation, which does not need neither extra terms nor heavy
preconditioners.

Therefore, depending on our preferences, we can choose between
the easy implementation and modeling featured by the CC-Edge
formulation at the cost of requiring more expensive solvers, or, the
easily solvable matrices produced by the RM-Nodal formulation at the
cost of a more laborious implementation and modeling.
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