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Abstract—This work studies the influence of material coatings,
especially combined natural and metamaterials, on the radiation
properties of a practical dipole like antenna, represented by a slotted
conducting sphere. The selected geometry allows an exact solution
to the problem, and thus the development of exact expressions for the
antenna parameters, like the radiated power and directivity. It is shown
that for materials with combined positive and negative parameters,
mode resonances can occur at thinner coatings, the thickness of
which can be made diminishingly small by proper selection of coating
parameters. In particular, at these resonances the antenna directivity,
while being finite, becomes independent of the antenna size and coating
parameters.

1. INTRODUCTION

A conducting sphere represents a canonical problem in electromagnet-
ics and is well investigated by many authors over the past few decades.
Its specific geometry provides exact analytic solutions for a variety of
problems involving spherical shapes and more complex related con-
figurations like slotted and coated spheres [1–3]. The study of slots
on perfectly conducting spheres and coated spheres can be traced as
far back as over half a century ago. Karr [1] in 1951 investigated
the effects of the electrical radius and the position of the slot on the
radiation properties of a metallic uncoated sphere. A few years later,
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Mushiake and Webster [2] reported the radiation patterns, impedances,
and power gains of nonsymmetrically excited narrow azimuthal slots
on a sphere. The work by Kerker [3] has given a summarized descrip-
tion of the scattering from coated and stratified spheres. Shortly after,
Towaij and Hamid [4] looked into the radiation characteristics of an
azimuthal slot on a perfectly conducting sphere coated with multiple
layers of dielectric materials. The case of slotted spheres includes both
scattering and antenna problems, and in the latter case, enables ana-
lytic solutions for their impedance and radiation properties. However,
up till that point in time, the effects of the coating thickness and other
physical parameters on the radiated power had not yet been thoroughly
investigated. An interesting problem involving coated spheres is the
resonance phenomenon due to the coating, when one of the spheri-
cal modes becomes resonant. While such resonances manifest similar
mathematical problems in scattering and antenna applications, they
have fundamentally different implications in each. In the former case,
it influences the scattering properties of the sphere, while in the latter it
affects both the radiation as well as the input impedance parameters.
Nonetheless, in both cases it enhances the contribution of resonant
modes to the field quantities.

In the case of spherical antennas, the resonance phenomena in the
coating were originally investigated by Shafai and Chugh [5] in 1973,
which identified the resonant modes and studied their influences on the
radiated power. An azimuthally slotted conducting spherical antenna
was selected and its electromagnetic problem was formulated for a
single layer of coating using a homogeneous material with arbitrary
permittivity or permeability parameters. It was shown that with a
constant slot excitation, the radiated power was enhanced at mode
resonances.

Ever since the turn of the millennium, there had been an
explosive growth in the amounts of research invested into the
area of metamaterials or left-handed materials. This classifies
artificially synthesized materials with negative permittivity and/or
permeability over a finite frequency band. When both the permittivity
and permeability are simultaneously negative, they are known as
double negative (DNG) materials. There had been many claimed
applications of metamaterials, with interesting and novel results,
among which are the mode resonances in layered structures as well
as in obtaining electrically small and efficient antennas, waveguide
miniaturization, reducing the peak SAR in the human head, amongst
others. Specific applications involving the coating of radiators and
scatterers with metamaterial layers are in the enhancement of the
radiation efficiency [6] and directivity [7, 8], as well as the reduction of
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sidelobes [8]. There had also been studies of anomalous scattering by
conducting cylinders coated with metamaterials [9]. Works associated
with the studies of unusual resonances caused by metamaterials [10]
for achieving improved efficiencies [11], strong field localization [12],
and even microwave filtering in waveguides [13] were also conducted.
Other interesting applications have also been considered and studied,
and a good summary of them can be viewed in recent manuscripts [14–
16]. Such new concepts of unnatural but novel materials with negative
parameters motivate a rejuvenation of research into coated spherical
antennas, but this time, with coverings composed of metamaterials.

The shortcoming of the investigations in [5] is in neglecting to
relate the output parameters of the antennas like the radiated power
and directivity to its input power, in order to satisfy the law of energy
conservation. This study is undertaken to close this gap and develop
expressions consistent with conservation laws and useable in practical
antenna designs. The case of slotted conducting spherical antenna
is selected again, as it allows developing exact expressions for the
field equations, and determination of their solutions. To include the
effects of metamaterials on the resonances, the case of double layer
coating, as opposed to a single layer coating in [5], is now considered.
A schematic of this structure is provided in Fig. 1. The purpose of
studying two layers is to explore the combined effects of a natural and
metamaterial coating. The additional degrees of freedom provided by
the second layer open up to a range of aspects for investigations which
is not available in single-coated spheres. It also allows the correct
interpretation of excessive power radiation from constant current or

Figure 1. Schematic of perfectly conducting sphere with a narrow
azimuthal excitation slot, and coated with two layers of homogeneous
materials.
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voltage sources involving mode resonances in metamaterials, thus
resolving the related power paradox.

Therefore, the objectives of this paper are to detect the coating
resonances and study their influences on the antenna radiated power
and directivity. They are then related to the input power and the
consequences of the coating resonances are discussed. This paper shall
investigate the use of materials with negative constitutive parameters
as the coatings of azimuthally-slotted metallic spheres. Exact
formulations are developed herein. Primary aspects to be focused upon
are the resonance effects brought about by the metamaterial coatings,
and their corresponding comparisons with ordinary coat materials.
Radiation patterns will also be looked into. The selected geometry of
a slotted sphere is a form of dipole antenna, and its study represents
a practical problem in antennas radiating in the presence of materials
and metamaterials, helping to resolve the causes of unusual radiation
characteristics.

2. ANALYSIS AND FORMULATION

Figure 1 shows a perfectly conducting sphere of radius a, with a
narrow azimuthal slot located at θ = θ0, and coated with two layers of
homogeneous materials, such that the radii up to the first and second
coatings are b and c, respectively. The inner and outer coatings are
labeled by indices 1 and 2, respectively, with corresponding parameters:
ε1, µ1, and ε2, µ2, as shown in the figure. The analysis that follows is
based on the classical method of vector potentials [17, 18].

2.1. Field Expressions in Layers via Vector Potentials

The thin slot gives rise to the following excitation electric field which
exists only over the slot.

Eslot
θ

∣∣∣r=a,
θ=θ0

= E0δ (θ − θ0) , Eφ ≡ 0 (1)

where E0 is an arbitrary amplitude coefficient and δ the Dirac delta
function. Due to the purely azimuthal radiated magnetic field from
this azimuthal slot, the dominant mode of the radiated field is TMr.
This dictates the following radial components of the electric (F ) and
magnetic (A) vector potentials.

F (1)
r ≡ F (2)

r ≡ 0, A(1)
r 6= 0, A(2)

r 6= 0 (2)

where the bracketed superscript denotes the layer index: (1) for the
inner layer a ≤ r ≤ b and (2) for the outer layer b ≤ r ≤ c. Assuming



Progress In Electromagnetics Research B, Vol. 45, 2012 227

only the zeroth-order variation along the azimuthal direction, i.e., no
variation along ϕ,

∂A
(i)
r

∂φ
= 0 (3)

in which the bracketed superscript (i) may represent either (1) or (2)
for the inner or outer coating layers, respectively, or (0) for the external
free-space. The radial components of the magnetic vector potentials
within the inner (a < r < b) and outer (b < r < c) dielectric coating
layers, and the external free-space region (r > c) outside the sphere
are written as

A(1)
r =

∞∑

n=1

[
a(1)

n Ĵn(k1r) + b(1)
n Ŷn(k1r)

]
Pm=0

n (cos θ) (4a)

A(2)
r =

∞∑

n=1

[
a(2)

n Ĵn(k2r) + b(2)
n Ŷn(k2r)

]
Pm=0

n (cos θ) (4b)

A(0)
r =

∞∑

n=1

cnĤ(2)
n (k0r)Pm=0

n (cos θ) (4c)

where Ĵ and Ŷ are the well-known Riccati or Schelkunoff type spherical
Bessel functions [17], and Pm

n (cos θ) is the nth order associated
Legendre function with the characteristic index m. These Riccati
functions are related to the more common Bessel functions via the
following.

K̂n(kr) =

√
πkr

2
Kn+1/2(kr) (4d)

where K may be either J , Y , or H
(2)
n [11]. The five amplitude

coefficients: a
(1)
n , b

(1)
n , a

(2)
n , b

(2)
n , and cn, are so far unknown and are to

be determined.
Using the following well-known expressions of the electric and

magnetic field components in terms of the vector potential [18],

Eθ =
1

jωµεr

∂2Ar

∂r∂θ
, Hφ = − 1

µr

∂Ar

∂θ
(5)

these field components in the various layers are stated as follow.

E
(1)
θ =

1
j
√

µ1ε1r

∞∑

n=1

[
a(1)

n Ĵ ′n(k1r) + b(1)
n Ŷ ′

n(k1r)
]
P 1

n(cos θ) (6a)

E
(2)
θ =

1
j
√

µ2ε2r

∞∑

n=1

[
a(2)

n Ĵ ′n(k2r) + b(2)
n Ŷ ′

n(k2r)
]
P 1

n(cos θ) (6b)
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E
(0)
θ =

1
j
√

µ0ε0r

∞∑

n=1

cnĤ(2)′
n (k0r)P 1

n(cos θ) (6c)

H
(1)
φ = − 1

µ1r

∞∑

n=1

[
a(1)

n Ĵn(k1r) + b(1)
n Ŷn(k1r)

]
P 1

n(cos θ) (6d)

H
(2)
φ = − 1

µ2r

∞∑

n=1

[
a(2)

n Ĵn(k2r) + b(2)
n Ŷn(k2r)

]
P 1

n(cos θ) (6e)

H
(0)
φ = − 1

µ0r

∞∑

n=1

cnĤ(2)
n (k0r)P 1

n(cos θ) (6f)

whereby the following identity has been used in obtaining the above
equations.

sin θ
dPm=0

n (cos θ)
d(cos θ)

= −Pm=1
n (cos θ) (7)

Before proceeding, the following orthogonality property useful to the
forthcoming formulation is first stated.

π∫

θ=0

P 1
n(cos θ)P 1

q (cos θ) sin θdθ =
{

0, q 6= n
2n(n+1)

2n+1 , q = n
(8)

2.2. Boundary Conditions

The boundary conditions to be imposed require the continuity of the
tangential fields across the boundaries separating the various layers,
namely at r = a, r = b, and r = c.

Upon enforcing the continuities of the tangential θ-components of
the electric field across the three interfaces r = a, r = b and r = c, the
following are acquired.

∞∑
n=1

[
a

(1)
n Ĵ ′n(k1a) + b

(1)
n Ŷ ′

n(k1a)
]
P 1

n(cos θ)

ja
√

µ1ε1
= E0δ (θ − θ0) (9a)

√
µ2ε2

∞∑

n=1

[
a(1)

n Ĵ ′n(k1b) + b(1)
n Ŷ ′

n(k1b)
]
P 1

n(cos θ)

=
√

µ1ε1

∞∑

n=1

[
a(2)

n Ĵ ′n(k2b) + b(2)
n Ŷ ′

n(k2b)
]
P 1

n(cos θ) (9b)
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√
µ0ε0

∞∑

n=1

[
a(2)

n Ĵ ′n(k2c) + b(2)
n Ŷ ′

n(k2c)
]
P 1

n(cos θ)

=
√

µ2ε2

∞∑

n=1

cnĤ(2)′
n (k0c)P 1

n(cos θ) (9c)

Making use of the orthogonality property of (8), we obtain

a(1)
n Ĵ ′n(k1a)+b(1)

n Ŷ ′
n(k1a)=

jE0a
√

µ1ε1 (2n+1)
2n (n+1)

P 1
n(cos θ0) sin θ0 (10a)

a(1)
n Ĵ ′n(k1b)+b(1)

n Ŷ ′
n(k1b)−

√
µ1ε1

µ2ε2

[
a(2)

n Ĵ ′n(k2b)+b(2)
n Ŷ ′

n(k2b)
]
=0 (10b)

a(2)
n Ĵ ′n(k2c) + b(2)

n Ŷ ′
n(k2c)−

√
µ2ε2

µ0ε0
cnĤ(2)′

n (k0c) = 0 (10c)

The continuities of the tangential ϕ-components of the magnetic
field across r = b and r = c are stated as

1
µ1

∞∑

n=1

[
a(1)

n Ĵn(k1b) + b(1)
n Ŷn(k1b)

]
P 1

n(cos θ)

=
1
µ2

∞∑

n=1

[
a(2)

n Ĵn(k2b) + b(2)
n Ŷn(k2b)

]
P 1

n(cos θ) (11a)

1
µ2

∞∑

n=1

[
a(2)

n Ĵn(k2c) + b(2)
n Ŷn(k2c)

]
P 1

n(cos θ)

=
1
µ0

∞∑

n=1

cnĤ(2)
n (k0c)P 1

n(cos θ) (11b)

Applying the same orthogonality property of (8) again, (11a) and (11b)
give

µ2

[
a(1)

n Ĵn(k1b)+b(1)
n Ŷn(k1b)

]
− µ1

[
a(2)

n Ĵn(k2b)+b(2)
n Ŷn(k2b)

]
=0 (12a)

µ0

[
a(2)

n Ĵn(k2c) + b(2)
n Ŷn(k2c)

]
− µ2cnĤ(2)

n (k0c) = 0 (12b)

Equations (10a), (10b), (10c), (12a), and (12b) constitute the five
equations in terms of the five unknowns: a

(1)
n , b

(1)
n , a

(2)
n , b

(2)
n , and cn,

which can then be solved for. This linear system of equations may be
cast in matrix form:

[Z]5×5 [C]5×1 = [F ]5×1 ; [C]5×1 =
[

a
(1)
n b

(1)
n a

(2)
n b

(2)
n cn

]T

[F ]5×1 =
[

jE0a
√

µ1ε1(2n+1)
2n(n+1) P 1

n(cos θ0) sin θ0 0 0 0 0
]T

(13a)
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where the latter column vector represents the driving force. By
Cramer’s rule, the solution of each coefficient involves a division by the
determinant of the coefficient matrix [Z] (the quotient). The divisor
is also the determinant of a matrix, say [D], which is just [Z] but with
one of its columns replaced by [F ]. Note that E0 does not occur in [Z].
The general form of the coefficient may be expressed as

α = |Dα|/|Z| (13b)
where α may be any one of the five amplitude coefficients. The
subscript α of D is to signify that there is one particular matrix D
for each α. The coefficient matrix [Z] is written as

[Z] =




Ĵ ′n(k1a) Ŷ ′
n(k1a) 0 0

Ĵ ′n(k1b) Ŷ ′
n(k1b) −

√
µ1ε1

µ2ε2
Ĵ ′n(k2b) −

√
µ1ε1

µ2ε2
Ŷ ′

n(k2b)

0 0 Ĵ ′n(k2c) Ŷ ′
n(k2c)

µ2Ĵn(k1b) µ2Ŷn(k1b) −µ1Ĵn(k2b) −µ1Ŷn(k2b)
0 0 µ0Ĵn(k2c) µ0Ŷn(k2c)

0
0

−
√

µ2ε2

µ0ε0
Ĥ

(2)′
n (k0c)

0
−µ2Ĥ

(2)
n (k0c)




(14)

The 5 × 1 excitation matrix [F ] has only one non-zero term located
at the first element node, which is given by the right hand side of
(10a). Therefore, a solution exists as long as the determinant of
the matrix (14) is non-zero, or it does not become ill-conditioned.
Either of these cases corresponds to the resonance of modes in the
coating, and the solution of the matrix Equation (13a) fails. Or,
the computed coefficients for one of the modes become exceptionally
larger than the others, indicating a partial resonance of modes inside
the coating. Enforcing the causality conditions and conservation of
energy, the effects of such resonances on the antenna radiated power
and directivity are discussed later, allowing a meaningful resolution to
the uncertainties caused by these resonances.

2.3. Radiated Power

Using the well-known Poynting vector of the radiated field, the radiated
power is

Prad =
r2

2
Re

2π∫

φ=0

π∫

θ=0

E
(0)
θ H

(0)∗
φ sin θdθdφ (15a)
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Applying (6c) and (6f) in this equation and using the orthogonality
property of (8) as well as the asymptotic forms of the Hankel functions
for large arguments, the radiated power is simplified to

Prad =
2π

µ0
√

µ0ε0

∞∑

n=1

|cn|2 n (n + 1)
2n + 1

(15b)

Naturally, the radiated power depends on the mode coefficients cn of
the external free space region, which as mentioned earlier, involve a
division by the matrix determinant in (14).

2.4. Directive Gain Patterns

The well-known expression of the directive gain function is [19]

D0(θ, φ) = 4πU(θ, φ)/Prad (16)

where U(θ, φ) is the radiation intensity given in this case [19]

U(θ, φ) = r2
(
|Eθ(θ, φ)|2 + |Eφ(θ, φ)|2

)/
2η (17)

Thus, using the results from (6c), (6f), and (15b) the antenna directive
gain becomes

D0(θ) =

∣∣∣∣
∞∑

n=1
cnP 1

n(cos θ)ejnπ/2

∣∣∣∣
2

∞∑
n=1

|cn|2 n(n+1)
2n+1

(18)

Note that, if the antenna conductor and the layered media are all
lossless, the above directive gain becomes the antenna directivity. The
knowledge of the coefficients cn, computed using the above mentioned
procedure, provides the directive gain plots, from which one can also
determine the antenna peak directivity.

3. NUMERICAL RESULTS AND DISCUSSIONS

In this section, we present the computed radiated power, as presented
in (15b). Under modal resonances, the matrix determinant |Z| vanishes
and results in explosive growth of the mode coefficients contained in
solution vector [C] of (13a), as mentioned earlier. Thus in using (15b),
the computed radiated power will show peaks at mode resonances.

To verify the above properties, two groups of investigations into
the radiation of a doubly-coated sphere are conducted. In the first
group, the thicknesses of the inner and outer coatings are changed, and
in the second the material properties of one layer and the thickness of



232 Ng Mou Kehn

the other layer are modified. For all computed results to come, the
radius a of the metal sphere is such that k0a = 1, and an equatorial
slot is treated, i.e., θ0 = π/2. The sphere size k0a = 1 without coating
is a useful size to study. Larger sphere sizes provide more resonant
modes, but the results will follow similar trends.

3.1. Thickness Variation of Both Coatings

Various combinations of the permittivities of the two coating layers
are investigated, and the results for 12 representative cases are
provided. Specifically, two relative permittivities of 4 and 9 and their
negative values are considered. In the first ten cases the relative
permeability of both regions is positive and unity (µr = 1). The
permittivity combination pairs are: (+4, +4), (+9, +9), (+4, +9),
(+9, +4), (−4,−9), (−9,−4), (+4,−9), (+9,−4), (−4,+9), (−9, +4),
where the relative permittivity of the inner layer is stated first in
each parenthesis. In these cases, the negative permittivity will cause
evanescent fields in that region. The last two cases have a negative
permeability (µr = −1) for both layers and negative permittivities of
(−4,−9) and (−9,−4). Thus, the fields are again of propagating types
in the two coating regions.

Before proceeding further, let us just take a short moment to
speak of the physical ramifications of materials with oppositely-signed
or doubly-negative parameters. For the case of positive permeability
but negative permittivity, we have the so-called ENG (epsilon
negative) materials, whereas when the permittivity is positive but
the permeability is negative, we have MNG (mu negative) materials.
And when both the permittivity and permeability are negative, we
have DNG (double negative) materials, also known as metamaterials.
Needless to say then, for the usual materials with positive permittivity
and positive permeability, they are termed as DPS (double positive).
Both ENG and MNG properties can individually be exhibited by
naturally-existing materials within specific frequency bands without
human intervention. In certain frequency regimes, many plasmas exude
negative permittivities in conjunction with positive permittivities, i.e.,
ENG materials. For instance, noble metals (e.g., gold, silver) behave
in this manner in the infrared and visible spectrum. Whereas, MNG
characteristics are physically displayed by gyromagnetic materials.
However, only DNG materials cannot be found in nature, thus their
alternative name “metamaterials”, suggestive of paranormal properties
beyond those of natural substances. Nonetheless, they (DNG) as
well as ENG and MNG materials can all be artificially synthesized,
particular even at frequencies other than those of naturally-occurring
matter. The most common way to mimic ENG materials is



Progress In Electromagnetics Research B, Vol. 45, 2012 233

by a periodic array of parallel thin metallic wires, whereas the
straightforward method to artificially construct MNG materials is by a
likewise regular lattice of capacitively-loaded metallic loops (typically
split ring resonators, or SRR). By straightforward combination of both
constructs, a DNG metamaterial can be artificially fabricated as a
composite of the thin-wire array ENG structure and the split-ring array
MNG, exhibiting a macroscopic permittivity and permeability which
are at least close to that of the wire-array ENG and SRR-lattice MNG
medium, respectively, albeit being a simplified model that neglects
interactions between the wires and rings. In all three frameworks,
the period (inter-element spacing) must be considerably less than the
wavelength in order for a homogenization effect to take place.

Nevertheless, while naturally-occurring ENG and MNG properties
can be prevalent over a rather broad range in the frequency spectrum,
artificially synthesized ENG, MNG and DNG attributes are generally
if not mostly narrow-banded. Arguably, the most common way to
mathematically express the frequency dependency of the permittivity
and permeability of ENG and MNG materials is derived by the Drude
model [14]:

ε(f) = ε0

[
1− f2

pe

f
(
f − j Γe

2π

)
]

µ(f) = µ0

[
1− f2

pm
− f2

0m

f2 − f2
0m
− j Γmf

2π

]

where ωpe and Γe are respectively the plasma and damping frequencies
for ENG materials, and correspondingly ωpm and Γm for MNG
materials. These damping factors constitute losses. In a lossless
system, the Γ terms vanish and by mere inspection, both the
permittivity and permeability are positive when the frequency is above
the plasma frequency, but are negative when the frequency is less
than the plasma frequency, with resultant imaginary refractive indices.
Consequently, the only solutions are evanescent waves, which are still
physically realistic phenomena.

As seen from (15b), Prad is a combined sum of an infinite number
of modal powers. In reality, this summation has to be truncated to
a finite number of modal powers. Fortunately, the powers carried by
higher order modes (with n larger than k0a = 1) decrease rapidly,
and their contribution to the radiated power becomes negligibly small
as compared to the fundamental (lower order) modes. Moreover, for
the present symmetric excitation θ0 = π/2, the powers carried by
modes of even n are zero. Hence, only odd modal indices n need to
be considered in the summation. In the upcoming computed results,
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we have truncated to the first 4 odd modes, i.e., for n = 1 to 7. In
addition, a fixed E0 = 1 of (1) has been maintained throughout the
computations.

Figure 2 presents three-dimensional plots of Prad as a function
of the coating thicknesses d(λj) of the two layers (normalized to
their respective absolute dielectric wavelengths: |λj | = |1/[f

√
(µjεj)]|,

where j is 1 or 2, and f is the frequency) for various combinations
of inner and outer relative permittivities, all with absolute values of
4 and 9 (those stated earlier in parentheses). The normalized coating
thicknesses range from 0 to 1 for both layers. As can be seen, there are
distinct peaks in the plots of Prad and their locations and magnitudes
are dependent on the selected coatings. The modes that cause the
resonances are indicated in the plots. A brief explanation of the results
is provided below.
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Figure 2. Total radiated power over various coating thicknesses of
the two layers, for various combination pairs of relative permittivities
as indicated in parentheses (εr1, εr2). The thicknesses d1 and d2

normalized to the respective absolute dielectric wavelengths |λj | =
|1/[f

√
(µjεj)]| of the coating material range from 0 to 1. Cases (a) to

(j) have µr1 = µr2 = +1, cases (k) and (l) have µr1 = µr2 = −1.
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Figures 2(a) to 2(d) show the results when both coating
permittivities are positive. Figs. 2(a) and 2(b) are for the case where
both layers are identical: (+4, +4) and (+9, +9). Evidently, the
profiles of these two contour plots are uniform along the diagonal paths,
over which the total coating thickness is constant, and correspond to
the singly-coated structures discussed in [5]. It is shown here as the
reference case, and to indicate the number and location of the resonant
modes.

The results for positive, but different, permittivities of the two
layers, are provided in Figs. 2(c) and 2(d). The resonances are more
complex in shape and intensity, and are mostly diffused. Two sharp
resonances are indicated by two small circles around them.

When both coating permittivities are negative, the associated
power profiles are given by Figs. 2(e) and 2(f). In this case, the
modes are evanescent in both layers, in virtue of the imaginary
negative refractive index as explained earlier, and power can reach the
outermost region only if both coating thicknesses are small. The results
clearly show this phenomenon, as the computed radiated powers are
significant only near the bottom corner, where both coating thicknesses
go to zero.

In Figs. 2(g) and 2(h), the permittivity of the inner coating is
positive and that of the outer one is negative. This case is similar to
the problem of the ionosphere, and the resonant modes correspond to
Whispering Gallery Modes (WGM) [20]. Thus, the main parameter of
importance is the thickness of the first layer, which decides on the mode
resonances. Hence, the computed peaks are clearly defined for certain
thickness of the first coating layer. The second coating layer cannot
support propagating modes, and the power penetration to the external
region must decrease rapidly with its thickness. This is indeed shown
in the figures, although it is not so obvious due to the logarithmic
vertical scale, which makes the decay appear less severe than it really
is. The radiated powers actually fall by as much as 50 dB from the
maximum values at low thicknesses of the outer coating.

The next cases, when the permittivity of only the first layer is
negative, are shown in Figs. 2(i) and 2(j). Here, the first layer supports
the evanescent modes and the radiated power decreases with its
thickness, as observed in the plots (again note the logarithmic vertical
scale — hence the decay is actually much more rapid than it seems).
However, the thickness of the second layer defines the resonances
corresponding to this layer, and their presences are indicated by
shallow wave-like form of the radiated power as a function of the second
layer thickness. Interestingly, distinct and sharp resonant modes,
attributed to the higher order n = 3 and n = 5, are also shown in
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these two cases. Their locations seem dependent on the thicknesses of
both coating layers.

As a final illustration of this study of coating thickness variation,
two cases in which both layers are made of double-negative materials
are presented in Figs. 2(k) and 2(l). The common relative permeability
shared by the two coatings is −1. In this way, the modes within neither
layer are evanescent. It is interesting to observe that the mode contours
and the resonance intensities are the same as those in Figs. 2(a) and
2(b), for the double positive materials.

3.2. Material and Thickness Variations

For further investigations of the resonance effects, Figs. 3 and 4 are
included, in which the material parameters of the inner layer (with
a fixed thickness) and the thickness of the outer layer (with fixed
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Figure 3. Total radiated power as a function of the permittivity
ε1 of the inner layer and thickness d2 of the outer layer, for positive
and negative ε1, and various positive relative permittivities εr2 of the
outer layer (4, 9 and 16), as indicated. The outer coat thickness d2

normalized to its dielectric wavelength λ2 = 1/[f
√

(µ2ε2)] ranges from
0 to 1. Inner coat thickness d1 = 0.01λ2. Cases (a) to (c) are
for ε1 > 0, cases (d) to (f) are for ε1 < 0. Relative permeability
µr1 = µr2 = 1 throughout.
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permittivity and permeability) are varied. The investigated thickness
of the inner layer is small, being 0.01λ2. However in Fig. 3, the
permeability of the inner layer is positive (µr1 = 1 throughout), but it is
negative in Fig. 4 (and equal to its permittivity, i.e., ε1 = µ1 < 0). The
same spherical radius (a = 1/k0) and equatorial slot (θ0 = π/2) of the
previous subsection reapply. As before, the various modes contributing
to the resonances are also indicated in the figures.

The plots of the total radiated power against the permittivity ε1

of the inner layer and the thickness d2 of the outer layer are given
in Fig. 3, for positive and negative ε1 values (Figs. 3(a) to 3(c) for
the former, Figs. 3(d) to 3(f) for the latter). The fixed thickness of
the inner layer, d1 = 0.01λ2 (see Fig. 1), is expressed in terms of
the dielectric wavelength of the outer coating, λ2 = 1/f

√
µ2ε2 (f is

the frequency), as indicated in each subplot of Fig. 3. The relative
permittivity εr2 = ε2/ε0 of the outer layer considered for each subplot

(a) (b) (c)

(d) (e) (f)

Figure 4. Total radiated power as a function of the double negative
parameter (ε1 = µ1 < 0) of the inner layer and thickness d2 of the
outer layer, for various relative permittivities εr2 of the outer layer
(4, 9, 16), as indicated. The outer coat thickness normalized to its
dielectric wavelength λ2 = 1/[f

√
(µ2ε2)] ranges from 0 to 1. Inner

coat thickness d1 = 0.01λ2 on the upper: cases (a) to (c),
d1 = 0.02λ2 on the lower: cases (d) to (f).
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is also stated. The relative permittivity εr1 = ε1/ε0 of the inner
coating ranges from 1 to 10 for the positive values (left side plots
of Fig. 3) and −1 to −10 for the negative ones (right side plots).
As before, the normalized coating thickness of the outer layer ranges
from 0 to 1. When the inner coating is composed of materials with
negative permittivities, an evanescent region between the antenna and
the outer layer with positive permittivity is created (remember that
µr1 = µr2 = 1). Thus, for the right side plots of Fig. 3, the n = 1
mode resonances due to the thickness of the second layer are the same
for all cases of inner coating permittivities. However, superimposed
on these resonances are higher-order modal resonances attributed to
the inner coating metamaterial, whose locations and intensities depend
on the parameters of both layers. In particular, resonances occur for
vanishing permittivity of the inner layer and vanishing thickness of
the second layer. As such, inner coatings with negative permittivities
are able to achieve resonances with outer coatings that are thinner
than those attainable by ordinary inner coating materials. This will
be demonstrated more clearly later. The attribution of the resonance
peaks in these figures to various n-modes will be more distinctively
specified in the upcoming Fig. 5.

Figure 5. Contour paths of resonances extracted from Figs. 3(b)
and 3(e), and several other d1 cases (0.02λ2, 0.03λ2, and 0.04λ2), for
εr2 = 9.



Progress In Electromagnetics Research B, Vol. 45, 2012 239

Figure 4 shows the same type of results as Fig. 3, but this time the
simultaneously varied permittivity and permeability of the inner layer
are equal and negative, i.e., ε1 = µ1 < 0. Two different thicknesses
0.01λ2 and 0.02λ2 of the inner layer are investigated. It is interesting
to note that the trends of the power profiles for this case are about
the same as those in Fig. 3, which had a maintained µr1 = 1. This
may be expected. However, it is important to present them here, as
both regions are propagating and lossless. Thus, no power loss occurs
and the radiated power becomes identical to the antenna input power
(assuming it is matched to the source), a fact that is important for
discussing the computed results and interpretation of the resonances.

The contour paths along which resonances occur in Fig. 3, as well
as several more cases of thicker first layer (d1 = 0.02λ2, 0.03λ2, and
0.04λ2), are extracted and plotted in Fig. 5. In these graphs, the
vertical axis represents the relative permittivity of the inner coating,
whereas the resonant coating thickness of the outer layer constitutes
the horizontal axis. As can be clearly seen from these plots, when
the inner coatings possess small negative permittivities, the outer
coating can be made very thin and still achieve resonances. On
the other hand, such reductions in the resonant coating thickness of
the outer layer cannot be achieved by inner coats made of ordinary
materials with positive permittivities, regardless of their values. The

(a)
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(b)

Figure 6. Directive gain patterns (variation with θ) generated by
(18) for selected points along resonant paths of Fig. 5 (upper cluster)
and an additional case of εr2 = +16 (lower set), for d1 = 0.01λ2 and
ε1 < 0. Each cluster of plots corresponds to a certain ε2, and each
subplot within pertains to a certain nth mode. Relative permeability
µr1 = µr2 = 1 throughout. (a) εr2 = +9, d1 = 0.01λ2, ε1 < 0 (of
Fig. 5). (b) εr2 = +16, d1 = 0.01λ2, ε1 < 0.

key reason for this is the existence of resonance paths (see Fig. 3)
introduced by the metamaterial, which swerve inwards towards the
origin of the horizontal plane in the plots of Figs. 3(d) and 3(f), i.e.,
towards zero thickness of the outer coat. On the contrary, when
the inner layer comprises natural materials, the resultant resonance
paths either remain fairly unchanged with variations in the positive
permittivity values, or swerve in the opposite direction, i.e., towards
larger outer coat thicknesses instead. Hence, ordinary inner coat
materials are unable to lower the profile of the outer layer and still
maintain the resonance condition. Therefore, this marks an important
attribute of coatings with negative permittivities, as such profile
lowering in antenna technology at selected resonances offers dramatic
improvements in miniaturized and even nanoscale antenna designs,
which could not otherwise be feasible [14]. This strong radiation
resonance for nearly zero coating thickness can be regarded as being
related to nanofocusing [21–24], in which strong field localization
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is achieved in the nanoscale, offering numerous modern applications
such as imaging, spectroscopy, and optical ultra-microscopy, all with
nanometer-scale spatial resolution, allowing even for single-molecule
detection. It is also observed from Fig. 5 (as well as Fig. 3, but less
obvious) that for sufficiently thin inner coatings (d1 = 0.01λ2 for our
case), partial resonances (smooth humps) occur at about a common
quarter wavelength thickness of the outer coating, regardless of the
permittivity value of the inner layer. This quarter wavelength weak
resonance is seen as the first smooth hump occurring at the lowest
outer coat thickness in Fig. 3. Mild resonances also seem to appear at a
common three-quarter wavelength thickness of the outer layer. Finally,
the distinct modes causing the resonances of Fig. 3 are segregated out
in Fig. 5, each being represented by a separate line.

For the inner coat thickness d1 = 0.01λ2, the directive gain
patterns of arbitrarily selected points (each pertaining to a certain
pair of ε1 and d2) along the resonant paths of Fig. 5 are plotted in
Fig. 6, for ε1 < 0. The rigorous form of (18) involving summation
of modes has been used for generating these graphs. Each cluster
of plots in this figure corresponds to a certain ε2, and each subplot
within the cluster pertains to a particular nth resonant mode, as
clearly indicated. The parameter in each subplot is then ε1. Due
to the possible recurrences of resonances for any one mode (and ε1) at
multiple outer coat thicknesses, as seen in Fig. 5, orders of resonances
for each nth mode are assigned. The first and second order resonances
of some nth modes are separately plotted in Fig. 6. As can be observed,
the radiation strengths towards any one direction for different ε1 in
each subplot do not vary appreciably from one another, with just
notably varying levels along directions around the lobes. Moreover, a
comparison between subplots of the same mode also shows only minor
differences, i.e., fairly similar radiation patterns of the same nth mode
amongst various outer coat permittivities ε2. Hence, these suggest the
independence of the directive gain of all parameters other than n and
θ under resonance conditions.

It can also be seen that the number of lobes in the patterns
(ranging from θ = 0 to 180◦) equals the mode index n. Recognizing
this empowers one to configure a certain resonant pair of ε1 and d2

for achieving a prescribed radiation pattern with a desired gain and
shaping the radiation patterns.

4. INTERPRETATION OF MODAL RESONANCES

Let the input power that is injected into the excited slot be Pin.
From the theorem of power balance (or energy conservation), the



242 Ng Mou Kehn

total radiated power Prad expressed by (15b) plus the combined power
lost through reflection (Prefl) as well as dissipation (Pdiss) must then
be equal to this Pin. Assuming a dissipation-less scenario (involving
ideal lossless materials, i.e., Pdiss = 0), the only avenue of power loss
is via mismatch. Hence, the power conservation law can be stated
mathematically as

Pin = Prad + Prefl (19)

With this laid, two scenarios may be considered: 1) non-resonance
condition, and 2) resonance condition. The next paragraphs discuss
these situations.

4.1. Resonant and Non-resonant Conditions

Under non-resonant conditions, the determinant |Z| is finite and thus
no one particular mode fully dominates over another. In this event,
all terms in the series of (15b) and (18) are significant. However, for
small sphere sizes, the magnitude of terms decreases with the order n,
and the series converges rapidly, simplifying the computation.

The resonance condition, however, is significantly different. When
the magnitude of |Z| pertaining to a certain mode index n encounters
a very small or zero value for a particular set of physical and electrical
conditions, and assuming that this is the only resonant mode present,
then all the other terms in the summation of (15b) may be dropped,
since their contributions are overwhelmed by the solitary resonant
term. Consequently, (19) may be restated with good approximation as

Prad|reson
n

=
2π

µ0
√

µ0ε0
|cn|2 n (n + 1)

2n + 1
= Pin − Prefl (20)

The power radiated by this nth mode then becomes seemingly very
large, or infinite. However, by the conservation law, when the input
power is finite a paradox is apparently at hand, and can be explained
as follows. The mode coefficients of (4a) to (4c) may be written
using (13b) as

α =
|Dα|
|Z| =

{[
ja
√

µ1ε1 (2n + 1)
2n (n + 1)

P 1
n(cos θ0) sin θ0

]
|M1j |

}
E0

|Z| (21)

where j = 1 through 5 when α is a
(1)
n , b

(1)
n , a

(2)
n , b

(2)
n , and cn,

respectively, and [M1j ] is the minor of [Z] formed by eliminating
the first row and the jth column of [Z], thus being a 4 × 4 matrix.
When |Z| = 0 under resonance, one can show from (14) the following
relationship between the first two minors.

Ĵ ′n(k1a) |M11|+ Ŷ ′
n(k1a) |M12| = 0 (22)
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Suppose initially that the trivial solution: |M11| = |M12| = 0 of this
characteristic equation is admissible. Eq. (21) then says that a

(1)
n

and b
(1)
n may still be finite (non-zero) if E0 is also finite (non-zero).

However, the condition of (22) says nothing about |M15|, which thus
certainly need not vanish, i.e., it is generally non-zero. Hence, if E0

is non-vanishing, Eq. (21) dictates that cn will become infinite when
|Z| = 0. But such an infinite cn cannot coexist with finite a

(1)
n and b

(1)
n ,

due to violation of the boundary conditions as well as the power balance
theorem (infinite power in the outermost region but finite power in
the first layer). Therefore, the above trivial solution of (22) can only
be valid if E0 = 0. But in the most general case where this trivial
solution is not permissible, i.e., all minor matrices are non-zero, then
under resonance (|Z| = 0), a finite cn is needed for a radiated power
[see (15b)] that balances a finite fixed input power, Pin. As such,
E0 will also have to be zero, according to (21), so as to achieve a
non-infinite cn (a “zero divided by zero” situation). Hence, regardless
trivial or nontrivial solutions of (22), E0 has to vanish. Under such
conditions, we arrive at the classical eigenvalue problem entailing the
matrix equation: [Z][C] = [0], for which non-trivial solutions exist
only when |Z| = 0, which is the characteristic equation, as defined
by (22). This means that non-vanishing field solutions exist (non-
trivial eigenvector [C]) even without the presence of an excitation
source (E0 = 0), as of classical eigen-mode theory. For a certain
fixed set of electrical and structural parameters, the eigenvalues then
constitute the resonant eigen-modal frequencies which are solved for
as roots of the characteristic equation |Z| = 0.

Therefore, returning to the diminishment of E0 under resonance,
contrary to what one may tend to expect when the power balance
theorem is neglected, there is no infinite radiated power under modal
resonance. Infinite radiation can only occur when there is an associated
infinite source power. It is this conservation concept which addresses
the resonance power paradox. However, it is reminded that in our
present study, a constant E0 has been considered, which corresponds
to a constant (slot) voltage generator as opposed to a fixed power
source. Hence, the radiated power profiles computed in Figs. 2 to 4 all
pertain to different injected powers, instead of a constant input power
shared amongst all structural configurations. This explains the varying
“wavy” power profiles. Consequently, the radiated power can indeed
take on infinite values under resonance conditions, although this entails
a correspondingly infinite injected power (the conservation theorem),
as said earlier. Had a constant power source been considered instead,
and assuming zero mismatch losses, then the power profiles will all
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take on the form of a uniform horizontal plane at the level of the input
power.

Likewise, the directive gain of (18) under a resonance condition
may be well approximated as

Gd|reson
n

=
(2n + 1)

∣∣P 1
n(cos θ)

∣∣2
n (n + 1)

(23)

which is independent of the antenna and coating parameters. Hence,
when a solitary nth mode is resonant, the directive gain is a function
of only n and θ and is unaffected by other parameters of the structure.
This is a remarkably interesting result. The physical and electrical
properties of both the spherical antenna as well as the coatings no
longer play a visible role in the antenna directivity. It is the resonating
mode that decides on the antenna performance. Although of course,
the antenna and coating parameters play an indirect role by exciting
the resonant mode, but once the mode resonates, it decides on the
radiation pattern and the antenna directivity. This property of the
resonant modes is readily verified by recognizing that these calculated
antenna radiation patterns near the resonant condition presented in
Fig. 6 are highly similar to corresponding plots obtainable from (23).

A consequence of the above mode resonant property is the exact
knowledge of the antenna directivity at mode resonances. For instance,
for a symmetric excitation of the sphere with θ0 = 90◦, all even order
(n = even) associated Legendre functions vanish, and the terms in the
series correspond to n = odd integers. The directivity of the leading
terms, in the horizontal θ = 90◦ plane, can be shown to be,

n = 1, D1(θ = 90◦) = 1.50 (1.76 dBi)
n = 3, D3(θ = 90◦) = 1.31 (1.19 dBi)

The first term, for n = 1, corresponds to the dipole mode and its
directivity of 1.5 is maximum in the horizontal plane. This is the
same as that of an infinitesimal dipole. However, in the present
case this directivity is obtained for all sphere and coating sizes and
parameters, as long as the n = 1 mode resonates in the coating.
For higher order modes, i.e., n > 1, the radiation patterns become
more complex, given by P 1

n(cos θ), and their peak directivities move
away from the horizontal plane. Since these resonances are very sharp
and generally narrow band, they can be used to design accurate gain
standard probes for calibration of standard gain horns. Such probes
can help in improving the accuracy of the gain measurement, which
needs further investigation.
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4.2. Apportionment of Total Radiated Power Amongst
Modes

The apportionment of the total radiated power amongst the various
modes for the gain patterns of the first, third, and fifth subplots
in Fig. 6(b) for n = 1, 3, and 5 is conveyed in Figs. 7(a) to 7(c),
respectively. As can be seen, under the conditions where the precision
of resonance detection is high, i.e., strong modal power carried by

(a)

(b)



246 Ng Mou Kehn

(c)

Figure 7. (a) Apportionment of modal powers amongst various n
modes, for the same ε1 cases as the first subplot of Fig. 6(a)
(resonant n = 1, 1st order), with εr2 = +9, d1 = 0.01λ2, ε1 < 0.
(b) Apportionment of modal powers amongst various n modes, for the
same ε1 cases as the third subplot of Fig. 6(a) (resonant n = 3,
1st order), with εr2 = +9, d1 = 0.01λ2, ε1 < 0. (c) Apportionment
of modal powers amongst various n modes, for the same ε1 cases as
the fifth subplot of Fig. 6(a) (resonant n = 5, 1st order), with
εr2 = +9, d1 = 0.01λ2, ε1 < 0.

the resonant mode as compared to the other non-resonant ones, the
corresponding gain patterns of Fig. 6 are strongly identical to the
idealized ones defined by (23).

5. CONCLUSIONS

The influence of coating materials on the radiation properties of a
spherical dipole antenna was investigated. The excitation was assumed
to be due to a circumferential slot, which made the antenna to resemble
a thick dipole. The spherical geometry, however, allowed an exact
analytical solution for the field equations and accurate determination
of the antenna parameters like the radiated power and directivity.
Formulations were developed for a double layer coating, to enable
investigation of different coating types, especially with a combination
of positive and negative parameters.



Progress In Electromagnetics Research B, Vol. 45, 2012 247

It was found that for coating materials with either only positive or
only negative parameters, modes can resonate, provided the combined
thickness of the two layers is at least around quarter dielectric
wavelength. However, for materials with combined positive and
negative parameters, the resonance can exist inside thinner coatings,
the thickness of which can be made diminishingly small. It was also
shown that with a constant slot excitation, the radiated power increases
dramatically at mode resonances. However, under the scenario of a
constant power generator, since the radiated power must be equal to
the power of the source, the causality condition dictates that the slot
excitation must reduce at resonances to maintain the radiated power
at the level of the source power.

Another consequence of the mode excitation was to increase
the contribution of the resonating mode to the radiated power,
as compared to non-resonant modes. This fact was verified by
calculating the radiated power of different contributing modes, which
indicated that the radiation by non-resonant modes is negligible. The
radiated field can then be expressed by the single resonating mode.
This simplification permitted the exact calculation of the antenna
directivity entirely by the resonating mode, which was also verified
by the sample calculations. An important outcome of this resonance
phenomenon was the fact that, at resonances, the antenna directivity
became independent of the antenna size and coating size and physical
parameters. It was decided entirely by the resonating mode. The
constancy of the antenna gain at mode resonances, coupled with
the simplicity of the antenna structure, allows the design of ultra-
accurate gain standard probes for calibrating the Standard Gain Horns,
commonly used for gain measurement. This will be a significant
innovation in the area of antenna measurements.
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