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Abstract—The aim of this study is to address the management
of urinary problems by detecting changes in the volume of urine
within the human bladder using low cost, low power, wearable Ultra
Wideband (UWB) sensors and signal processing techniques. The
paper describes experiments on the classification of six three-layer
dielectrically representative bladder phantoms, mimicking a range
of muscle and bladder wall-to-wall distances. The process involves
the illumination of the bladder with a UWB pulse. Due to the
dielectric contrast between urine and bladder wall tissue at microwave
frequencies, an electromagnetic reflection is generated at both the
anterior and posterior bladder wall. These reflections are recorded,
the salient features are extracted and processed by a classification
algorithm to estimate the volume of urine present in the bladder.
To evaluate the prototype system, a number of physical bladder
phantoms were constructed, each mimicking bladders of different
volumes. Principal Component Analysis (PCA) was applied and the
processed features were classified by a K-Nearest Neighbour learning
algorithm to estimate the state of the bladder (small, medium or full).
The paper describes the bladder phantom prototype systems and the
experimental setup. Results illustrate detection of phantom bladder
states with an accuracy of up to 91%.

1. INTRODUCTION

Bladder control problems include urinary incontinence, urinary
retention and nocturnal enuresis (bed-wetting). Incontinence affects
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up 35% of people over the age of 60, amounting to over 200 million
people worldwide [1]. Urinary incontinence is defined as the inability to
stop the flow of urine from the bladder. Frequent urination or urgency
to void the bladder can increase the risk of falls by 26% and bone
fracture by as much as 34% [2]. Up to 50% of homebound and nursing
home residents are incontinent, with an estimated societal cost of 12.6
billion dollars in the US annually [3].

Urinary retention is defined as the inability to urinate and can be
caused by an obstruction in the urinary tract or by nerve problems
that interfere with signals between the brain and the bladder. Urinary
retention can be caused by childbirth, diabetes, stroke, spinal cord
injuries, prostate enlargement, urinary tract infections (UTI), bladder
stones, and surgery (due to anaesthetics). Urinary retention is
generally treated by catheterization. Almost 10% of all men over the
age of 70 and 33% of all men over the age of 80 will suffer from urinary
retention at least once over a five year period [4]. Urinary retention
can significantly increase the risk of kidney damage and urinary tract
infections.

Finally, while incontinence and retention largely affects older
people, enuresis (involuntary bed-wetting) is normally confined to
children, and affects 5–7 million children in the US each year [5].
Enuresis is defined as involuntary urination, which can be caused by a
variety of factors including disorders of the kidneys, bladder, or ureter;
and poor control of the muscles that control release of urine. For the
majority of children, there is no single explanation, either physical or
psychological, for bedwetting.

Each of these conditions (and many other bladder-related medical
conditions) could greatly benefit from a system that could monitor the
bladder. While ultrasound-based solutions have been proposed [6, 7],
such systems can often be limited by size, battery power consumption
and cost. Therefore, an opportunity exists for an alternative bladder-
state sensing system, based on Ultra Wideband (UWB) Radar.

Measuring water accumulation in the bladder using UWB Radar
was previously investigated by Pancera et al. [8–10]. However,
rather than attempting to estimate the exact bladder depth (and
corresponding volume) using range-gating algorithms as investigated
by Pancera et al., this study aims to classify the state of the bladder
as either “Small”, “Medium” or “Full” using corresponding bladder
phantoms with varying volumes of urine. The authors believe that this
approach could be more robust to natural between-patient variations
in skin, fat and muscle thicknesses and bladder sizes. A prototype
system is presented in this paper and is evaluated on dielectrically
representative bladder phantoms.
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The remainder of the paper is organized as follows: The
construction of the bladder phantoms and the prototype system is
outlined in Section 2; Section 3 describes the bladder state classification
algorithm, including signal pre-processing, feature extraction and a
brief overview of the classification algorithm; Results are presented in
Section 4, with a number of test scenarios to examine the robustness
of the classification algorithm and finally, conclusions are drawn in
Section 5.

2. BLADDER PHANTOMS & EXPERIMENTAL SETUP

In this section, the bladder phantoms and the experimental setup used
to transmit and record the UWB signals are described.

2.1. Bladder Phantoms

In this study, several bladder phantoms were created, modeled as three-
layer structures. The first and third layer contain tissue-mimicking
material with dielectric properties similar to those of human muscle.
The middle layer contained a saline solution, with similar dielectric
properties to urine. The muscle-mimicking material was created using
a 6.5:1 TX151 to water mixture, while the urine was represented by
a 0.5% saline solution [9]. The dielectric properties of the muscle-
mimicking material are described in Table 1. The various layers were
separated by thin sheets of acrylic.

Two separate sets of phantoms were created, labeled Set I and
Set II, corresponding to different muscle depths and bladder volumes.
Set I phantoms had 10 mm muscle layers with bladder depths (distance
between anterior and posterior muscle layer) measuring 10mm (Small),
20mm (Medium) and 30mm (Full). Set II phantoms were more
challenging from a UWB probing perspective, with 25 mm muscle
layers and bladder depths measuring 20 mm (Small), 30 mm (Medium)
and 40 mm (Full). An example of the phantom construction is shown
in Figure 1.

Table 1. Complex permittivity of muscle-mimicking material.

Frequency MHz Complex Permittivity
500 78.45− j19.55
1000 50.55− j14.25
2000 34.7− j10.05
5000 16.75− j5.65
10000 7− j3.1
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Figure 1. Diagram of the bladder phantom. The muscle depth is
10mm for Set I and 25 mm for Set II.

Figure 2. Block diagram of the UWB bladder system setup. The
transmitting and receiving antennas are marked as “TX” and “RX” in
the image.

2.2. Experimental Setup

A block diagram illustrating the UWB experimental setup is shown in
Figure 2.

A GZ1118ANE pulse generator from Geozondas [11] was used to
generate a monocycle pulse with a Full-Width Half-Maximum span
of 220 ps. The mean transmitted power of the pulse generator was
1.6mW. A bistatic antenna array was used to transmit and receive the
UWB signals. Each antenna was a 2 Bow-tie Phased-array antenna
with reflector of dimensions 113× 123× 57mm. The frequency-range
of the antenna was 1–4.5 GHz.

The UWB pulse radiated from the transmitting element (TX)
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into the phantom and the reflections are recorded at the receiver
(RX). To synthesise a four element antenna array, four transmitting
antenna positions are used, where three receiver locations collect the
backscatter for each transmitter location. Each of these antenna
locations is shown in Figure 2.

Twelve (4 TX × 3 RX) transmitter/receiver combinations are
used to acquire signal data at a specific perpendicular distance from
the phantom. In order to introduce variance (to adequately test the
bladder volume classifier), this distance between the antenna array and
phantom is varied from 200 mm to 236 mm, in 3mm increments during
signal acquisition. A total of 60 (5× 12) signals are recorded for each
phantom from Set I and Set II.
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Figure 3. (a) All recorded signals. (b) All recorded signals after
environment signal has been subtracted. (c) All signals after noise
prior to first muscle wall reflection is removed.
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3. BLADDER STATE CLASSIFICATION ALGORITHM

In this section, the bladder state classification algorithm is detailed,
including the data pre-processing, feature extraction method and a
brief overview of the k-nearest neighbour (kNN) classifier used.

3.1. Data Preprocessing

In order to remove unwanted background reflections and antenna
coupling, measurements are first recorded without the phantom
present. The resultant reference signals are then subtracted from all
phantom signals before further processing. To further reduce noise, all
signals prior to the dominant reflection (the first reflection from the
anterior muscle wall) are set equal to zero, as shown in Figure 3.

3.2. Feature Extraction

In order to extract the most salient features of the UWB backscattered
signals, Principal Component Analysis (PCA) is applied to the entire
dataset [12]. PCA is used to reduce the dimensionality of the data and
diminishes the influence of less relevant information such as noise [13].
A new orthonormal basis is derived which presents the dataset in terms
of its variance. Components are listed in order of decreasing variance.

3.3. K Nearest Neighbour Learning Algorithm

The k Nearest Neighbour (kNN) learning algorithm is an example-
based classifier where test features are classified by a majority vote of
its k nearest neighbours in the feature space [14]. Given a training set of
sample-label pairs (xi, yi), with features xi, labels y and i = 1, . . . , M ,
an attempt is made to classify an unknown sample q by calculating its
weighted distance from xi as:

d(q,xi) =
N∑

j=1

wj |qj − xij | (1)

To determine the class of q, a majority distance weighted voting system
is used where:

V ote(yi) =
k∑

c=1

1
|q− xc|1(yi, yc) (2)

where 1(yi, yc) returns 1 if the class labels match and 0 otherwise.
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4. RESULTS

Prior to kNN classification, 180 signals for each set are shuffled 21
times and split into a testing and training set in the ratio of 1 : 3 (test
and training features are exclusive). The classifier attempts to classify
each signal into one of three bladder states: “Small”, “Medium” and
“Full”. Bladder state classification results are presented for phantom
Sets I and II, along with an analysis of misclassified signals.

4.1. Bladder State Classification Results

The number of PCA components is varied, 15 components were chosen
to represent the best trade off between performance and computation
as in [13], illustrated in Figure 4.

Overall mean bladder state accuracies and corresponding standard
deviations are presented in Table 2. Bladder state classification
performance for Set I phantoms is 91.33%, degrading slightly to 87.38%
for the phantoms in Set II, while the standard deviation increases
from 4.6% to 6.4% for mean results from Set I and Set II respectively.
The increased muscle depth and larger bladder widths associated with
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Figure 4. Plot of number of PCA components versus bladder state
accuracy.

Table 2. Overall kNN classifier performances and corresponding
standard deviations.

Set I (%) Set II (%)
Accuracy 91.33 87.38

σ 4.6 6.37
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phantom Set II significantly attenuates the transmitted UWB pulse
and resulting bladder reflections. However, even with the increase
muscle and bladder depths of the phantom Set II, the performance of
the classifier drops by less than 4%.

4.2. Misclassification Analysis

To adequately understand the behaviour of any classifier, it’s
important to analyse the misclassified signals. For the overall detection
results, the percentage of each misclassified phantoms, specified by
their associated bladder depths, are described in Tables 3 and 4.
The fourth row of each table describes the incorrect bladder state
corresponding to each misclassified phantom. For example, examining
Table 3, one can see that the 10 mm bladder is only misclassified only
10.86% of the time. Of these 10 mm misclassifications, 80% of the time,
the 10 mm was misclassified as a 20 mm bladder depth phantom and
the remaining 20% correspond 30 mm bladder depth phantoms.

The most commonly misclassified phantoms from Set I are
the 20 mm bladder depths (Medium), forming 58.69% of total
misclassifications. These are mainly classified (86%) as 30 mm
phantoms (Full) by the kNN algorithm. Similarly, 92% of the
misclassified 30 mm bladder depths (Full) are incorrectly approximated
as 20 mm phantoms (Medium) by the algorithm.

In Set II, the smallest bladder depth (20mm) are the least
misclassified, with a result of 18.04%. The percentage of Medium and
Full bladder misclassifications are 37.11% and 44.84%, respectively.
Similar to the Set I misclassifications, the two largest bladder depths

Table 3. Misclassification analysis of phantom Set I.

Set I (%)
Width 10mm 20mm 30mm

Misclassified (%) 10.86 58.69 30.43
Misclassified as 20mm (80%) 30mm (86%) 20mm (92%)

Table 4. Misclassification analysis of phantom Set II.

Set II (%)
Width 20mm 30 mm 40mm

Misclassified (%) 18.04 37.11 44.84
Misclassified as 30mm (100%) 40mm (68%) 30 mm (95%)



Progress In Electromagnetics Research C, Vol. 33, 2012 25

Table 5. Effect of sampling rate classifier performance.

Frequency (GHz) Set I (%) Set II (%)
50 91.33 87.38
30 90.82 87.60
15 93.12 83.23
10 77.71 73.76
5 56.92 48.82

are most commonly mistaken by the kNN algorithm as each other,
where the 30mm bladder depth phantoms are classified as 40 mm
bladder depth phantoms, while the reverse is the case for misclassified
40mm bladder depth phantoms.

Across both sets of phantoms, the smallest phantoms in each set
are the best classified, where the reflection from the posterior bladder
wall is strongest.

4.3. Effects of Sampling Frequency on Bladder State
Classification

The development of any bladder state monitoring device would be
subject to some cost/technological constraints. Therefore, the effects of
different sampling rates should be considered. In order to examine this,
the recorded signals are downsampled to various different sampling
rates prior to any pre-processing and classification. The performance
of the classifier at EACH sampling rate is shown in Table 5.

Classification results do not degrade significantly when the
sampling frequency is reduced from 50 GHz to 15GHz. At 30 GHz,
results are similar to 50 GHz and while Set I accuracy actually improves
at 15 GHz, the Set II detections deteriorate by just over 4%. Below
15GHz, the classification performance drops significantly, degrading
equally by 13.62% for both Set I and Set II. When signals are further
downsampled to 5 GHz, the signal quality degrades significantly,
and corresponding classification accuracies are significantly affected,
dropping to 56.92% and 48.82%, for Set I and Set II respectively.

4.4. Antenna Aperture

As mentioned in the previous subsection, a bladder state monitoring
device could be subject to some cost/technological constraints,
including the number of antenna array elements. In this subsection,
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Table 6. Effect of reduced antennas on kNN detection results.

Transmitters Set I (%) Set II (%)
4 91.33 87.38
3 79.43 71.31
2 85.48 79.92

the effects of reduced number of antenna array elements on the
classification performance is considered.

To evaluate the performance of the bladder classification algorithm
using three antennas, the signal data transmitted or received from one
specific antenna element is removed from the dataset. To ensure a fair
test, each antenna’s contributions is removed in turn and four detection
accuracies are recorded and the mean is presented in Table 6.

Using two antennas, the signal data from six separate
combinations of TX-RX pairings are removed from the dataset in turn
and the mean accuracies are given in row three of Table 6.

When a single antenna is removed, the mean accuracy is reduced
to 79.43% for Set I and 71.31% for Set II. Results do not degrade
significantly when two antennas are removed from the setup, with a
decrease of over 5% and over 7% for Set I and Set II respectively.

5. CONCLUSIONS

This paper presents a UWB radar system to monitor the volume
of urine present within the bladder. The system uses a k-nearest
neighbour classification algorithm to classify the electromagnetic
reflections from the bladder as corresponding to “Small”, “Medium”
or “Full”. The prototype system is evaluated using dielectrically
representative bladder phantoms, with varying muscle thicknesses and
bladder sizes. The performance of the bladder state monitoring system
exceeds 87%.

The performance of the system with respect to sampling rate and
number of antenna array elements was also considered in this study. It
was found that sampling rates greater than 10 GHz were required for
classification performance greater than 70%. Finally, the performance
of the classification algorithm was shown to be robust to the number
of antenna array elements used. Even just using two antenna array
elements, the average performance of the classifier was still more than
80%.

Overall, the prototype system presented in this paper illustrates
the significant potential of UWB Radar based system for the
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monitoring of bladder volume and significantly, the treatment of a
wide range of urinary-related medical conditions. Future work will
consider experimental scenarios where the antennas are located close
to or on the skin, with the ultimate goal of developing a wearable
bladder volume monitor.

ACKNOWLEDGMENT

The work was supported by Enterprise Ireland (grant number
CF/2010/073) and Science Foundation Ireland (grant number
1l/SIRG/I2120).

REFERENCES

1. Vulker, R., “International group seeks to dispel incontinence
taboo,” Journal of the American Medical Association, No. 11,
951–953, 1998.

2. Brown, J. S., E. Vittinghoff, J. F. Wyman, et al., “Urge urinary
incontinence was associated with increased risk of falls and
non-spinal, non-traumatic fractures in older women,” Evidence
Based Nursing, Vol. 4, No. 1, 26, 2001, [Online] Available:
http://ebn.bmj.com/content/4/1/26.short.

3. Hu, T., T. Wagner, J. Bentkover, K. Leblanc, S. Zhou, and
T. Hunt, “Costs of urinary incontinence and overactive bladder in
the united states: A comparative study,” Urology, Vol. 63, No. 3,
461–465, 2004.

4. Selius, B. and R. Subedi, “Costs of urinary incontinence and
overactive bladder in the united states: A comparative study,”
American Family Physician, Vol. 77, No. 1, 443–450, 2008.

5. Crendon, M., “Primary nocturnal enuresis: Current concepts,”
American Family Physician, Vol. 59, No. 5, 1205–1214, 1999.

6. Petrican, P. and M. Sawan, “Design of a miniaturized ultrasonic
bladder volume monitor and subsequent preliminary evaluation
on 41 enuretic patients,” IEEE Transactions on Rehabilitation
Engineering, Vol. 6, No. 1, 66–74, Mar. 1998.

7. Niu, H., S. Yang, C. Liu, Y. Yan, L. Li, F. Ma, X. Wang, F. Pu,
D. Li, and Y. Fan, “Design of an ultrasound bladder volume
measurement and alarm system,” (iCBBE) 2011 5th International
Conference on Bioinformatics and Biomedical Engineering, 1–4,
May 2011.

8. Li, X., E. Pancera, L. Zwirello, H. Wu, and T. Zwick, “Ultra



28 O’Halloran et al.

wideband radar for water detection in the human body,” 2010
German Microwave Conference, 150–153, Mar. 2010.

9. Li, X., E. Pancera, L. Niestoruk, W. Stork, and T. Zwick,
“Performance of an ultra wideband radar for detection of water
accumulation in the human bladder,” 2010 European Radar
Conference (EuRAD), 212–215, Sep. 30–Oct. 1, 2010.

10. Pancera, E., T. Zwick, and W. Wiesbeck, “Ultra wideband radar
imaging: An approach to monitor the water accumulation in the
human body,” 2010 IEEE International Conference on Wireless
Information Technology and Systems (ICWITS), 1–4, Aug. 28–
Sep. 3, 2010.

11. Geozondas, “Geozondas,” 2012, [Online] Available: http:www.ge-
ozondas.com/.

12. Wold, H., Estimation of Principal Components and Related
Models by Iterative Least Squares, in Multivariate Analysis,
K. Krishnaiah, Ed., Academic Press, New York, 1996.

13. Conceicao, R. C., M. O’Halloran, M. Glavin, and E. Jones,
“Support vector machines for the classification of early-stage
breast cancer based on radar target signatures,” Progress In
Electromagnetics Research B, Vol. 23, 311–327, 2010.

14. Cover, T. and P. Hart, “Nearest neighbor pattern classification,”
IEEE Transactions on Information Theory, Vol. 13, No. 1, 21–27,
Jan. 1967, [Online] Available: http://dx.doi.org/10.1109/TIT.19
67.1053964


