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Abstract—A novel radar energy control strategy based on an
improved Interacting Multiple Model Particle Filter (IMMPF) tracking
method is presented in this paper. Firstly, the IMMPF tracking
method is improved by increasing the weight of the particle which is
close to the system state and updating the model probability of every
particle. Based on this improved IMMPF method, an energy control
method for Low Probability of Intercept (LPI) is then presented, which
controls the emission time and power of radar according to the target’s
range and radar cross section (RCS), under the condition of constant
detection probability. The tracking accuracy and LPI performance
are demonstrated in the Monte Carlo simulations. The results are
validated through the comparisons with other methods.

1. INTRODUCTION

In order to achieve important tactical requirement of LPI, dynamically
controlling the emission of a radar during sensor management is very
necessary. As we know, less radar emission means more excellent
performance of the LPI. An LPI management algorithm for multiple
sensors is proposed in [1], by formulating the problem as a partially
observed Markov decision process (POMDP) with an on-going multi-
armed bandit structure. A circular equivalent vulnerable radius [2], as
a function of three sets of parameters — the interceptor performance,
emitter antenna pattern, and geometric/link parameters, is used to
quantify the LPI capability of a waveform. Many LPI waveforms [3, 4]
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have also been designed to minimize the probability of intercept by an
enemy receiver. LPI performance factor is derived and applied in [5].
The work in [6] analyses the effect of the LPI strategies and considers
whether there are any fundamental limits to the ability to detect radar
emissions. Those works only concern the problem of LPI ability for the
radar. However, the radar should have not only good LPI capability,
but also excellent detection and tracking performance.

Target tracking is one of the critical problems in the airborne
surveillance systems. As we know, for targets with fixed kinematic
behavior, a single model state estimator is sufficient for tracking
targets. However, for targets with varying or multiple kinematic
behaviors, the interacting multiple model (IMM) [7–9] is often
employed. The IMM estimator is widely accepted as one of the most
cost-effective dynamic multiple model methods and has been shown to
achieve high performance with relatively low complexity.

The models of the target dynamics and the observations often
exhibit nonlinearities; the filtering should take into account of or
at least be robust against these characteristics. Particle filters [10–
12] have been introduced to deal with these nonlinearities in the
dynamics and measurements. Particle filter is based on Bayesian
estimation theory which gives an optimal solution [13] when the
dynamic behavior of the object is uncertain and the measurement of
the object nondeterministic. As the maneuvering target tracking could
be formulated as a multiple model nonlinear filtering problem [14], a
new method combing the interacting multiple model approach with a
particle filter approach is presented in [15], which is able to deal with
nonlinearities and non-Gaussian noise in a mode.

In this paper, we improve the IMMPF algorithm in [15] for more
accurate estimates for tracking targets. We first use the similarity
between the particles and the system state to modify the weight of the
particle. And the estimate of the state is obtained by computing the
mode probability of every particle. Based one the improved IMMPF
algorithm, a novel algorithm of energy control for LPI is proposed.
Under the condition of constant detection probability, the radar’s
energy is adaptively designed according to different ranges and RCSs
of the target.

The remainder of this paper is organized as follows. Sections 2
and 3 describe the improved IMMPF algorithm of target tracking and
the energy control methods for LPI in details, respectively. Simulations
of the proposed algorithms and comparison results with other methods
are provided in Section 4. The conclusions are presented in Section 5.
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2. IMPROVED IMMPF ALGORITHM OF TARGET
TRACKING

The IMMPF tracking method is improved by increasing the weight of
the particle which is close to the system state and updating the model
probability of every particle in Sections 2.4 and 2.5, respectively.

2.1. System Setup

Given the system at time k

Xk = FXk−1 + Uk−1 (1)
Zk = H(Xk) + Vk (2)

where, Xk = [xk, ẋk, yk, ẏk] is the dynamical state of the system,
and (xk, ẋk) and (yk, ẏk) are respectively the range, velocity of the
direction of X and Y . Uk−1 and Vk are the process noise matrix
and measurement noise matrix. F is the dynamic matrix of the
system and Zk the measurement vector. As we know, the signal
to noise ratio of the measurement vector is decided by the emitted
energy. Radar is a typical active sensor which provides both range and
angle measurements for target tracking. For concise description, the
elevation angle is supposed to be zero here. The measurement vector
of the radar is composed of ZrRk and ZθRk which are the measurement
of the range r and azimuth angle θ.

ZrRk =
√

x2
k + y2

k + VrRk (3)

ZθRk = arctan
yk

xk
+ VθRk (4)

where (ZrRk)2/(VrRk)2 = Sk
NR and (ZθRk)2/(VθRk)2 = Sk

NR. Sk
NR is

the signal to noise ratio of the radar’s echo at time k, which is decided
by the emitted energy. It also has an impact on the tracking accuracy.

There are M kinematics models and N particles for every model
in the system.

2.2. Interaction

Compute mixing probabilities:

µl
k−1(mk|mk−1) =

pijµ
l
k−1(mk−1)

bl
k−1(mk)

(5)

where the model mk is set at time k. pij is the Markov transition
probability from model mk−1 to model mk and µl

k(mk) the mixing
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probability of the lth particle for model mk, l = 1, 2, . . . , N . bl
k−1(mk)

is the normalizing factor:

bl
k−1(mk) =

∑

mk−1∈M

pijµ
l
k−1(mk−1) (6)

x̄l
k−1(mk) is obtained by the interaction with the other models:

x̄l
k−1(mk)

=
M∑

mk−1 6=mk

[
x̂l

k−1(mk−1)µl
k−1(mk−1|mk)+x̂l

k−1(mk)µl
k−1(mk|mk)

]
(7)

2.3. Prediction Stage

Predicted sample of every particle at time k:

x̄l
k(mk) = F(mk)x̄l

k−1(mk) + ul
k−1(mk) (8)

Predicted output:

z̄l
k(mk) = H

(
x̄l

k,mk

)
(9)

2.4. Modification of the Weight for the Particle

If the measurement vector of a particle is close to the measurement
vector of the true state, its vector will be close to the vector of the
true state. So it is helpful to increase the influence of those particles
which are closer to the true state, for obtaining more accurate tracking
results.

z̄l
k(mk) is the estimation of azimuth angle θ̄l

R(mk) and range
r̄l
R(mk) from the lth particle at time k. PCCl

θR,k(mk) and
PCCl

rR,k(mk) are respectively the Pearson correlation coefficient of
the azimuth angle and range, which are used to measure the similarity
of the two vectors.

PCCl
θR,k(mk)

=

k∑
i=k−P+1

(
θ̄l

R(mi)−
(
θ̄l

R(mi)
)∗)(ZθRi−(ZθRi)∗)

√
k∑

i=k−P+1

(
θ̄l

R(mi)−
(
θ̄l

R(mi)
)∗)2 k∑

i=k−P+1

(ZθRi−(ZθRi)∗)
2

(10)



Progress In Electromagnetics Research C, Vol. 33, 2012 85

PCCl
rR,k(mk)

=

k∑
i=k−P+1

(
r̄l
R(mi)−r̄l

R(mi)∗
)
(ZrRi − (ZrRi)∗)

√
k∑

i=k−P+1

(
r̄l
R(mi)−

(
r̄l
R(mi)

)∗)2 k∑
i=k−P+1

(ZrRi − (ZrRi)∗)2
(11)

where (·)∗ means the average value of the past P numbers.
Then PCCl(mk) is given by:

PCCl(mk) =
1
2

(
PCCl

θR,k(mk) + PCCl
rR,k(mk)

)
(12)

The weight update equation can be given by:

w̄l
k(mk) = PCCl(mk)pvk(mk)

(
zk − z̄l

k(mk), 0
)

(13)

where pvk(mk)(·) is the probability density of the measurement noise
vk(mk).

The normalized weight can be given:

w̄l
k(mk) = w̄l

k(mk)/
N∑

l=1

w̄l
k(mk) (14)

The new weight after the importance sampling is set as follows:

w̄l
k(mk) = 1/N (15)

2.5. Update of the Model Probability

The common methods often update the model probability by the
average residual matrix of all the particles and ignore the model
character of single particle. Therefore, the model probability of every
particle is updated here.

Residual covariance matrix of the lth particle is obtained as:

Sl
k(mk) = rl

k(mk)rl
k(mk)T (16)

where rl
k(mk) represents the residual vector and can be given by:

rl
k(mk) = zk −H

(
x̄l

k,mk

)
(17)

The likelihood function of the model is:

Λl
k(mk)=

√
|2πSl

k(mk)| exp
(
−1

2

(
rl
k(mk)

)T(
Sl

k(mk)
)−1

rl
k(mk)

)
(18)
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The updated model probability can be given by:

µl
k(mk) =

Λl
k(mk)bl

k−1(mk)
Bl

k

(19)

where Bl
k =

∑
mk∈M

Λl
k(mk)bl

k−1(mk).

2.6. Combination Stage

The estimate of the state is obtained as:

x̂=
k

M∑

mk=1

N∑

l=1

w̄l
kx̄

l
k(mk)µl

k(mk) (20)

3. STRATEGY OF ENERGY CONTROL

Phased array radars [16] have the capability to switch the direction
of the radar beam very quickly without inertia. So it is very free to
decide the beam position and emitted energy to update the established
track. The energy control methods for LPI of the phased array radar
are proposed in this section.

3.1. Intercept Probability

The intercept probability [17] PI is defined as

PI = MF(2PR/PSI)C0DITOT /TI (21)
where MF is the mainlobe footprint (3 dB), PSI the required power at
intercept receiver for detection, DI the density of intercept receivers
per km2, and C0 the sensitivity scaling factor. These parameters in the
later simulation are drawn from [17]. Table 1 shows the parameters’
values.

TOT and TI denote the illumination time by emitter and the
interceptor search time, respectively. TI is assumed to be the total
tracking time. PR is the received power at intercept receiver, which
can be defined as

PR =
PT GTIGIλ

2GIP LI

(4π)2R2
I

(22)

Table 1. Values of the parameters.

Parameter MF PSI C0 DI

Value 11.2 5×10−12 0.477 0.001
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where PT is the emitted power of the radar, GTI the antenna gain of the
radar in the direction of the intercept receiver, GI the antenna gain of
the intercept receiver, GIP the processing gain of the intercept receiver,
RI the interception range, λ the wavelength, and LI the interceptor
system loss.

As we know, it is difficult to design MF, PSI , DI and TI as they are
decided by the performance of the interceptor instead of the radar, so
we have to reduce the radar’s emission time TOT or power PT to lower
the probability of intercept of the radar system. According to [17], PR

is equal to PT × 9.003× 10−9 here.
During the tracking process, the cumulative probability of

intercept PIcum is defined as:

PIcum = 1−
I∏

i=1

(
1− P i

I

)
(23)

P i
I is the ith intercept probability and I the intercept times.

3.2. Design of Emission Energy

Radar equation at time k is as follows:

R4
k = tkB

P k
avGT GRλ2σk

(4π)3KTRSk
NRL

(24)

where tkB is the single dwelling time of the beam from the normal
direction at time k, P k

av the average radiated power, GR the receiver
gain, σk the radar cross section (RCS) of the target, K Boltzmann
constant, TR and L respectively effective noise temperature and radar
system loss, Rk the detection range, GT the transmit gain, and Sk

NR
the signal to noise ratio of the radar’s echo at time k. Detection
probability [18] P k

d at time k can be given as:

P k
d = p

1/(1+Sk
NR)

fa (25)

where pfa is the false alarm probability of the radar.
Suppose that when the target whose range and RCS are

respectively Rmax and σmin, the radar has to emit the maximum power
Pav max with maximum dwelling time tB max. Radar equation and the
detection probability respectively become:

R4
max = tB max

Pav maxGT GRλ2σmin

(4π)3KTRSNR maxL
(26)

Pd = p
1/(1+SNR max)
fa (27)
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The detection probability is supposed to meet the requirement
of constant Pd during the whole tracking process. So Sk

NR at time k
should be equal to SNRmax. Combining (24) with (26), the emitting
energy at time k can be written as:

P k
avt

k
B =

Pav maxtB maxσmin

R4
max

R4
k

σk
(28)

However, during the tracking process, Rk and σk are unknown
before radar detection. Rk is replaced by Rpre

k which is predicted by
Rk−1 and vk−1. Rpre

k is presented as

Rpre
k = Rk−1 + vk−1T (29)

where Rk−1 and vk−1 are the target’s range and velocity estimated by
the tracking algorithm at time k-1, and T is the tracking interval.

As we know, RCS is the ratio of the scattered power to the
incident power in the direction of an observer at infinity [17] and can
be computed by the fundamental RCS equation once the radar echo is
received. The RCS σk−1 at time k − 1 is supposed to be known here.
It is difficult to predict a target’s RCS, so σk is replaced by σk−1.

So (28) becomes

P k
avt

k
B =

Pav maxtB maxσmin

R4
max

(
Rpre

k

)4

σk−1
(30)

In addition, the emitted energy methods of adaptive power (I-
IMMPF-A-P) and adaptive time (I-IMMPF-A-T) are presented based
on the improved IMMPF algorithm.

I-IMMPF-A-P: tkB = tB max, and P k
av is designed according to

change of the target range and target RCS.

P k
av =

Pav maxσmin

R4
max

(
Rpre

k

)4

σk−1
(31)

I-IMMPF-A-T: P k
av = Pav max, and tkB is designed according to

change of the target range and target RCS too.

tkB =
tB maxσmin

R4
max

(
Rpre

k

)4

σk−1
(32)

After the emission time and power are designed, the radar
equation can be given:

Sk
NR = tkB

P k
avGT GRλ2σk

(4π)3KTRLR4
k

(33)
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Combined with (26), Sk
NR can be written as:

Sk
NR=

P k
av

Pav max

tkB
tB max

R4
max

R4
k

σk

σmin
SNR max (34)

We can see that the emitted energy and signal to noise ratio
influence each other during the tracking process.

4. SIMULATION RESULTS

In this section, Monte Carlo simulations are performed to analyze the
performance of the improved IMMPF and the proposed energy control
method. The IMM filter here is composed of Constant Velocity model
(CV) FCV and Coordinated Turn rate model (CT) FCT.

FCV =




1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1


 (35)

FCT =




1
sinωT

ω
0

1− cosωT

ω

0 cosωT 0
sinωT

ω

0
1− cosωT

ω
1

sinωT

ω
0 sin(ωT ) 0 cosωT




(36)

where T is the sampling interval, ω the turn factor, T = 1 s, and
ω = 0.1. In the simulation, Mc is the number of the Monte-Carlo
simulation, K the total tracking time in every simulation, Mc = 500,
and K = 100.

4.1. Trajectory Design

Table 2 is the description of the trajectory in detail.
Figure 1 shows the target trajectory in 100 s. The RCS of the

target is designed in Fig. 2.

Table 2. Model description of the trajectory.

Time (s) 2–20 41–65 66–100

Target model CV CT CV



90 Zhang and Zhou

1.86 1.88 1.9 1.92 1.94 1.96 1.98 2

x 10
5

2.32

2.34

2.36

2.38

2.4

2.42

2.44

2.46

2.48

2.5

2.52
x 10

5

Y
  
(m

)

X  (m)

Target trajectory

Figure 1. Trajectory of the
target.
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Figure 4. Comparison of Emit-
ted time.

4.2. Comparison of LPI Performance

Based on the proposed improved IMMPF algorithm, the emitted
energy methods of constant power and time (I-IMMPF-C-P-T), I-
IMMPF-A-P and I-IMMPF-A-T are realized in the simulation. The
three methods are described in Table 3. Emitted power of I-IMMPF-
A-P and emission time of I-IMMPF-A-T are designed adaptively
according to (31) and (32), respectively, which are also shown in Figs. 3
and 4.

Intercept probability is used to evaluate the LPI performance of
the three methods. Fig. 5 illustrates their LPI performance. We can
see that the I-IMMPF-A-T method has the best LPI ability as the
emission time plays a more important role in the intercept probability
computation. So the reduction of emission time is more effective.
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Table 3. Energy control of the 3 methods.

Method P k
av (W) tkB (s)

I-IMMPF-C-P-T 15000 0.5 ∗ 10−6

I-IMMPF-A-P Adaptive 0.5 ∗ 10−6

I-IMMPF-A-T 15000 Adaptive
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4.3. Comparison of Tracking Performance

The root-mean-square error (RMSE) of time k and the average root-
mean-square error (ARMSE) of the whole tracking process can be
formulated as (37) and (38), respectively:

RMSE(k) =

√√√√ 1
Mc

Mc∑

m=1

(
xk − x̂m

k

)2 (37)

ARMSE =
1
K

K∑

k=1

RMSE(k) (38)

where xk is the true state of the system and x̂m
k the estimated vector

at the mth simulation.
The standard IMMPF method [15] with constant power and time

(IMMPF-C-P-T) is also realized to compare the tracking accuracy
with the improved one. RMSE and ARMSE of all methods with
250 particles are shown in Fig. 6 and Table 4, respectively, which
show that the improved IMMPF method is more accurate than the
standard IMMPF. However, the improved IMMPF method will spend
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Table 4. Comparison of ARMSE.

Method ARMSE (m)
IMMPF-C-P-T 142

I-IMMPF-C-P-T 85.0
I-IMMPF-A-P 86.6
I-IMMPF-A-T 85.5

a little more time on the computation, as it has to compute the Pearson
correlation coefficient to modify the weight of the particles.

Comparing with I-IMMPF-C-P-T, we can see that the proposed
method I-IMMPF-A-T and I-IMMPF-A-P not only reduce more
emitted energy, but also present almost the same excellent tracking
accuracy. Obviously, I-IMMPF-A-T has the best LPI ability with
better tracking performance.

4.4. Simulation Analysis

The improved IMMPF method achieves better tracking performance
in the simulation, because it increases the weight of the particle which
is close to the system state and updates the model probability of every
particle. In addition, it involves the filtering for the current state and
smoothing for the previous state.

Moreover, the proposed two energy control methods are more
efficient than the common method which always emits constant power
and time, because both the target’s range and RCS are used to
adaptively design the emitted time and power here. The LPI method
depends on tracking algorithm as the target range has to be predicted
every time.

5. CONCLUSIONS

In this paper, we have presented a new strategy of energy control for
LPI based on an improved IMMPF approach. This method employs
both the target’s range and RCS to design the radar emitted energy
with excellent tracking accuracy.
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