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Abstract—In this paper, a partial coherent approach is used to
study the third and fourth Stokes parameters in passive microwave
remote sensing of Sastrugi snow surface over layered snow structures.
The incoherent part of the model consists of using radiative transfer
theory for the snow layers. The coherent part of the model is
using numerical solutions of Maxwell equations to derive the bistatic
scattering and transmission coefficients of conical scattering by sastrugi
surfaces which have large heights and large slopes. We then use
the rough surface boundary conditions of conical scattering from the
coherent part, in the incoherent radiative transfer equations. The
radiative transfer equations are then solved iteratively that includes
multiple interactions between the layered structures and the rough
surfaces. Simulation results indicate that large third and fourth
Stokes parameters are obtained because of the coupling of large angle
transmissions of the rough surfaces with the internal reflections of
layered structures. The partial coherent approach also eliminates
the coherent interference patterns in angular variations from multiple
reflections of layer boundaries that were present in the fully coherent
approach.

1. INTRODUCTION

WindSat satellite carries the first space-borne polarimetric radiometer
that measures all four Stokes parameters, i.e., the vertical
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polarized brightness temperatures, the horizontal polarized brightness
temperatures, and the real and imaginary part of the cross-correlations
of the vertical and horizontal polarizations [1]. It was launched in
2003, and its observations covered a large area of ocean surfaces, ice
sheets and land. The surprising measurement results were the large
third and fourth Stokes parameters for both X-band (10.7 GHz) and
K-band (18.7 GHz) over Greenland and Antarctica [1]. These areas are
characterized by anisotropic Sastrugi surfaces that are over multilayer
snow structures. The Sastrugi surfaces are wind-induced and have
preferred directions in the horizontal plane. In addition to these
wind induced anisotropy in the rough surfaces, Sastrugi surfaces have
large RMS heights compared with the wavelengths at X band and K
band. They also have large slopes. The multilayer snow structures
are the consequences of snow accumulation patterns. The polarimetric
signature over Greenland area is of particular interest. Specifically in
spring season, the third and fourth Stokes parameters can be up to
20K. Previously, the airborne and space borne measurements of third
and fourth Stokes were not of such large magnitudes. Measurements
over ocean give fourth Stokes parameter that is close to zero [2].
Theoretical predictions also give small fourth Stokes parameters for
ocean thermal emission [3].

It was first derived by Tsang [4, 5], using vector radiative transfer
theory and rough surface scattering, that azimuthal asymmetry can
create nonzero third and fourth Stokes parameters. Therefore, these
two Stokes parameters can be considered as containing anisotropic
information of the medium. From the temporal aspect, the seasonal
variations of the third and fourth Stokes parameters can be correlated
with the seasonal geophysical changes in the snow structure. In
previous theoretical research [5], large fourth Stokes parameters can
be the results of volume scattering of non-spherical particles. To
show the possibility of large fourth Stokes parameters, recently we
have used the model of anisotropic rough surfaces with large slopes
and large heights over layered media [6]. In that paper, emissivity
of all four Stokes parameters were considered, using a complete fully
coherent approach of rough surface scattering from a periodic surface
over layered medium. The multilayer medium effects are accounted
coherently by using the multilayer Green’s functions. However, because
of the coherent nature of the approach, the coherent multiple scattering
from periodic surfaces and the coherent interferences of multiply
reflected waves from the layered media exhibit significant angular
fluctuations of all four Stokes parameters. The multilayers actually
have random layer thicknesses. Thus an incoherent radiative transfer
approach can be preferred over a coherent layered medium approach.
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Thus we proposed a partial coherent approach in a previous paper [7] to
study the first two Stokes parameters. In the first step of that paper [7],
we study the bistatic reflection and transmission properties of random
rough Sastrugi surface with large slope and large height by solving
surface integral equations. In the second step, the bistatic reflective
and transmission properties of the random rough surfaces are used as
boundary conditions for the radiative transfer equations over layered
media. However, in that paper [7], only a 2D problem is considered
with the incident wave in the plane of the rough surface. Thus only the
first two Stokes parameters, viz., the vertical and horizontal brightness
temperatures were studied. The third and fourth Stokes parameters
were not studied because they are zero for the 2D problems in that
previous paper [7].

In this paper, to study the case of nonzero third and fourth Stokes
parameters, we extend the partial coherent approach in [7] to the 3D
problem of conical diffraction by random Sastrugi surfaces. Using
surface integral equations, the 3D bistatic reflection and transmission
4 by 4 matrices were derived for the 4 Stokes parameters. Because
Sastrugi surfaces [8] have large heights and large slope, method of
moment is used in the studies instead of the T -matrix method used in
previous studies [9, 10], because the T -matrix method or the extended
boundary condition method are limited to small slopes and small to
moderate heights. The 4 by 4 reflection and transmission bistatic
matrices are then used in the boundary conditions of the vector
radiative transfer equations of 4 Stokes parameters [11] for multi-
layered snow. The approach is labeled partially coherent because the
rough surfaces bistatic properties are computed by full wave solutions
of Maxwell equations which are coherent solutions while the layered
media part are solved by incoherent vector radiative transfer equation.
The partial coherent approach has smooth angular dependence when
compared with the previous fully coherent approach [6]. The vector
radiative transfer equations are solved iteratively. Numerical results
of the approach are compared with the fully coherent approach.
Numerical results are illustrated for various roughness profiles over
multilayered structures. The results show that the third and fourth
Stokes parameters are significant for both X-band (10.7GHz) and
K-band (18.7 GHz). They are particularly large when the Sastrugi
surfaces and multilayer snow structures exist.

In Section 2, we described the surface generation of random
Sastrugi surfaces. In Section 3, we describe the surface integral
equations for solving the reflective and transmission 4 by 4 matrices
in conical scattering. Results of bistatic scattering and transmission
matrices are illustrated for incidence from air to snow and also from
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snow to air. In Section 4, we describe the vector radiative transfer
equations with bistatic rough surface boundary conditions for the
4 Stokes parameters. The computed numerical results of Section 3
are used to implement the rough surface boundary conditions. The
iterative approach of solving vector radiative equations with rough
surface boundary conditions is described. In Section 5, the results of 4
Stokes parameters are illustrated for various geometries representative
of Greenland ice sheets.

2. COMPUTER GENERATION OF RANDOM
SASTRUGI SURFACES

The main features of the snow structures in Greenland area include
Sastrugi surfaces and multilayer snow packs. Sastrugi surface is a
wind induced snow surface, and is randomly rough surface with ridges.
Figure 1 shows a typical profile of the rough surface, and the underlying
snow layered structure is also included in the figure. Within a certain
area, the wind induced snow surface has only 1-D roughness, so the
scattering problem can be modeled as an 1-D rough surface z = f (x)
and conical incident and scattering waves φi 6= 0, φs 6= 0.

The Sastrugi surface has large height of the order of 20 cm
(which is 7.1 wavelengths at 10.7 GHz), and large slope up to 75◦ [8].
The multilayer snow structures in Polar Regions and in Greenland
are due to snow density fluctuations which are consequences of the
snow accumulation pattern. Thus each layer has a distinct dielectric
constant depending on the snow density. The multi-layer structure
gives multiple reflections [12, 13]. Because of density contrasts between
adjacent layers, giving rise to dielectric contrasts, total internal

Figure 1. Typical profile of Sastrugi snow.
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Figure 2. Scattering physics of total internal reflection.

reflection can occur at the layer interface depending on the incidence
angle. The underlying scattering physics of Sastrugi surface overlying
layered media are illustrated in Figure 2. Figure 2 shows a transmission
angle of 60.2◦ inside the snow for an incident angle of 55◦ in air. Usually
the angle of transmission inside snow is less than the incident angle in
air. However the large slopes of the Sastrugi surface can facilitate a
transmission angle in snow in this case that is larger than the incident
angle in air. The large transmission angle in snow makes possible total
internal reflection when the transmitted wave subsequently is incident
on a layer with a smaller dielectric constant as shown in Figure 2.
In this case shown in Figure 2, the large transmitted angle is larger
than the critical angle for the interface separating dense snow from
less dense snow resulting in total internal reflection. Total internal
reflection will have different phase shifts for vertical and horizontal
polarizations, thus creating nonzero results for both the third and the
fourth Stokes parameters. Note that in Figure 2, 2-D scattering and
transmission are shown rather than 3-D conical scattering, because
the total internal reflection is the key issue to explain the scattering
physics. However, 3-D conical scattering is considered in the following
simulation.

We simulate Sastrugi roughness profiles based on the reported
measured profiles [8]. The surface is to be composed of ridges. Since
the Sastrugi surface is wind induced, we model it as one dimensional
roughness along the direction of the prevailing wind. The surface
generation procedure is described below.

The Sastrugi surface consists of ridges separated by grooves. Let
L be the horizontal surface length, N be the number of ridges and
N + 1 be the number of grooves. Also, let H be the height of the
ridges and α be the maximal slope.
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(1) We generate 2N+1 random numbers in [0, 1]: {a1, a2, . . . , aN},
{b1, b2, . . . , bN+1}.

(2) The horizontal length of the jth ridge is ajC0 (j = 1, 2, . . . , N)
and horizontal length of the jth groove is bjC0 (j = 1, 2, . . . , N + 1),
where C0 is to be determined below.

(3) To rise from a groove to a ridge of height H (Figure 3), we
assume a gradual change of slope from zero to α, a region of constant
slope α, and then from slope α gradually to zero slope.

(4) Let 4l be the length discretization for this rise, and let
{θ1, θ2, . . . , θm} be the m angles increasing equidistantly from 0 to α.
Thus for each 4l, the angle is θi (i = 1, 2, . . . , m). Then the vertical
rise distance for the gradual transition from 0 to α, is

S =
∑m

i=1
4lsin θi (1)

The corresponding horizontal stretch for this vertical rise is

C =
∑m

i=1
4lcos θi (2)

Then the angle stays at α and then gradually from α back to 0. Thus
the vertical rise for the constant angle α is

Hmiddle = H − 2
∑m

i=1
4lsin θi (3)

(5) The corresponding horizontal length for the constant angle α

is H−2
∑m

i=14lsin θi

tan α . Thus the total horizontal stretch for the rise is
H−2

∑m
i=14lsin θi

tan α + 2
∑m

i=14lcos θi. Note the factor of 2 is that in a
rise from groove to a ridge, slope goes from 0 to α, stays at α, and
then from α to 0. For the fall from ridge to groove, the same formula
applies.

Figure 3. Fine structure of the random rough surface.
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Figure 4. A randomly generated random Sastrugi surface profile
H = 20 cm, α = 75◦, L = 4m, N = 12, ∆l = 1.5mm, m = 16.

Adding up the horizontal lengths of the ridges, grooves and the
N horizontal lengths of the rise and fall give the equation for the total
surface length L

C0

(∑N

i=1
ai+

∑N+1

i=1
bi

)
+2N

[
H−2

∑m
i=14lsin θi

tanα
+2

∑m

i=1
4lcos θi

]

= L (4)
Using Equation (4), we determine C0. Then we go back to step 2
to determine the horizontal length of each ridge and groove. In
Figure 4, we show a randomly generated profile based on the algorithm
described.

3. BISTATIC REFLECTION AND TRANSMISSION
COEFFICIENTS OF 4 STOKES PARAMETERS IN
CONICAL DIFFRACTION BY SASTRUGI SURFACES

In this section, we formulate the problem of conical diffraction by
Sastrugi surfaces. We first show the case of horizontal polarized
incidence case. Then the formulation extended to general polarization
of incidence.

3.1. Wave Equation and Surface Integral Equation

In conical scattering problem, the pilot field components of the wave
equation are the transverse fields Ey and Hy(∇2

t + k2
t

)
Ey = 0(∇2

t + k2
t

)
Hy = 0

(5)
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where

∇t = x̂
∂

∂x
+ ẑ

∂

∂z
k2

t = k2 − k2
iy

kiy = ksin θi sinφi

θi is the incident inclined angle and φi the incident azimuthal angle.
Using extinction theorem, the surface integral equations corresponding
to the wave equations can be obtained as

Eyi (x, z) +
∫

P
ds′

[
Ey

(
x′, z′

) ∂g

∂n′
(
x, z; x′, z′

)

−g
(
x, z; x′, z′

) ∂Ey

∂n′
(
x, z; x′, z′

)]
=

1
2
Ey (x, z)

Hyi (x, z) +
∫

P
ds′

[
Hy

(
x′, z′

) ∂g

∂n′
(
x, z; x′, z′

)

−g
(
x, z; x′, z′

) ∂Hy

∂n′
(
x, z; x′, z′

)]
=

1
2
Hy (x, z)

−
∫

P
ds′

[
E1y

(
x′, z′

) ∂g1

∂n′
(
x, z; x′, z′

)

−g1

(
x, z; x′, z′

) ∂E1y

∂n′
(
x, z; x′, z′

)]
=

1
2
E1y (x, z)

−
∫

P
ds′

[
H1y

(
x′, z′

) ∂g1

∂n′
(
x, z;x′, z′

)

−g1

(
x, z; x′, z′

) ∂H1y

∂n′
(
x, z;x′, z′

)]
=

1
2
H1y (x, z)

(6)

where the subscript P for the integral sign denotes principal value,
g (x, z; x′, z′) and g1 (x, z; x′, z′) denotes 2D Green’s function in the
incident and transmitted regions (with subscript 1), and ∂

∂n′ denotes
the normal derivative along the surface. The 2D Green’s function are
expressed in terms of Hankel function

g
(
x, z; x′, z′

)
=

i

4
H

(1)
0

(
kt

√
(x− x′)2 + (z − z′)2

)

g1

(
x, z; x′, z′

)
=

i

4
H

(1)
0

(
k1t

√
(x− x′)2 + (z − z′)2

) (7)
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Their normal derivatives are
∂g

∂n′
= n̂′t · ∇′g = − ikt

4
H

(1)
1

(
kt

√
(x− x′)2 + (z − z′)2

)

dz
dx (x− x′)− (z − z′)√

1 +
(

dz
dx

)2
√

(x− x′)2 + (z − z′)2

∂g1

∂n′
=− ik1t

4
H

(1)
1

(
k1t

√
(x− x′)2 + (z − z′)2

)

dz
dx (x− x′)− (z − z′)√

1 +
(

dz
dx

)2
√

(x− x′)2 + (z − z′)2

(8)

We then impose the continuous boundary conditions of tangential
electric and magnetic fields Ey = E1y

Hy = H1y

∂E1y

∂n
=

kiy

ωε1

√
1 +

(
dz
dx

)2

dHy

dx

(
k2

1t

k2
t

− 1
)

+
k2

1tε

k2
t ε1

∂Ey

∂n

∂H1y

∂n
= − kiy

ωµ

√
1 +

(
dz
dx

)2

dEy

dx

(
k2

1t

k2
t

− 1
)

+
k2

1t

k2
t

∂Hy

∂n

(9)

where dz
dx denotes the slope of at the point on the rough surface. From

the boundary condition, TE and TM are coupled so that Ey, Hy

are coupled. Thus Ey, Hy are to be solved jointly. This is unlike
the previous paper [7] where TE and TM are decoupled because
the incidence plane is the xz plane. There are thus four unknowns:
Ey, Hy,

∂Ey

∂n ,
∂Hy

∂n .

3.2. Tapered Incident Field

Let the incident wave have eikiyy dependence. First we consider
horizontal polarized incidence case, in which the tapered incident
electric field is 




−→
Ei = ĥEhi = x̂Exi + ŷEyi

Exi = −Ehisinφi

Eyi = Ehicosφi

(10)

Then the tapered incident wave is
Ehi =

exp

{
ik(xsin θicosφi+ysin θisinφi−zcos θi)−

(
x+ztan θi cosφi

g

)2}
(11)
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where g is a tapering factor which generally ranges from L
10 to L

4 ,
where L is the length of the surface profile. According to [9], such
tapered conical incident wave is good approximation of plane wave to
the order of O( 1

kgcos θi
). Therefore if the length of the surface profile is

large enough, the error of the plane wave approximation is negligible.
Magnetic field can be obtained as




−→
Hi = 1

iωµ∇×−→Ei = 1
iωµ

(
−x̂

∂Eyi

∂z + ŷ ∂Exi
∂z + ẑ

(
∂Eyi

∂x − ∂Exi
∂y

))

Hxi = 1
iωµcosφiEhi

(
ikcos θi + 2tan θicos φi(x+ztan θicos φi)

g2

)

Hyi = 1
iωµsinφiEhi

(
ikcos θi + 2tan θicos φi(x+ztan θicos φi)

g2

) (12)

The total incident power is

P inc =
1
2

∫ ∞

−∞
dxRe

[
(−ẑ) ·

(−→
Ei ×−→Hi

)]∣∣∣
z=0

=
√

2π
g

4
k

ωµ
cos θi (13)

3.3. Basis Function and Matrix Equations

To solve the surface integral Equation (6) accurately, we use the rooftop
basis function. The rooftop basis function fi(x) is defined on every two
neighboring intervals [xi−1, xi] and [xi, xi+1]

fi (x) =





x−xi−1

xi−xi−1
, x ∈ [xi−1, xi]

xi+1−x
xi+1−xi

, x ∈ [xi, xi+1]
0, x < xi−1 or x > xi+1

(14)

Then we convert the principal value integral into a finite sum, and
write the integral Equation (6) in the form of a matrix Equation (15).
Let the number of basis functions be N , so that there are a total of
4N unknowns. Then the matrix equations are




Z11N×N Z12N×N 0N×N 0N×N

Z21N×N Z22N×N Z23N×N 0N×N

0N×N 0N×N Z33N×N Z34N×N

Z41N×N 0N×N Z43N×N Z44N×N







EyN×1

HyN×1

∂Ey/∂nN×1

∂Hy/∂nN×1




=




EyiN×1

HyiN×1

0N×1

0N×1


 (15)

The right-hand side is the incident field which can be obtained from
Section 3.2. On the left-hand side, to evaluate the integral of the
product of the rooftop basis function and the Hankel function we use
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a 4-point Gauss-Legendre quadrature to calculate it. Then the non-
diagonal elements (m 6= n) of the sub-matrices in the first and the
second rows are

Z11 (m,n) = − ikt

8

4∑

g=1

wg

(
− zn − zn−1

xn − xn−1

(
xm − x(1)

g

)
+

(
zm − z(1)

g

))

H
(1)
1

(
ktd

(1)
mg

)

d
(1)
mg

(
x(1)

g − xn−1

)

− ikt

8

4∑

g=1

wg

(
− zn+1 − zn

xn+1 − xn

(
xm − x(2)

g

)
+

(
zm − z(2)

g

))

H
(1)
1

(
ktd

(2)
mg

)

d
(2)
mg

(
xn+1 − x(2)

g

)

d(1)
mg =

√(
xm − x

(1)
g

)2
+

(
zm − z

(1)
g

)2
, g = 1, 2, 3, 4

x(1)
g = tg

xn − xn−1

2
+

xn−1 + xn

2
, g = 1, 2, 3, 4

z(1)
g =

zn − zn−1

xn − xn−1

(
x(1)

g − xn−1

)
+ zn−1, g = 1, 2, 3, 4

d(2)
mg =

√(
xm − x

(2)
g

)2
+

(
zm − z

(2)
g

)2
, g = 1, 2, 3, 4

x(2)
g = tg

xn+1 − xn

2
+

xn + xn+1

2
, g = 1, 2, 3, 4

z(2)
g =

zn+1 − zn

xn+1 − xn

(
x(2)

g − xn

)
+ zn, g = 1, 2, 3, 4

where wg, tg (g = 1, 2, 3, 4) are the weight and interpolation points of
Gauss-Legendre quadrature.

Z12 (m,n) =
i

8

√
1+

(
zn−zn−1

xn−xn−1

)2 4∑

g=1

wgH
(1)
1

(
ktd

(1)
mg

)(
x(1)

g −xn−1

)

+
i

8

√
1+

(
zn+1−zn

xn+1−xn

)2 4∑

g=1

wgH
(1)
1

(
ktd

(2)
mg

)(
xn+1−x(2)

g

)

Z21 (m,n) =
ik1t

8

4∑

g=1

wg

(
− zn − zn−1

xn − xn−1

(
xm−x(1)

g

)
+

(
zm−z(1)

g

))
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H
(1)
1

(
k1td

(1)
mg

)

d
(1)
mg

(
x(1)

g −xn−1

)
+

ik1t

8

4∑

g=1

wg

(
− zn+1−zn

xn+1−xn

(
xm−x(2)

g

)
+

(
zm−z(2)

g

))H
(1)
1

(
k1td

(2)
mg

)

d
(2)
mg

(
xn+1 − x(2)

g

)

Z22 (m,n) =− i

8
k2

1tεr1

k2
t

√
1 +

(
zn − zn−1

xn − xn−1

)2 4∑

g=1

wgH
(1)
0

(
k1td

(1)
mg

)

(
x(1)

g − xn−1

)
− i

8
k2

1tεr1

k2
t

√
1 +

(
zn+1 − zn

xn+1 − xn

)2

4∑

g=1

wgH
(1)
0

(
k1td

(2)
mg

) (
xn+1 − x(2)

g

)

Z23 (m,n) =− i

8
kiy

ωε1

(
k2

1t

k2
t

− 1
) 4∑

g=1

wgH
(1)
0

(
k1td

(1)
mg

)

+
i

8
kiy

ωε1

(
k2

1t

k2
t

− 1
)∫ 4

g=1
wgH

(1)
0

(
k1td

(2)
mg

)

(16)

The remaining matrix elements are the diagonal elements, or the ‘self
patch’ which means the source point xm and the field point xn are
in the same interval and will cause logarithm singularity. We use the
small-argument asymptotic expression for Hankel function to solve this
problem, therefore the final expressions are

Z11 (m,m) =
1
2

Z21 (m,m) =
1
2

Z12 (m,m)=
(

i

8
− γ

4π
+

3
8π

) (
(xm−xm−1)

√
1+

(
zm−zm−1

xm−xm−1

)2

+(xm+1−xm)

√
1+

(
zm+1−zm

xm+1−xm

)2
)
−xm−xm−1

4π

ln


kt

2
(xm−xm−1)

√
1+

(
zm−zm−1

xm−xm−1

)2



√
1+

(
zm−zm−1

xm−xm−1

)2
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−xm+1−xm

4π
ln


kt

2
(xm+1−xm)

√
1+

(
zm+1−zm

xm+1−xm

)2


√
1+

(
zm+1−zm

xm+1−xm

)2

Z22 (m,m) =
k2

1tεr1

k2
t

[
−

(
i

8
− γ

4π
+

3
8π

)

(
(xm−xm−1)

√
1+

(
zm − zm−1

xm − xm−1

)2
+(xm+1−xm)

√
1+

(
zm+1−zm

xm+1−xm

)2)

+
xm−xm−1

4π
ln


k1t

2
(xm−xm−1)

√
1+

(
zm−zm−1
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]

Z23 (m,m) =
kiy

2πωε1

(
k2

1t

k2
t

− 1
)

ln




(xm − xm−1)

√
1 +

(
zm−zm−1

xm−xm−1

)2

(xm+1 − xm)

√
1 +

(
zm+1−zm

xm+1−xm

)2




(17)

where γ ≈ 0.577 is the Euler constant. The surface integral equations
for magnetic field are similar so that the sub-matrices on the third and
fourth rows have similar forms as the first two rows

Z33 = Z11

Z34 = Z12

Z41 = − ε1

µ0
Z23

Z43 = Z21

Z44 =
1

εr1
Z22

(18)

We used direct matrix inversion based on LU decomposition for this
problem because of the large RMS heights. So far the largest scale
of simulation we can run on a single-processor server is, that the
number of rooftop basis function N is 8270 for each of the 4 unknowns.
Thus, the size of the impedance Z matrix is 33080× 33080. For each
realization, it takes 45 minutes to run the simulation, and the memory
usage is 17.0 GB. The server has Intel Xeon dual core E5620 processors.
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3.4. Scattered and Transmitted Fields

After the surface unknowns are calculated, we use large-argument
asymptotic expression for Hankel function, to obtain the bistatic
scattered and transmitted fields.

Bistatic scattering:

Ẽ (ϑs)=
∫

S
dx′

[
Ey

(
x′

)
jkT

(
f ′

(
x′

)
sinϑs−cosϑs

)

−
√

1+[f ′(x′)]2
∂Ey

∂n

(
x′

)]
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(−jkT x′sinϑs − jkT z′cosϑs

)
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∫
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dx′

[
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(
x′

)
jkT

(
f ′

(
x′

)
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(
x′

) ]
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)
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√
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πkT r
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π
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−kiy
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Ẽ (ϑs) cosϑs−η

k

kt
H̃ (ϑs) sinϑs
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2
]
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(19)

Bistatic transmission

Ẽ (ϑt) =
∫

S
dx′

[
E1y

(
x′

)
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(
f ′

(
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)
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]
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(
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)
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Ext =
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(20)

From the expressions of the three components of the electric field,
we convert them into vertical and horizontal components, and obtain
the corresponding Stokes parameters. Note that we simplify the
conical scattering problem to a 2D problem by assuming exp(ikiyy)
dependence. Therefore the differential power above is a function of ϑs

or ϑt. We next do angle conversion from these ϑs, ϑt to Ωs, Ωt or
θs, φs, θt, φt as follows.

Bistatic scattering of θs, φs in terms of ϑs

cos θs =
√

1− (sin θisinφi )2cosϑs, 0 < θi <
π

2
,

0 < φi < π, −π

2
< ϑs <

π

2
, 0 < θs <

π

2
,

sinφs =
sin θisinφi

sin θs
, 0 < φs < π,

φs = π − arcsin
(

sin θi sinφi

sin θs

)
, if ϑs < 0.

(21)

Bistatic transmission of θt, φt in terms of ϑt

cos θt =
√

1− 1
εr

(sin θisinφi)
2cosϑt, 0 < θi <

π

2
,

0 < φi < π, −π

2
< ϑt <

π

2
, 0 < θt <

π

2
,

sinφt =
sin θisin θi√

εrsin θt
, 0 < φt < π,

φt = π − arcsin
(

sin θi sinφi√
εrsin θt

)
, if ϑt < 0.

(22)

Because of the conical scattering problem, there is only one
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independent angular variable of θ and φ so that θ is in terms of φ
and vice versa.

3.5. Scattering and Transmission Matrices

To build the 4-by-4 scattering and transmission matrices, vector wave
equation is used and different polarized incident wave are imposed. For
example, when the incident wave is horizontal polarization

~Einc = ĥEhi

~Esc = v̂Evs + ĥEhs

(23)

Then Evi, Evs can be used to calculate the Stokes parameters and
scattering matrix

Ivi = 0, Ihi =
|Ehi|2

ηi
, Ui = 0, Vi = 0,

Ivs =
|Evs|2

ηs
,

Ihs =
|Ehs|2

ηs
,

Us =
2
ηs

Re (EvsE
∗
hs),

Vs =
2
ηs

Im (EvsE
∗
hs)

(24)




Ivs (θs)
Ihs (θs)
Us (θs)
Vs (θs)


 =

[
¯̄Rsi (θs; θi)

]
4×4




Ivi (θi)
Ihi (θi)
Ui (θi)
Vi (θi)


 (25)

First we use Equation (24) to calculate corresponding Stokes
parameters; then consider the form of Equation (25), the second
column of the 4-by-4 scattering matrix can be obtained from ratio
of the scattered Stokes parameters to the incident Stokes parameters.
Thus using horizontal polarized incidence, we obtain this second
column. Other cases of incident polarization are discussed below.
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(1) For vertical polarization




−→
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4
κ

ωµ
cos θi

(26)

(2) For arbitrary linear combination of vertical and horizontal
polarizations
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Ei = x̂Exi + ŷEyi + ẑEzi

Exi = −ψinc
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)
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2
cos θisinφi + 1√

2
exp (−iβ)cosφi

)
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2
ψincsin θi

−→
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1
iωµ

∇×−→Ei
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1
2

∫ ∞

−∞
dxRe

(−→
Ei ×−→Hi

)∣∣∣
z=0

=
√

2π
g

4
k

ωµ
cos θi

(27)

The term exp(−iβ) is the phase difference between vertical and
horizontal polarization. The incident power remains the same as other
two types of polarization. By using 4 different kinds of polarized
incidences, the bistatic reflection and transmission 4 by 4 matrices
are constructed [5].

3.6. Bistatic Transmission Coefficients: Incident from Air
onto Snow

Bistatic transmission coefficients from air to snow are shown in
Figure 5. The parameters for Figure 5 are: frequency = 10.7GHz;
inclined incident angle = 55◦; relative permittivity of snow = 1.6;
height of ridges = 20 cm (∼ 7.1 wavelengths). The numerical
parameters are: surface length = 10 m (∼ 356.7 wavelengths); number
of ridges = 10.
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Figure 5. Bistatic transmission coefficients from air to snow. (a)
Vertical polarization incidence; φi = 30◦; (b) Horizontal polarization
incidence; φi = 30◦; (c) Vertical polarization incidence; φi = 60◦; (d)
Horizontal polarization incidence; φi = 60◦.

In Figure 5(a), the co-polarization and cross-polarization for
vertical incidence are shown. The solid line is co-polarization and
the dotted line is the cross-polarization. They are averaged over 20
realizations. There is a transmission peak for transmission angle at
40.4◦. This agrees with Snell’s law of a flat surface.

n1 sin θi = n2 sin θt

θi = 55.0◦, θt = 40.4◦
(28)

The peak at 40.4◦ is the specular transmission direction. It also exists
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in Figures 5(b) ∼ (d). Different azimuthal incident angles are used
in Figure 5. These are useful as the observing directions of passive
microwave remote sensing are at various azimuthal angles. Besides the
specular transmission direction for a flat surface, there also exists other
secondary transmission peaks between 50◦ and 60◦. The magnitudes
of these transmission peaks are about 5.6 dB (∼ 0.28 times) lower
than that of the specular transmission peak at 40.4◦. These peaks
are consequences of the large-slope section of the surface profile, as
discussed in Section 1. Suppose the relative permittivity of the second
snow layer is 1.1, the critical angle between the first two snow layers
can be obtained as

θc = arcsin
nsnow2

nsnow1
= arcsin

√
1.1√
1.6

= 56.0◦ (29)

Therefore, the secondary peaks beyond 56◦ in Figure 5 will cause total
internal reflection at the interface between the first snow layer and the
second snow layer.

3.7. Bistatic Transmission Coefficients: Incident from Snow
onto Air

Bistatic transmission coefficients from snow to air are shown in the
Figure 6.
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Figure 6. Bistatic coefficients of a Sastrugi surface: maximal slope
= 62.5◦. (a) Bistatic transmission coefficients: snow to air; θi = 40.4◦;
φt = 30◦; 10.7 GHz; (b) Bistatic transmission coefficients: snow to air;
θi = 40.4◦; φt = 60◦; 10.7 GHz.
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The solid line is the co-polarization and the dotted line is the
cross-polarization. Noting that the inclined incident angle is 40.4◦, it
is clear that the peaks at 55◦ are due to Snell’s law for a flat surface.
Horizontal incidence is shown in the figure. Vertical polarization has
similar results.

3.8. Energy Conservation Check

The energy conservation check is

P inc
v,h = P sc + P tran =

∫
dΩs [Pvs (θs, φs) + Phs (θs, φs)]

+
∫

dΩt [Pvt (θt, φt) + Pht (θt, φt)] (30)

The quantities Pvs(θs, φs), Phs(θs, φs), Pvt(θt, φt), Pht(θt, φt) can be
obtained from the scattered and transmitted electric fields, while the
incident power P inc

v,h are calculated for each case of incidence. The
energy conservation check are within 99.0% ∼ 100.9% for simulations
in this paper.

4. VECTOR RADIATIVE TRANSFER EQUATIONS
WITH ROUGH SURFACE BOUNDARY CONDITIONS

The radiative transfer equations are applied to the snow structure. The
governing equations in the first snow layer are

cos θ
dĪu (θ, z)

dz
= −κaĪu (θ, z) + κaTεr Ī0

−cos θ
dĪd (θ, z)

dz
= −κaĪd (θ, z) + κaTεr Ī0

Ī0 = [1 1 0 0]t

(31)

At each point in the random media, the Stokes parameters vector
Ī (θ, z) propagates in all directions (0 < θ < π), so it is convenient to
divide Ī (θ, z) into upward and downward going Stokes vectors [11]. In
Equation (31), vector Īu (θ, z) refers to the upward Stokes parameters
vector which propagates in θ direction and locates at position z,
while Īd (θ, z) refers to the downward Stokes parameters vector which
propagates in π − θ direction and locates at position z. Ī0 = [1 1 0 0]t

is the thermal emission term, so its third and fourth components are
incoherently averaged to zero. κa refers to the absorption coefficient,
T refers to the physical temperature.
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In the emission term, the constant factor K
λ2
0

in the emission term
is suppressed and can be re-inserted in the final results. In conical
diffraction, there is only one single φ for every θ, as the two are related
from Equations (21)–(22). Thus we will only show the θ dependence
in the governing equations. The matrix forms of solutions are

Īu (θ, z) = Ā (θ) exp (−κasec θ (z + d)) + Tεr Ī0

Īd (θ, z) = B̄ (θ) exp (+κasec θz) + Tεr Ī0
(32)

We assume that the interfaces of the subsurface snow layers are smooth.
The rough surface boundary conditions are only for the Sastrugi
interface. The boundary conditions at z = −d is

Īu1(θ1, z = −d) = ¯̄R12(θ1)Īd1(θ1, z = −d) + ¯̄T 21(θ2; θ1)Īu2(θ2, z = −d)
(33)

where −d is the position of the interface between the first and second
snow layers. The subscript 1 or 2 refers to the first or second snow
layer. For the interface of the Sastrugi surfaces, the radiative transfer
equation has the roughness boundary condition as

Īd1(θ1, z = 0)cos θ1 =
∫

dθ′1sin θ′1 cos θ′1
¯̄R10(θ′1; θ1)Īu1(θ′1, z = 0) (34)

In the above equations, ¯̄R12 (θ1) is the reflection matrix at the
underlying interface, and can be extended to multilayer cases.
¯̄T 21 (θ2; θ1) Īu2 (θ2, z = −d) is the thermal emission from the second
snow layer. Reflection matrix ¯̄R10 (θ′1; θ1) is the bistatic scattering
coefficients at the Sastrugi rough surface.

After inserting the matrix forms of the solutions into the boundary
conditions, the matrix equations are

(
B̄ (θ1) + T1εr1Ī0

)
cos θ1

=
∫

dθ′1sin θ′1cos θ′1
¯̄R10

(
θ′1; θ1

)(
Ā

(
θ′1

)
exp

(−κasec θ′1d
)
+T1εr1Ī0

)

Ā (θ1) + T1εr1Ī0

= ¯̄R12 (θ1)
(
B̄ (θ1)exp(−κasec θ1d)+T1εr1Ī0

)
+ ¯̄T 21 (θ2; θ1) T2εr2Ī0

Ī0 = [1 1 0 0]t

(35)

Note that the snow layers have similar permittivity or that εr1 is
close to εr2. The upward going intensity are close to the physical
temperature so that the coefficient Ā (θ1) is a small value compared to
B̄ (θ1). Therefore in thelowest order, the Ā (θ1) inside the integral is
treated as zero. Thus, the vector radiative transfer equations with the
boundary conditions can be solved in an iteration scheme.
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(1) Lowest Order:

Ā(0) (θ1) = 0

B̄(0) (θ1) =
∫

dθ′1sin θ′1
cos θ′1
cos θ1

T1εr1
¯̄R10

(
θ′1; θ1

)
Ī0 − T1εr1Ī0

(36)

(2) Iteration scheme: n ≥ 1

Ā(n) (θ1) = ¯̄R12 (θ1)
(
B̄(n−1) (θ1) exp (−κasec θ1 d) + T1εr1Ī0

)

+ ¯̄T 21 (θ2; θ1) T2εr2Ī0 − T1εr1Ī0

B̄(n) (θ1) =
∫

dθ′1sin θ′1
cos θ′1
cos θ1

¯̄R10

(
θ′1; θ1

)
(
Ā(n)

(
θ′1

)
exp

(−κasec θ′1 d
)

+ T1εr1Ī0

)
− T1εr1Ī0

(37)

(3) Stopping criterion: We used the following criterion
∥∥Ā(n) (θ1)− Ā(n−1) (θ1)

∥∥
∥∥Ā(n) (θ1)

∥∥ < 1% (38)

After the coefficient matrices are solved, we calculate the upward going
Stokes parameters in the air region

Īu0(θ0)=
∫

dθ′1sin θ′1
cos θ′1
cos θ1

¯̄T 10

(
θ′1; θ0

)
Īu1

(
θ′1, z=0

)
=

∫
dθ′1sin θ′1

cos θ′1
cos θ1

¯̄T 10

(
θ′1; θ0

)(
Ā(n)

(
θ′1

)
exp

(−κasec θ′1d
)

+ Tεr1Ī0

)

Ī0 =[1 1 0 0]t

(39)

For typical simulation cases (parameters shown in the next section),
the iteration scheme requires 15 steps to satisfy the stopping criterion
Equation (38). From the 2nd iteration, the ratio |Ā(θ)/B̄(θ)| will
remain stable at 5.80%, which validates the premise of the iteration
scheme.

5. RESULTS OF FOUR STOKES PARAMETERS

In this section, we illustrate numerical results of the partial coherent
approach for the two frequencies 10.7 GHz and 18.7GHz. The input
parameters are:

(1) Inclined incident angle = 55◦;
(2) Physical parameters of Sastrugi surface
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– Height of ridges = 20 cm;
– Largest slope = 62.5◦;

(3) Numerical parameters of Sastrugi surface
– Finite surface length = 10 m;
– Number of ridges = 10;
– Tapered factor = 4;

(4) Physical parameters of the layered structure
– Number of layers = 2;
– Permittivity of layers = 1.6, 1.3;
– Physical temperatures of layers = 270 K, 260 K;
– Thickness of the first layer (εr = 1.6) = 15 cm;
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Figure 7. 4 Stokes parameters for two frequency 10.7GHz and
18.7GHz. (a) Vertical polarization brightness temperature: Tv;
(b) Horizontal polarization brightness temperature: Th; (c) Real part
of polarization correlation: U ; (d) Imaginery part of polarization
correlation: V .
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(5) Numerical parameters of the layered structure
– Absorption coefficient = 0.05;

Figure 7 shows the four Stokes parameters versus the azimuthal
incident angle, which is the angle in the horizontal plane between the
satellite observation direction and the direction of roughness. In each
figure, results for the two frequencies are compared.

The brightness temperatures Tv and Th are around 200 K, which
are slightly lower than the experimental data, but nevertheless are
comparable to experimental data. These lowering of brightness
temperatures can be attributed to multiple reflections and internal
reflections. The third and fourth Stokes parameters range from −30K
to 20 K, which are large values. These large values of third and
fourth Stokes parameters contain much information on the anisotropic
structure. We note that such large values of third and fourth Stokes
parameters exist in both frequencies, which show that the effects can be
attributed to geometric optics. This is in contrast to volume scattering
of small particles which are strongly frequency dependent [4, 5, 14].

6. CONCLUSION

In this paper, a hybrid method, composed of surface integral equation
method and radiative transfer theory, is proposed to solve all the four
Stokes parameters for the snow structures in Greenland area, where
Sastrugi surfaces and multilayer snow structure exist. The surface
integral equation with conical incident wave is solved by method of
moments, and the radiative transfer equation is applied to a two-layer
snow structure. The bistatic transmission coefficients show that a large
height and large slope surface can create large transmission angle, even
larger than the critical angle at the underlying interface. The results of
Stokes parameters agree with the experimental data, which validates
the hybrid method. The results do not have the coherent fluctuations
that were in the full wave solution [6] for the multilayer snow structure.
The third and fourth Stokes parameters are large when total internal
reflection occurs, and their magnitudes are comparable for X band
and Ku band. Future studies will include volume scattering in snow in
addition to the multiple reflections from layer boundaries [14–16].
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