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Abstract—Singular value decomposition and information theoretic
criterion based clutter reduction is proposed for ground penetrating
radar imaging. The scheme is capable of discriminating target, clutter
and noise subspaces. Information theoretic criterion is used with
conventional singular value decomposition to find the target singular
values. The proposed scheme also works for extracting multiple targets
in heavy cluttered images. Simulation results are compared on the
basis of mean square error, peak signal to noise ratio and visual
inspection.

1. INTRODUCTION

Imaging of buried objects using Ground Penetrating Radar (GPR) is a
challenging and open research area [1–3]. GPR is widely used (having
applications in surveillance, remote sensing, geophysics, archaeology
and civil engineering) because of its sensitivity to variations in
electromagnetic parameters of a medium (i.e., electrical conductivity,
electrical permittivity, and magnetic permeability). It can detect both
metallic and non-metallic objects and is capable of localizing buried
object(s) in two and three dimensional spaces [2].

The experimental GPR imaging system used in the experiments
(shown in Figure 1) consists of an antenna, a Vector Network
Analyzer (VNA), position controller and a signal processing unit (a
computer) [2, 3]. The transmitter radiates a pulse into the ground
and the receiver collects the echo for a certain time period. The
transmitted pulse may be any transient signal (sine wave, step pulses,
Gaussian wave etc.). Pulse widths are usually in the order of a
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Figure 1. GPR experimental setup.

few nanoseconds [2]. A typical signal scattering in GPR is shown
in Figure 2. Compared with conventional radar (where bandwidth
of operation is limited to few (up to 200) KHz), GPR has broader
bandwidth (normally in GHz for landmine detection) [2]. High
frequencies provide high image resolution but have limited penetration
depth and vice versa [2].

At a given location, the recorded pulse response is known as A-
scan (magnitude of the reflected wave with respect to time). Due to
propagation time, waves reflected from an object arrive at antenna
of the GPR with a time delay (related to the distance between the
object and the antenna of GPR). Image obtained by concatenating
the A-scans (recorded at different spatial locations) is called a B-scan.
Horizontal axis of a B-scan corresponds to the GPR spatial location,
whereas the vertical axis corresponds to the time (which is linked with
depth). A B-scan can be seen as an image of a vertical slice of the
ground [3].

GPR received data is composed of target, clutter and noise
signals [4, 5]. Detection of target(s) is a challenging task especially
if the targets are buried close to the surface or have non-metallic
characteristics (like antipersonnel mines). Clutter and noise are
unwanted signals in the received data, caused by antenna coupling,
air-ground reflection, scattering in the multi layer soil. Beside these,
GPR also receives returns from other subsurface inhomogeneities like
rocks, tree roots, or small pieces of metal in the ground, which leads to
high levels of false alarms. The clutters and targets have overlapping
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Figure 2. GPR signal reflection and scattering.

boundaries in time domain. A good GPR system should have minimum
clutter and noise effect (to avoid false detection) and high resolution
(to accurately classify target shape and location) [3].

Classical clutter reduction methods in GPR consists of data
filtering in the time or frequency domain. A digital filter, whose
coefficients are optimized with respect to the signal spectrum, is
used for clutter reduction. However its limitation includes optimum
selection of filter coefficients [6]. Another approach called early-
time gating (which consists of eliminating early data samples of all
traces) [7] is based on the assumption that the antenna coupling and
surface reflections arrive early in time domain compared to the target
signals. The early time gating fails to work for the cases where the
target is buried close to the surface (or have same time response as
surface reflection [7]). Frequency domain feature based approach [8]
is also found in literature for clutter reduction and detection of land
mines. However it fails to detect targets if the targets and clutter have
overlapping response in the time domain.

Some other clutter reduction schemes consist of spatial modeling
and subtracting the peak response due to the response of the
airground interface [9, 10]. However, these require accurate modeling
of air-ground interface (which is not practically possible) and
the performance of these methods degrade for non-homogenous
mediums [9, 10]. Another clutter reduction scheme uses adaptive
linear prediction theory (to cancel the non stationary clutter
environment) [11], however (its drawback is that) it makes the
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assumption of Gaussian noise for the prediction error [11]. Parametric
modeling based clutter reduction technique [12] assumes scattering
from single target and neglects surface inhomogeneities. Neural
network based clutter reduction techniques [13–15] require large input
training data set. Maximum likelihood estimation [16], Markov
model [17], Kalman filter [18] and whitening filter [19], are also
present in literature for clutter reduction in GPR images. These
schemes are based on hyperbolic signature of targets and require
some a-priori knowledge of targets (which is not always present).
Moreover, if the targets are buried close to the ground, the hyperbolic
signature of target will be overlapped by ground reflections. Krichhoff
approximation [20] and physical optic approximation [21] based
techniques are also present for noise filtering.

Recently, statistical methods based on Singular Value Decompo-
sition (SVD), principal component analysis and independent compo-
nent analysis have been explored for clutter reduction [3, 22–29]. These
methods explore the statistical properties of the received data and de-
compose it into different subspaces: target, clutter and noise. The com-
ponents that contain targets are selected while discarding the noise and
the clutter subspaces. The limitation is selection of target components
by visual inspectio [22–29]. To overcome the problem of automatic
selection of target subspaces, we propose a scheme based on Informa-
tion Theoretic Criterion (ITC) and SVD. ITC is applied on singular
values of B-scan image which gives the number of target subspaces
that is used to construct the target image. Conventional SVD and the
proposed ITC based SVD scheme are compared on the basis of Mean
Square Error (MSE), Peak Signal to Noise Ratio (PSNR) and visual
inspection.

In Section 2, we briefly explain the image reconstruction process.
Section 3 describes existing and the proposed SVD based clutter
reduction schemes. Simulation and results are discussed in Section 4
followed by the conclusion in Section 5.

2. IMAGE RECONSTRUCTION

Let the surface (to be imaged) is divided into grid of M × N pixels
(m = 1, 2, 3 . . . , M and n = 1, 2, 3 . . . , N). Let θ(t) be a wideband
transmitted signal then the pixel value at location mn is,

ζmn(t) = ϑ(t + τ̂mn) (1)

where, τ̂mn are applied focusing delays and can be calculated by various
methods depending on the available target information [2]. Received
signal ϑ(t) is a delayed version of the transmitted signal θ(t) with some
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attenuation αmn, i.e.,

ϑmn(t) = αmnθ(t− τmn) (2)

where τmn are propagation time delays. Let θ̂(t) = θ(−t) be a filter
matched to transmitted signal then the deconvolved output for pixel
mn, xmn is,

xmn=
(
ζmn(t) ∗ θ̂(t)

)∣∣∣
t=0

=
(
αmnθ(t−τmn+τ̂mn)∗θ̂(t)

)∣∣∣
t=0

(3)

The process (above) is repeated for each pixel location mn to obtain
the B-scan image X.

X =




x11 x12 . . . x1N

x22 x22 . . . x2N
...

...
. . .

...
xM1 xM2 . . . xMN


 (4)

3. SVD AND ITC BASED IMAGE ENHANCEMENT

Image enhancement in GPR is performed by decomposing the B-scan
image X into different spectral components using SVD, i.e.,

X =USV T =s1




...
u1
...



[
. . . vT

1 . . .
]
+ . . . + sM




...
uM
...



[
. . . vT

M . . .
]

(5)

where (for simplicity M ≤ N), U = [u1 u2 . . . uM ] and V =
[v1 v2 . . . vN ] having dimensions M ×M and N ×N are called unitary
matrices and computed as left XXT and right XT X eigen vectors
respectively. Let S = diag(s1, s2, . . . , sM ) with s1 ≥ s2 ≥ . . . ≥ sM ≥
0, are singular values of X. The three spectral images clutter (Xcl),
target (Xtar) and noise (Xno) of X are,

X =
M∑

m=1

Xm =
k1∑

m=1

smumvT
m +

k2∑

m=k1+1

smumvT
m +

M∑

m=k2+1

smumvT
m (6)

where the first k1 singular values belong to ground clutters followed by
k2 − k1 singular values belonging to target(s), and rest singular values
represent noise. Abujarad, et al. [3, 28] proposed two algorithms for
extraction of target spectral images. In first algorithm it was proposed
that first spectral component contains ground clutters [3, 28], i.e.,

Xcl1 = s1u1v
T
1 (7)
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and the other components contain targets, i.e.,

Xtar1 =
M∑

m=2

smumvT
m = X −Xcl1 (8)

The limitation of this technique is that it only filters ground clutters
while leaving the noise components unseparated. This results in poor
visibility of targets specially when target shape and location are of
interest. In second algorithm, [3, 28] proposed that ground clutters
are contained in the first spectral components, target(s) are contained
in the second spectral component while the rest spectral components
contain noise, i.e.,

Xtar2 = s2u2v
T
2 (9)

However, we note that it is not true in case of multiple targets. In fact,
the target subspace can be more than one dimensional even when only
a single target is present in the scene. So we reformulate the above
problem as,

X̂ = Y + Z =
M∑

m=2

smumvT
m (10)

where X̂ is the clutter reduced image, Y the target image, and Z the
noise image. Since rank[Y ] = k2 < M , SVD of Y is, [30, 31],

Y = [ UY1 UY2 ]
[
SY1 0
0 0

][
V T

Y1

V T
Y2

]
(11)

where, UY1 , UY2 , VY1 , VY1 are unitary matrices containing left and right
singular vectors, and SY1 is a diagonal matrix containing singular value
of Y . Therefore,

X̂ = UY1SY1V
T
Y1

+ Z = UY1SY1V
T
Y1

+ ZVY V T
Y

= UY1SY1V
T
Y1

+ Z [VY1VY2 ]

[
V T

Y1

V T
Y2

]

= [UY1SY1 + ZVY1ZVY2 ]

[
V T

Y1

V T
Y2

]
=

[
Û1Û2

][
Ŝ1 0
0 Ŝ2

][
V̂ T

1

V̂ T
2

]
(12)

where Û1 = (UY1SY1+ ZVY1)
(
Ŝ2

Y1
+ σZIk2

)−1/2
, Û2 = ZVY2 , Ŝ1 =√

S2
Y1

+ σZIk2 , Ŝ2 = σZIM−k2 , V̂ T
1 = V T

Y1
, V̂ T

2 = V T
Y2

, Ik2 is
identity matrix of size k2 × k2, IM−k2 the identity matrix of size



Progress In Electromagnetics Research B, Vol. 45, 2012 153

(IM−k2) × (IM−k2), and σZ the noise variance. The original image
X in terms of clutter, target and noise subspaces is,

X =
[
u1 Û1 Û2

]


s1 0 0
0 Ŝ1 0
0 0 Ŝ2






vT
1

V̂ T
1

V̂ T
2


 (13)

where, Ŝ1 and Ŝ2 are diagonal matrices containing singular values
of target (s2, s3, . . . sk2) and noise (sk2+1, sk2+2, . . . sM ), respectively.
Note that sk2 > sk2+1 and sk2+1 ' sk2+2 ' . . . sM ' σZ .
Therefore, some statistical analysis needs to be performed in order
to determine value for k2. In this regard some schemes in literature
include difference of singular values (sm − sm+1), ratio of singular
values (sm/sm+1) and percentage of total power in an singular value
(sm/tr[X]) [32]. However, these schemes do not always provide

Figure 3. Physical elements of experimental setup at Microwave
Engineering Lab, Department of Electrical Engineering, College of
Signals, NUST.

Table 1. MSE and PSNR (dB) comparison.

Scenarios Techniques MSE PSNR

Example 1

Original Image 0.4866 3.1283
Abujarad, et al. Technique I [3] 0.2731 5.6368
Abujarad, et al. Technique II [3] 0.1549 8.0995

Proposed Technique 0.1134 9.4539

Example 2

Original Image 0.4914 3.0856
Abujarad, et al. Technique I [3] 0.3127 5.0487
Abujarad, et al. Technique II [3] 0.1866 7.2909

Proposed Technique 0.1325 8.7778
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satisfactory results (and sometimes do not overcome the requirement
of user defined threshold). It is observed that the difference between
noise singular values are relatively smaller than target singular values.
To accurately determine the number of target singular values ITC
methods (Minimum Description Length (MDL), Bayesian information
criterion and Akaike Information Criterion (AIC), etc.) are explored.
MDL is an improved version of AIC [33], therefore MDL is chosen for
finding the value of k2. ITC does not require knowledge of an empirical
threshold value.

MDL utilizes measures of the relative cross entropy between target
and noise singular values [33].

MDL(k2)=N ln




[
1

M−(k2+1)

M∑
m=k2+1

sm

]M−(k2+1)

M∏
m=k2+1

sm



+

1
2
k2(2M−k2) lnN (14)

(a) (b)

(d)(c)
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(e) (f)

(h)(g)

Figure 4. Presence of two targets in different spectral components.
(a) First spectral component. (b) Second spectral component.
(c) Third spectral component. (d) Fourth spectral component.
(e) Fifth spectral component. (f) Sixth spectral component.
(g) Seventh spectral component. (h) Eighth spectral component.

Number of target singular values is determined by the value of k2 for
which MDL criterion is minimized, i.e., kMDL

2 = argmin
k2

{MDL(k2)}.

Xtar3 =
kMDL
2∑

m=2

smumvT
m (15)

MDL works on the inequality of geometric and arithmetic mean of the
singular values.

1
M − (k2 + 1)

M∑

m=k2+1

sm ≥



M∏

m=k2+1

sm




1
M − (k2 + 1)

(16)
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In Eq. (16) equality holds only if sk2+1 = sk2+2 = . . . = sM . As a
consequence MDL criterion is minimized [33]. Note here that for noise
only singular values sk2+1 ' sk2+2 ' . . . ' sM ' σZ the above equality
holds (where, σZ is noise variance).

4. SIMULATION AND RESULTS

Various experiments were conducted to verify the effectiveness of
proposed scheme. Experimental setup for GPR shown in Figure 3
Agilents’s VNA in the range of 300 KHz to 3 GHz is used to generate
a stepped frequency 2 GHz to 3 GHz (1 GHz Band Width (BW))
waveform having step size ∆f = 5MHz and Nf = 200. The pulse
width is TP = 1/BW = 1 ns. Maximum range Rmax is,

Rmax =
c(Nf − 1)

2BW
= 30 m

and the range resolution ∆R is,

∆R =
c

2Nf∆f
= 0.15m

(a) (b)

(d)(c)
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(e) (f)

(h)(g)

Figure 5. Images (original, Background subtracted reference
Abujarad et al. technique I [3], Abujarad et al. technique II [3],
proposed technique and noise subspace) with two targets and their
related graphs (singular values and MDL function of singular values).
(a) Original image. (b) Background subtracted reference image.
(c) Amplitude of singular values. (d) MDL function of singular values.
(e) Abujarad et al. technique I [3]. (f) Abujarad et al. technique II [3].
(g) Proposed technique. (h) Noise subspace.

Directional and broadband horn antenna with 12 dB gain is used in
mono-static mode (for transmitting and receiving signals). Antenna
is mounted on a robotic car which is controlled by a micro-controller
and at each point the scattering parameters (magnitude and phase) are
recorded by VNA and are transferred to a local computer. The antenna
is positioned 0.0508 meters above the ground. Some targets are buried
near the air ground surface to verify the effectiveness of proposed
scheme when target and clutter have overlapping signatures in the time
domain. Received data is converted from frequency domain to time
domain using the inverse fourier transform. Background subtracted
reference image Xbs is constructed using the difference of two images
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(i.e. image with target and image without target). It is important to
note that the Xbs is used only as a comparison measure for proposed
and existing SVD algorithms. Simulation results are compared on the
basis of MSE, PSNR and visual inspection.

MSE =
1

M ×N

M∑

m=1

N∑

n=1

(Xbs(m,n)−Xtar(m, n))2 (17)

PSNR (dB) = 10 log10

1
MSE

(18)

where, Xtar ∈ {X, Xtar1 , Xtar2 , Xtar3}.
In example 1, two targets (metallic lock and metallic keys with non

metallic coating) were buried in sand at different depths (0.1524 meters
and 0.1016 meters respectively). Figure 4 shows different spectral
components. It is observed that targets are not limited to the second
spectral component only. Rather some part of the targets are also
present in other spectral components. Figure 5 shows comparison
of existing and proposed SVD based clutter reduction techniques.
Figure 5(a) shows a B-scan image with two targets in it. Figure 5(b)
shows the Xbs and Figure 5(c) shows the amplitude of singular values

(a) (b)

(d)(c)
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(e) (f)

(h)(g)

Figure 6. Presence of three targets in different spectral components.
(a) First spectral component. (b) Second spectral component.
(c) Third spectral component. (d) Fourth spectral component.
(e) Fifth spectral component. (f) Sixth spectral component.
(g) Seventh spectral component. (h) Eighth spectral component.

sm. MDL criterion gives k2 = 5 from Figure 5(d). Figure 5(e) and
Figure 5(f) show the images obtained using Abujarad et al. techniques
I and II [3] respectively. Figure 5(g) shows the image obtained using
the proposed technique. Figure 5(h) shows the noise subspace obtained
using the proposed scheme. It can be seen that image obtained using
the proposed scheme show the targets clearly and eliminates the noise,
whereas the false alarms are clearly visible in the images obtained using
Abujarad et al. techniques [3].

In example 2, three targets (metallic lock, dummy mine and
metallic keys with non metallic coating) were buried in sand at different
depths (0.1524 meters, 0.1254 meters and 0.0812 meters respectively).
Figure 6 shows the different spectral components. It is observed
that the targets are not limited to the second spectral component
only. Rather some part of the targets are also present in other
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spectral components. Figure 7(a) shows a B-scan image with three
target in it. Figure 7(b) shows the Xbs and Figure 7(c) shows the
amplitude of singular values sm. MDL criterion gives k2 = 6 from
Figure 7(d). Figure 7(e) and Figure 7(f) show the images obtained
using Abujarad et al. techniques I and II [3] respectively. Figure 7(g)
shows the image obtained using the proposed technique. Figure 7(h)
shows the noise subspace obtained using proposed scheme. It can be
seen that image obtained using the proposed scheme show the targets
clearly and eliminates the noise, whereas false alarms are clearly visible
in the images obtained using Abujarad et al. techniques [3].

Table 1 shows the performance comparison of proposed and
Abujarad, et al. techniques in terms of MSE and PSNR.

Note that ITC is applied on the singular values of the B-
scan image. SVD will change with the change in the input image,
consequently it changes ITC (MDL) graph. Also, it is important to
note that, it is not only the number of targets that determine the value
of k2, rather it is the location, shape, size and reflectiveness of targets
also. In some cases a single target may depend on more than one
singular value. On the other hand, it is also possible that a singular
value represents more than one target. However, the image formed by

(a) (b)

(d)(c)
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(e) (f)

(h)(g)

Figure 7. Images (original, Background subtracted reference,
Abujarad et al. technique I [3], Abujarad et al. technique II [3],
proposed technique and noise subspace) with three targets and their
related graphs (singular values and MDL function of singular values).
(a) Original image. (b) Background subtracted reference image.
(c) Amplitude of singular values. (d) MDL function of singular values.
(e) Abujarad, et al. technique I [3]. (f) Abujarad et al. technique II [3].
(g) Proposed technique. (h) Noise subspace.

using the k2 (obtained via MDL) exactly extracts all the targets and
suppresses the noise significantly.

5. CONCLUSION

SVD and ITC based clutter reduction technique is proposed for GPR
imaging. The scheme is capable of discriminating target, clutter
and noise subspaces. ITC is used with conventional SVD to find
the target singular values. The proposed technique also works for
extracting multiple targets in heavy cluttered images. Simulation
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results show that the proposed technique is a significant improvement
in conventional SVD based clutter reduction technique for GPR.
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