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Abstract—The initial stage of interaction between an annular beam
of electrons, which rotate along Larmor orbits in the gap between a
localized plasma column and a metal waveguide with a circular cross-
section of its walls, and the electromagnetic waves of the surface type,
is studied theoretically. These waves are extraordinary polarized; they
propagate along the azimuthal angle across an axial external steady
magnetic field in the electron cyclotron frequency range. The numerical
analysis shows that changing the shape of the plasma filling cross
section leads to corrections to the eigen frequency of the surface waves
but does not cause a disruption of the resonance beam-wave instability
development. Moreover, the conditions are found when appropriate
choice of the shape can lead to increasing the instability growth rate
by dozens of percent.

1. INTRODUCTION

The interaction between the charged particle flows and the eigen waves
of the plasma filled waveguides is used for a long time in plasma
electronics to generate and enhance electromagnetic radiation [1–
4]. The application of plasma in these devices allows us to reach
the important goals: increasing the electric current limit, expanding
the frequency range of the excited oscillations, better control of the
excitation process, etc.. This requires studying the spectra of the
eigen oscillations which could be excited in the devices and the
transportation of the charged particle flows which interact with the
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oscillations [5–7]. Special attention is paid to the study of the processes
of wave excitation in magnetized plasma waveguides. Using these
systems allows: first, to protect the waveguide wall from the active
interaction with plasma and charged particle beam; second, to get
wider spectrum of the eigen frequencies in comparison with the devices
without external magnetic field.

The electronic devices based on an annular beam are expected to
have a higher efficiency than devices based on longitudinal ones. For
example, the instability growth rates and the efficiency of the energy
exchange in annular lasers based on free electrons are higher (γ2/3

times higher) than the longitudinal ones [2]. Moreover, the efficiency
of generators based on longitudinal beams is limited by the device
length. In devices based on annular beams, the particles rotate along
the Larmor orbits in the gap between the chamber wall and the plasma
column. They transfer their energy to the electromagnetic waves until
the particles reach the plasma surface as a result of their deceleration.
In this case, the particles can pass a way that is much larger than the
size of the devices based on the longitudinal beams. First, this allows
reaching the higher efficiency of the devices based on annular beams
in comparison with those based on longitudinal beams. Second, this
allows developing the more compact electronic devices.

The charged particle beams can also be used to produce plasma
in the discharge chambers which are filled initially by neutral gas. The
plasma is produced due to the gas ionization and the electromagnetic
waves can be generated during the process. The results of studying
the microwave generation from the plasma structures produced by the
charged particle beams were presented in [8, 9]. But the effect of the
produced plasma shape on the generated radiation was not studied.
Plasma was confined by the magnetic field but there is no guarantee
that the plasma column cross section was circular.

Among other things, the eigen electromagnetic waves of surface
type are used widely in the plasma electronic devices, particularly to
design the plasma antenna [10–12]. As a positive result of surface
waves (SW) application for developing the plasma-antenna systems,
we should like to indicate paper [13] devoted to peculiarities of the HF
SW radar operation as a highly effective device that can provide over-
the-horizon surveillance of any vessels, which move above sea level.
The excitation of surface type waves by charged particle beams in the
devices is well known to have some interesting features.

That is why the dispersion properties of the surface electromag-
netic waves with extraordinary polarization which propagate along the
azimuthal angle near the boundary of the plasma column have been
studied in [14]. These modes were called as Azimuthal Surface Waves



Progress In Electromagnetics Research M, Vol. 26, 2012 41

(ASW). A detailed analysis of how the parameters of the plasma-beam
system (the plasma and beam densities, the azimuthal mode number,
the external axial magnetic field value, the radius of the plasma cylin-
der, the width of the vacuum gap) influence the initial stage of beam
instability of the ASW’s propagation in the range of the electron cy-
clotron frequency (let’s call them Low Frequency (LF) waves here) was
carried out in [15].

The periodic spatial inhomogeneity of the medium along the
direction of the electromagnetic wave propagation can enhance the
efficiency of plasma electronic devices [16, 17]. Therefore LF ASW
propagation in magnetized waveguides filled partially by plasmas with
noncircular cross-section has been studied in [18]. It was shown that
in this case the frequency spectrum and the spectrum composition of
the wave packet are predetermined by the shape of the plasma column
cross section. Additionally, the effect that the plasma cross section
shape has on the LF ASW dispersion properties has been investigated
in the case when the angular period of the wave perturbation is exactly
twice the inhomogeneity period of the plasma-dielectric interface [19].

But the theory of the plasma-beam instability is not complete
yet, since the interaction of the charged particle beam with the eigen
waves of different waveguides depends, essentially, on large number
of factors including the dispersion properties of the waves, the waves’
polarization, the spatial distribution of their fields, the geometry and
the design features of the waveguides. Therefore, the aim of this paper
is to study the influence of the non-circularity of the plasma column
cross-section on the excitation of the LF ASW and to examine the
possibility of breaking down this beam-plasma instability in the case
of LF ASW propagation in such corrugated waveguides. Here only the
initial stage of resonance beam instability of the LF ASW is studied.

The paper is arranged as follow. The problem is formulated in
Section 2. The results of the numerical analysis are presented in
Section 3. The conclusions are drawn in Section 4.

2. FORMULATION OF THE PROBLEM

The studied waveguide consists of a cylindrical metal waveguide with
a circular cross-section with a radius of R2 = b, which is partially
filled by a plasma column with a radius of R1(ϕ) < R2, whose
surface has non-circular cross-section. The waveguide chamber is
made of a perfect conductor (metal). The external homogeneous
steady magnetic field is directed along the waveguide axis, B0||Z. The
waveguide is assumed to be uniform along the cylinder axis, ∂/∂z ≡ 0.
Electromagnetic waves with extraordinary polarization (the nonzero
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components are Er, Eϕ, Bz) propagate inside a cylindrical chamber
of the waveguide (Figure 1). These extraordinary modes (X-modes)
propagate strictly perpendicular to the magnetic field, for example,
their magnetic component has the following dependence on the co-
ordinates and time Hz(r, ϕ, t) = Hz(r) exp(imϕ− iωt).

The plasma occupies the space r < R1(ϕ). Plasma density is
assumed to be homogeneous to study just the effect of the cross
section shape of the plasma-vacuum interface on the plasma-beam
interaction. This assumption is particularly valid for the cases when
the surface waves are used to produce and sustain gas discharges. In gas
discharges, the plasma density is homogeneous in an edge layer whose
width is of the order of the plasma’s wave penetration depth [20]. The
cases of meta-material plasmas and solid state plasmas correspond to
the assumption as well [21, 22].

The radial coordinate of the plasma-vacuum interface R1(ϕ) has
the following dependence on the azimuthal angle:

R1(ϕ) = a ·
[
1 +

∞∑

n=1

hn cos (nϕ + ϕn)

]
, (1)

where a is the averaged radius of the plasma column. The parameters
hn describe the relative depth of the corrugation of the plasma-vacuum
interface and are small parameters of the problem. It is clear that
any shape of the plasma column cross section can be modeled by the
expansion of its radius in the Fourier series. The individual terms ∝
cos(nϕ+ϕn) in (1) lead to independent effects on the ASW dispersion
properties if the small parameters hn are taken into consideration only
up to quadratic terms (the higher order terms are neglected). That
is why the following analysis will be done here for only one term

Figure 1. Schematic of the plasma-beam structure.
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in (1): R1(ϕ) = a · [1 + hN cos (Nϕ + ϕN )]. This allows us to exclude
the effects of other terms, but there are no fundamental problems
associated with considering any finite number of terms from (1) in the
studied dispersion equation. Moreover some values of the parameter
N are of special physical interest: the term with N = 1 in (1) describes
a violation of the coaxiality between the plasma column and the metal
chamber, the term with N = 2 takes into account an ellipticity of the
plasma column cross section, the cross section triangularity is taken
into account by the term with N = 3, etc.. For instance, the effect of
the plasma cross-section shape on sawtooth oscillations in the DIII-D
tokamak plasmas is studied in [23]. The differences in nature between
sawtooth perturbations, which propagate in plasma, that correspond
to bean and oval cross section shapes, are found to be determined
primarily by strong differences in electron heat transport for these
corrugations.

The displacement vector and electric field are related by the
permeability tensor of weakly collisional cold magnetized plasma. Let’s
write down two components of the permeability tensor which will be
used below:

ε11 = ε0 −
∑
α

Ω2
α

ω2 − ω2
α

≡ ε1; ε12 = i
∑
α

ωαΩ2
α

ω (ω2 − ω2
α)
≡ iε2. (2)

Here Ωα and ωα are the plasma and cyclotron frequencies of the particle
species α, respectively, and ε0 is the dielectric constant of the meta-
material or of the crystal lattice of the semiconductor (ε0 > 1), for gas
plasmas ε0 = 1.

The components of the ASW electric field can be expressed in
terms of the magnetic field component Hz in the following way:

Er =
k

k2
⊥

(
µ

∂Hz

∂r
− i

r

∂Hz

∂ϕ

)
, Eϕ =

k

k2
⊥

(
i
∂Hz

∂r
+

µ

r

∂Hz

∂ϕ

)
. (3)

Here k = ω/c, the value k−1
⊥ defines the penetration depth of the

electromagnetic field into plasma, k2
⊥ = k2ε1(µ2 − 1), µ = ε2/ε1. The

considered surface waves can only propagate in frequency ranges where
the value of k2

⊥ is positive.
It is assumed that the plasma density is high enough to ensure that

the inequality Ω2
e > ε0ω

2
e is valid. The inequality is realized surely in

semiconductor plasmas but it can also be realized in laboratory gas
plasmas when the external magnetic field is weak enough. In this case
k2
⊥ > 0 in the following frequency ranges: ωLH < ω < |ωe|, |ωe| < ω <

ω1 − |ωe|, ωUH < ω < ω1. Here ωLH and ωUH are the lower hybrid
and upper hybrid frequencies respectively, ω1 = 0.5 |ωe|+

√
Ω2

e + ω2
e/4

is the cut-off frequency. In this paper, ASW propagating in the
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frequency ranges ωLH < ω < |ωe| and |ωe| < ω < ω1 − |ωe| are
under consideration. Here, let’ call them Low Frequency (LF) and
High Frequency (HF) ranges, respectively.

It is assumed that an annular electron beam is injected into the
gap R2 > r > R1 between the plasma column and the metal wall of
the waveguide. The beam is modeled as a set of oscillators with the
same transverse momentum p⊥0 and zero axial momentum, pz = 0.
The plasma-beam system is assumed to be compensated in respect
to currents and charges. Such an electron beam is described by the
equilibrium distribution function [7]:

f0 = nbδ(p⊥ − p⊥0)δ(pz)/(2π p⊥0). (4)
In (4), p⊥0 = meV⊥0γ is the transverse momentum of the electrons,

γ =
√

1 + p2
⊥0m

−2
e c−2 the relativistic factor, and nb the density of

the beam electrons. The electrodynamical properties of the waveguide
inner part occupied by the beam are described by the permeability
tensor ε

(b)
ik . Three components of the tensor ε

(b)
ik , which will be used in

the calculations below, are expressed as:

ε
(b)
11 =1 +

Ω2
b

ωγ

+∞∑
s=−∞

s2

[ (
J2

s (x)
)′

(s− y) kϕV⊥0
+

ωJ2
s (x)

(s− y)2 c2k2
ϕ

]
; (5)

ε
(b)
12 =

iΩ2
b

ω |ωe|
+∞∑

s=−∞
s

[
(Js(x) J ′s(x))′

s− y
+

Js (x)J ′s(x)
(s− y) x

+
Js(x)J ′s(x)ωV⊥0

(s− y)2c2kϕ

]

=−ε
(b)
21 ; (6)

ε
(b)
22 =1+

Ω2
b

ω |ωe|
+∞∑

s=−∞

[
2 (J ′s(x))2

s−y
+

2xJ ′s(x)J ′′s (x)
s−y

+
(J ′s(x))2 V 2

⊥0y

(s−y)2 c2

]
. (7)

Here Ω2
b = 4πe2nbm

−1
e , x = kϕV⊥0γ/ |ωe|, y = ωγ/ |ωe|, kϕ = |m|R−1

1 ,
Js(x) is a Bessel function of the first kind, and a prime denotes the
derivative of the function with respect to the argument.

Solving the set of Maxwell equations in the region occupied by
the beam with the indicated components of the permeability tensor
ε
(b)
ik leads to the expressions for the ASW fields as a linear combination

of Bessel functions of the first kind Jm(ζ), Bessel functions of the
second kind Nm(ζ) and their derivatives with respect to their argument
ζ = kr

√
ψb. Here and below ψb = ε

(b)
22 + (ε(b)

12 )2(ε(b)
11 )−1.

The dispersion properties of the considered hybrid waveguide
structure can be studied using the method of successive approxima-
tions. In the zero approximation, the plasma-vacuum interface is cir-
cular and coaxial with the metal chamber. Thus, ASW properties in
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this approximation can be described using the results presented in [14].
The ASW with different azimuthal numbers propagate independently
when the curvature radius of the plasma-vacuum interface does not
depend on the azimuthal angle. That is why it can be assumed that
the electromagnetic perturbations propagate with a unique azimuthal
mode number m in the zero approximation with respect to the small
parameter hN of the problem.

As a result of the periodic spatial inhomogeneity of the plasma-
vacuum interface (see the expression (1)), the ASW propagate as wave
packets in the present case. Each such packet consists of a fundamental
harmonic, with a field which is proportional to exp(imϕ− iωt) and an
infinite number of satellite harmonics with fields which are proportional
to exp[i(m ± jN)ϕ − iωt] (j = 1, 2, 3 . . .). It is well known from the
theory of wave propagation in media with periodical properties along
some direction [24] that the amplitudes of the satellite harmonics are
small values (the order of (hN )j) in comparison with the amplitude
of the fundamental harmonic. A wave packet which consisted of the
fundamental and the two nearest satellite (j = 1) harmonics with fields
which are proportional to exp[i(m ±N)ϕ − iω t] has been considered
in [18, 19] to study the dependence of the ASW dispersion properties
on the shape of the noncircular cross section of the plasma-vacuum
interface. Such an approach is based on the fact that taking into
consideration the higher satellite harmonics gives a contribution to the
eigen ASW frequency correction which is of the third and higher orders
of the small parameter of the problem hN .

Taking into consideration of the terms which are of the first order
of hN does not change the amplitude of the fundamental harmonic
but leads to an appearance of nonzero small satellite harmonics of the
wave field which change proportionally to exp[i(m ± N)ϕ − iωt]. In
the framework of the second approximation in respect to the small
parameter hN , the amplitude of the fundamental harmonic obtains a
correction of second order of hN which together with the amplitude
of the first satellite harmonic gives a correction of the second order
of hN to the dispersion relation, D(2)(ω,m, N, . . .) ∝ h2

N . In such
a way the dispersion relation obtained in the zero approximation,
D(0)(ω,m, . . .) = 0, transforms in the second approximation into the
dispersion relation: D(0)(ω,m, . . .) + D(2)(ω, m, N, . . .) = 0. The
expression for the term D(2)(ω,m, N, . . .) is too cumbersome to be
presented here, but one can find it in detail in [18].

The following boundary conditions for the wave fields should be
used to solve the problem of LF ASW propagation in the described
waveguide:
• tangential component of the ASW electric field is equal to zero at
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the metal surface:
Eϕ (r = R2) = 0; (8)

• tangential components of the electric and magnetic fields of the
ASW are continuous at the noncircular plasma-vacuum interface:

Eτ (r = R1 + 0) = Eτ (r = R1 − 0),
Hz(r = R1 + 0) = Hz(r = R1 − 0);

(9)

• the ASW fields are finite everywhere inside the waveguide,
particularly at the waveguide axis:

Hz(r = 0) < ∞. (10)

Applying these boundary conditions allows us to obtain the
dispersion relation that describes the ASW excitation in the described
waveguide:

I ′m(k⊥a)k
k⊥Im(k⊥a)

+
µmka

k2
⊥a2

+ D(2)(ω, m, N, . . .)

=
imε

(b)
12

ε
(b)
11 ζ1

√
ψb

− J ′m (ζ1)− ΦN ′
m (ζ1)√

ψb [Jm (ζ1)− ΦNm (ζ1)]
, (11)

where Φ = [ imε
(b)
12

ε
(b)
11 ζ2

Jm(ζ2)− J ′m(ζ2)][
imε

(b)
12

ε
(b)
11 ζ2

Nm(ζ2)−N ′
m(ζ2)]−1, ζ1 =

ζ(a), ζ2 = ζ(b). The Equation (11) can be applied to the study the LF
ASW excitation by the electron beam in the case of a noncircular cross
section of the plasma column. It is analyzed here under the following
resonance condition:

ω = ω0 + δω = l |ωe| γ−1 + δω, (12)

here l is an integer, ω0 the eigen frequency of the LF ASW in the
waveguide structure without the beam and the corrugation of the
plasma-vacuum interface, and δω the correction to the frequency
caused by the interaction of the beam electrons with the plasma in
the presence of the corrugation.

3. NUMERICAL ANALYSIS

The results of the numerical analysis of the Equation (11) are presented
in Figures 2–5. The dashed line in all the figures shows the dependence
of the ASW growth rate in the case of the circular cross section.
The dependence of the resonance beam-plasma instability growth
rate, normalized by the absolute value of the electron cyclotron
frequency, on the effective wave number kef = |m|c/(Ωea) for the
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Figure 2. The LF ASW growth
rate vs effective wave number;
m = −2, Z = 8, b = 1.1a, nb =
10−3nplasma, hN = 0.05, N = 1,
3, 4.

Figure 3. The same as in
Figure 2, but for N = 4; Z = 8
and Z = 16.

ASW with the azimuthal number m = −2 is shown in Figure 2. The
following parameters of the plasma-beam system have been used for the
calculations: Z ≡ Ωe/|ωe| = 8, b = 1.1a, hN = 0.05, nb = 0.001nplasma.
The numbers near the solid lines indicate the value of the corrugation
parameter N = 1, 3, 4, which defines the number of the angular
periods of the plasma-vacuum interface. The dependence of the ASW
growth rate in the case N = 2 is not shown in the figure since the
difference between the curves for the cases N = 1 and N = 2 is not
visible. This difference exceeds 2.5% for large values of kef only when
kef > 0.6. The effect of the noncircular shape of the plasma-vacuum
interface in the case N 6= 2|m| can be seen as a nonessential shift of
the curve in the direction of the small values of kef (smaller values of
kef correspond to larger radii of the plasma column and higher plasma
densities). The shape of the curve becomes wider in the resonant
case N = 2|m|. The calculations in the direction of the large values
of kef are stopped when the values of the growth rate become small
enough (more than ten times smaller) in comparison with its maximal
value Im(ω/|ωe|) = 0.094. The left limit of the calculation range for
kef was defined from the condition of when the method of successive
approximations can be applied while taking into consideration the
shape of the plasma column cross section: when kef = 0.048 the
frequency correction caused by the noncircular shape of the plasma-
vacuum interface reaches 19%.

It was shown in [19] that the largest effect of the plasma-vacuum
interface curvature on the dispersion properties of the LF ASW is
caused in the resonant case N = 2|m|, when the angular period of the
wave perturbations is equal to just two periods of the inhomogeneity of
the plasma-vacuum interface. This resonance is caused by the fact that
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Figure 4. The same as in
Figure 3, but for two azimuthal
wave numbers m = −2 (N = 4)
and m = −3 (N = 6); Z = 16.

Figure 5. The same as in
Figure 4, but for m = +3 and
m = −3.

the LF ASW frequency does not depend on the sign of the azimuthal
mode number m in plasmas without a magnetic field. An external
magnetic field introduces differences in the dependences for the modes,
which propagate with positive and negative azimuthal wave numbers.
The difference in the frequencies of the LF ASW with opposite values
of m is smaller for larger values of Z. The bold solid line in Figure 3
shows the dependence of the growth rate of the LF ASW with m = −2
for the case of a smaller external magnetic field in comparison with
data for the Figure 2, Z = 16. The dependence of the LF ASW
growth rate in the case Z = 8 is shown for comparison by the solid
line. It can be seen that decreasing the magnetic field twice leads to
the increase of the maximal value of the growth rate by 1.681 times,
to the “bell” becoming narrower and its maximum position shifting
to the smaller values of kef : from kef = 0.225 in the case Z = 8
to kef = 0.1 in the case Z = 16. The left limit of the calculation
range, kef = 0.06, was defined once again from the condition that
the method of successive approximations can be applied for taking
into consideration the noncircular cross-section of the plasma-vacuum
interface. The frequency correction caused by the noncircular shape
of the plasma column reaches 23% at the left limit of the range. The
effect of the noncircular cross-section of the plasma column on the LF
ASW growth rates is seen as a nonessential (2%) increase of Im(ω/|ωe|)
in its maximum.

It was shown in [19] that the resonant effect of the noncircular
cross section of the plasma column on the ASW dispersion properties
is larger for larger values of the parameter N . That is why in this paper
we studied the influence of the value N on the ASW growth rate while
keeping the resonant condition N = 2|m|. The dependence of the LF
ASW growth rates on the effective wave number is shown in Figure 4 for
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different values of N . The numbers correspond to the azimuthal wave
numbers: m = −3 (with N = 6) and m = −2 (with N = 4). Other
parameters of the beam-plasma system are the same as in Figure 3.
Increasing |m| leads to the “bell” becoming wider and the maximum
shifting to the larger values of kef : from kef = 0.1 in the case m = −2 to
kef = 0.15 in the case m = −3. The range of kef where the noncircular
shape of the plasma-vacuum interface leads to a decrease of the growth
rate can be seen also in Figure 4: this range is 0.12 < kef < 0.15 in
the case m = −2 and kef ∈ [0.15; 0.205] in the case m = −3. It
should be noted that one of the limits of these ranges corresponds to
the kef for which the LF ASW frequency correction caused by the
noncircular shape of the plasma-vacuum interface changes the sign. It
is important to underline that the calculations in both cases N = 4
and N = 6 have been carried out for the same value of the corrugation
depth hN = 0.05. However, studying the dispersion properties of the
waveguides with a noncircular cross section, one has to keep in mind
the following important feature. Namely, the contribution of the terms
with large values of the summation index n to the expression (1) can
be neglected while modeling an arbitrary shape of the cross section due
to a rapid decrease of the corrugation depth hn that accompanies an
increase of the value of n. The latter corresponds to the condition
of applicability of the method of successive approximations. For
example, when modeling the cross section of a square waveguide by
the expression (1) the value of the corrugation depth hn decreases
proportionally to the inverse square of the summation index:

hn = 4
√

2(−1)
n
4 /

[
n2 ln

(
3 + 2

√
2
) ]

, (13)

which allows one to apply the method of successive approximations
correctly.

The effects of the noncircular cross section of the plasma column
on the growth rates of the LF ASW with different signs of the azimuthal
mode number m = ±3 are compared in Figure 5. The bold solid line
shows the dependence of the growth rate of the LF ASW with the
positive mode number m = +3 on the effective wave number. The
thin solid line presents for comparison the dependence for the case
of m = −3. At the limits of the kef calculation range the frequency
correction for the LF ASW with m = −3 is small: it reaches 25% when
kef = 0.05 and is less than 3% when kef = 0.265. For the LF ASW
with the positive mode number m = +3, the correction is essential
not only at the left limit, but also at right limit: it reaches 27% when
kef = 0.08 and 17% when kef = 0.265.
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4. CONCLUSIONS

The initial stage of the resonance beam-plasma instability of LF ASW
propagating along a plasma column interface with a noncircular shape
of its cross-section has been studied. The noncircular shape of the
plasma column cross section essentially does not affect the LF ASW
excitation by the annular electron beam. This is explained by the fact
that the effective wave number range (the range of the beam- plasma
system parameters) where the excitation of the LF ASW is effective [15]
differs from the range within which the non-circularity of the plasma-
vacuum interface has an essential effect on the LF ASW dispersion
properties [18, 19]. This fact can be useful for technological purposes:
small defects in gas discharge tubes do not decrease the efficiency of
LF ASW excitation by the beam. It is correct even in the case when
the angular period of the wave perturbations is just twice the period
of inhomogeneity of the plasma-dielectric interface [19] and the non-
circularity of the plasma column cross section has a most essential
effect on the LF ASW dispersion properties.

In most cases, the non-circularity of the plasma column cross
section even increases the growth rates of the resonance beam
instability of the LF ASW. It is especially notable for waves with
positive azimuthal mode numbers, m > 0.

The problem of wave interaction with the annular electron
beam differs technologically from that with the linear electron beam.
Designing electronic devices based on linear beams requires, usually,
extensive calculations to provide an exact phase relation between the
beam and the wave. That is why the corrugated line can have its
corrugation period change along the direction of beam propagation.
Such a method is not applicable to enhance wave- beam interaction
for annular beams since a beam rotating along a Larmor orbit comes
back again to the same part of the device.

The beam excitation of the LF ASW in the corrugated metal
chamber is not studied here since it is well known that the effect of
the corrugation of the plasma-vacuum interface on the wave dispersion
properties is much larger than the effect of the metal chamber non-
circularity. This feature of the LF ASW dispersion properties comes
from the fact that the power of the LF ASW is concentrated just near
the plasma-vacuum interface but not near the metal wall.

From a practical point of view, the LF ASW excited by annular
electron beams could be applied to the of sustaining microwave gas
discharges and as operating modes in plasma-antenna and plasma-
radar systems. The efficiency of the gas discharges [20] and the plasma-
antenna system (see, e.g., [25]) depends on the type of the operating
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mode and the stability of the process of these modes’ excitation. Since
accidental deviation of the plasma column cross-section from a circular
one does not lead to an essential change of the ASW growth rate value,
then these modes seem to be suitable for application in such devices
as operating ones.
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