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Abstract—A phase-only power pattern synthesis technique for flat
(aperiodic) microstrip reflectarrays with elements arranged on a non-
regular lattice is presented. The approach mitigates the typical design
issues of reflectarray antennas related to the computational burden and
to the possible occurrence of suboptimal solutions which are here even
more significant due to the non-regular element lattice. This is done
by a convenient two-stage procedure for choosing the starting point of
the iterations and by proper representations of the unknowns of the
problem. Design constraints on the element positions are also imposed
to avoid overlapping as well as too large spacings. The algorithm,
accelerated by parallel programming on Graphics Processing Units,
has been analyzed against the cases of a pencil-beam and of a shaped-
beam involving a typical South America coverage. In order to properly
characterize the performance of the synthesis algorithm, it has been
applied also to the design of reflectarrays with elements located on a
non-regular lattice. The results show that in the case of non-regular
lattice better directivities, better coverage behavior and better side-
lobe levels are achievable as compared to reflectarrays characterized
by a regular lattice.

1. INTRODUCTION

Microstrip reflectarrays are antennas made up of an aperture of
microstrip patches scattering the incident field radiated by a feed horn
according to given specifications on the beam shape [1].
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They combine some of the appealing features of microstrip patch
arrays and reflectors [1, 2]. Like the former, they are low profile and
lightweight. Like the latter, they provide high gains and do not require
the use of cumbersome beamforming networks. Additionally, they
are low cost, can be faceted or conformed [3, 4] and are aesthetically
appealing for commercial applications.

Thanks to these features, reflectarrays have raised interest in many
applications, as direct broadcast satellite (DBS) services [1], Earth
remote sensing (requiring large apertures) [5] and in micro-spacecraft
missions (requesting high gain antennas with small volume and low
mass) [6], to mention just a few.

In many possible cases, as for satellite applications, high
performance advanced reflectarray antennas are required satisfying
complex and demanding design specifications [7].

In these instances, the desired control of the radiated pattern
should, in principle, be achieved by exploiting all the possible degrees
of freedom of the antenna on the one hand, and by considering an
accurate pattern prediction model on the other hand.

A high number of degrees of freedom could be achieved by
involving a high number of radiating elements, a high number of
control parameters per element [8], including their positions [9–
11, 13–16], and a purposely shaped reflecting surface [17, 23], possibly
conformed around a specific shape in order to simplify deployability
and installation [24].

Unfortunately, radiative models taking into account all the
antenna degrees of freedom and exploiting the minimum number of
approximations in the radiation operator [25] require accurate, efficient
and effective design strategies. Indeed, higher accuracy means also
higher computational burden and the use of an accurate model can,
if not properly managed, make unaffordable the design of electrically
large antennas. Throughout the literature, the approximate Phase-
Only (PO) model [4, 26], although limiting the potentialities of the
considered antenna, is often employed to reduce the number of involved
parameters and make the design of the structure of interest less
burdened. It consists in describing the dependence of the scattering
matrix of each element on the features of the different patches by a
factorized phase factor (henceforth addressed to as the “control phase”
or “command phase”) only and by a common vector term†.

In addition, with reference to array antennas, the advantages of
adopting a non-uniform element spacing in realizing an “equivalent
† It should be noticed that the PO model can be properly “tuned” to trade-off accuracy
and efficiency. Indeed, the scattering model of each element described in [28] is “accurate”,
although the unknowns of the synthesis problem are still the element control phases.
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tapering” or an array thinning, providing further degrees of freedom
to the synthesis and thus helping satisfying the design specifications,
have been reported since much time [9–12]. Opposite to this, in
the framework of reflectarrays, and essentially due to computational
issues, the antenna synthesis community has up to now mainly
considered periodic lattices to enable the use of the “local periodicity”
approximation [27] which, apart from possibly leading to locally
significant errors, does not allow using at the best all the available
degrees of freedom. Only since recently attempts to apply
the equivalent tapering concept to reflectarray design are being
performed [13–19].

It should be noticed that an aperture tapering could be in principle
obtained by a proper feed system radiating the desired illuminating
field, as suggested in [20, 21]. However, while the main benefits of
reflectarrays stem from their simplicity, cheapness and low-mass profile
(to be more easily included in satellite launches), a feed cluster would
significantly increase the overall complexity, cost and weight, with
also a worsening of the blocking efficiency [22]. Furthermore, unless
using exceedingly large primary illuminators, an aperiodic reflectarray
can reach a wide variety of (equivalent) amplitude tapers thanks to
the possibility of exploiting a large number of degrees of freedom (in
principle, the positions of all the reflectarray elements).

It is worth remarking that, besides coping with the above points,
to improve accuracy and flexibility of the design process, the synthesis
algorithm should evaluate the design parameters by satisfying, at the
same time and with a reasonable accuracy, constraints drawn from
the physics of the problem [29] as well as from the limitations of the
electromagnetic model and from the physical realizability [30, 31].

The aim of this paper is to present an efficient and effective
constrained PO approach [4, 32–34] for the power pattern synthesis
of flat aperiodic reflectarrays. More in detail, the synthesis problem
is formulated as an optimization one [37] and the approach aims at
determining the control phases and the positions of the patch elements
and enforces proper constraints on the element locations, a crucial
point of such an application due to the need of guaranteeing adequate
inter-element spacings [30–34]. The attention in this paper is focused
on flat radiating structures and the performance of the approach is
assessed against different test-cases comprising a pencil-beam as well
as a shaped-beam. Due to the PO model, mutual coupling effects
are not included. Once the command phases and element positions
are determined, they are exploited as the starting point of a further
optimization procedure, using a more accurate (not PO) radiation
model accounting also for mutual coupling and which can be used to
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refine the elements positioning and to obtain their internal parameters,
see [18, 32, 33, 35, 36].

The paper is organized as follows. In Section 2, the reflector and
array contributions to the reflectarray radiated field are introduced,
allowing a very convenient modelling of aperiodic reflectarrays. In
Section 3, the synthesis problem is formulated as an optimization one
and the salient points of the synthesis strategy common to both the
AS and APRPOS are briefly outlined. The AS and APRPOS stages
are discussed in Sections 4 and 5, respectively, leaving some details in
Appendix A and B. In Section 6, we illustrate how transforming the
amplitude and phase distributions determined by the AS into a starting
point for the APRPOS. Section 7 is devoted to a brief description of the
algorithm implementations, while the results of the numerical analysis
are provided in Section 8. Finally, Section 9 gathers the conclusions
and the future developments.

2. REFLECTOR AND ARRAY CONTRIBUTIONS TO
THE FIELD RADIATED BY AN APERIODIC
REFLECTARRAY

In this section, we show how it is possible to identify the reflector and
array contributions within the field scattered by a reflectarray.

To this end, we refer to the geometry of a flat aperiodic reflectarray
shown in Fig. 1. The reflecting surface is illuminated by a primary
source located at the origin of the Cartesian reference Oxyz system and
radiating a field E f . The reflectarray is made by N patches located on
the z = −z0 plane with (xn, yn) the coordinates of the n-th element.

Figure 1. Geometry of the aperiodic reflectarray synthesis problem.
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By applying the equivalence theorem to a volume excluding only
the patches, the patches themselves can be suppressed and replaced
by their respective induced electric current densities. Similarly, the
illuminating structure can be represented by an equivalent current
whose support can be assumed coincident with that of the feed itself.
By applying the superposition principle, the radiated field can be
calculated as the sum of two contributions, a first one, the reflector
contribution, which is due to the feed density currents radiating in
the presence of the dielectric slab and the ground-surface (Fig. 2(a)),
and a second one, the array contribution, which is produced by the
density currents induced on the patches, again in the presence of the
slab plus ground plane. The second contribution can be calculated
with a small approximation by using the spatial reflection theorem
applied locally to the ground surface (Fig. 2(b)). It is completely
independent of the patch arrangements and of their internal degrees
of freedom and it changes only under a change of the ground shape.
In the flat reflectarray case of interest in this paper, the ground
contribution is not object of synthesis and can be calculated by means
of a Geometrical Optics/Physical Optics approximation, as in standard
reflectors [48, 49].

Formally, the relationship between the design parameters, i.e., the
N × 2 matrix R defining the positions of the patches along with the
N ×M matrix P of the M internal degrees of freedom of each patch,

(a)

(b)

Figure 2. Illustrating the reflector and array contributions.
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and the co-polar and cross-polar components of the far-field (Eco, Ecr)
can be written as{

Eco(R,P ) = EA
co

(
R,P

)
+ ER

co

Ecr(R,P ) = EA
cr

(
R,P

)
+ ER

cr

. (1)

In Eq. (1), it has been explicitly highlighted that the array
contribution depends on the internal degrees of freedom of the patches
and on their arrangements on the reflecting surface and is object
of synthesis in this paper. By the positions R, an “equivalent
tapering” effect is achieved while, under the PO model to be detailed
in Subection 5.1, the internal degrees of freedom P are exploited to
obtain the desired phase distribution over the reflectarray aperture. It
should be noted that no other mean (e.g., passive or active elements, or
couplings to the orthogonal polarization) is here employed to achieve
a spatial taper over the reflectarray aperture.

3. THE SYNTHESIS STRATEGY

Since the high number of control parameters prevents from using global
optimizations [38, 39], local, gradient-based searches are employed
which, although computationally efficient, suffer from the local optima
issue.

To face this point, the synthesis is performed by a pre-synthesis
stage, henceforth the Aperture Synthesis (AS) stage, in which the
amplitude and phase distributions of a continuous aperture are
efficiently and effectively determined from the design specifications.
Indeed, for this stage, the cost functional to be minimized is a fourth
order polynomial in the unknown parameters, and so it is expected to
provide a fast, robust (in terms of solution optimality) starting guess
to the following stage [40].

The determined amplitude distribution is then interpreted as the
equivalent tapering by which choosing the initial positions of the
subsequent PO stage. The phase distribution, on the other side,
dictates the initial command phase distribution of the patches.

During the subsequent Aperiodic Reflectarray Phase-Only
Synthesis (APRPOS) stage, again to mitigate the false solution
issue, the unknowns of the problem, i.e., the command phases and
the element positions, are given proper representations enabling a
progressive enlargement of the number of parameters to be determined
as well as a modulation of the computational complexity of the
approach [4, 32, 33]. Two steps are so devised. In the first step,
few Zernike polynomials are employed for the command phases and
progressively increased in number [4, 32, 33]. In the second step,
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impulsive functions are adopted to represent the control phases
individually [4, 32, 33]. In the APRPOS stage, to keep low the number
of unknowns, a proper modal representation is introduced also for the
element positions.

The details common to the two synthesis stages are now in order,
while their peculiar aspects are discussed in Sections 4 and 5.

The purpose of each of the two synthesis stages is to find the
unknown parameters, which change according to the stage and to
the steps within the APRPOS stage, in order to satisfy the coverage
requirements. The unknown parameters R and P should be obtained
by minimizing a proper objective functional Φ given by:

Φ
(
R,P

)
=

∥∥Aco

(
R,P

)− PUco

(
Aco

(
R,P

))∥∥2

+
∥∥Acr

(
R,P

)− PUcr

(
Acr

(
R,P

))∥∥2 (2)

where (Aco, Acr) is the relevant radiation operator which, according to
Eq. (1), can be written as

{
Aco = |Eco|2 =

∣∣EA
co

(
R,P

)
+ ER

co

∣∣2
Acr = |Ecr|2 =

∣∣EA
cr

(
R,P

)
+ ER

cr

∣∣2 . (3)

PUco and PUcr are the metric projectors onto the set Uco and Ucr [41]
that contain all the power patterns satisfying the specifications for
the co-polar and cross-polar components, and ‖·‖ is a properly chosen
norm. The sets Uco and Ucr are defined by mask functions (mco,Mco)
and (mcr,Mcr), respectively, determining upper and lower bounds for
Aco and Acr, respectively [41]. The metric projectors PUco(Aco) and
PUcr(Acr) are defined as [41]

PUco,cr(Aco,cr) =

{
mco,cr if Aco,cr ≤ mco,cr

Aco,cr if mco,cr ≤ Aco,cr ≤ mco,cr

Mco,cr if Mco,cr ≤ Aco,cr

. (4)

For the cases of interest in this paper, Φ will refer only to the co-
polar term and only the Aco operator (which will be changed according
to the involved step) will be relevant to our purposes.

4. APERTURE SYNTHESIS (AS)

Let us consider a rectangular aperture Dap = [−aap, aap]× [−bap, bap],
lying in the xy plane of a cartesian coordinate system Oxyz and
radiating towards the z > 0 half-space.

The size, shape and polarization of the aperture are chosen
according to the specifications on the reflectarray dimensions and shape
and on the particularly dealt with radiating elements. In this paper,
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according to the considered patches, the aperture field E a is assumed
to be linearly polarized along the y-axis, i.e., E a = Eaîy. The aperture
field distribution Ea(x, y) is the unknown to be determined and is
represented by means of properly chosen expansion functions [42].

In order to choose such functions, let us observe that the
component Ê(u, v) of the Plane Wave Spectrum (PWS) homologous
to Ea can be written as

Ê(u, v) =
∫∫

Dap

Ea(x, y)ejβ(ux+vy)dxdy = FDap [Ea], (u, v) ∈ Ω (5)

where β = 2π/λ is the wavenumber, λ being the wavelength, FDap

the Fourier transform operator truncated to Dap, and Ω the region of
the (u, v) plane wherein the design specifications are enforced. For the
AS stage, the specifications are enforced on Ê so that functional (2)
is optimized by letting Aco = |Ê|2. On choosing hereinafter the L2(Ω)
norm for the functional (2), to effectively represent Ea (i.e., to represent
Ea with the least number of functions), the expansion functions should
account for both the information on shape and size of the aperture and
of the spectral region Ω. Let us then define Ω̄ = [−ū, ū] × [−v̄, v̄] the
smallest rectangle containing Ω. For example, when Ω is the entire
visible region, ū = v̄ = 1. Then the φmn’s should be functions with
support limited to Dap and band-limited to the Ω̄. In other words, they
should be chosen as Prolate Spheroidal Wave Functions (PSWFs) [42–
44], i.e.,

Ea(x, y) =
M∑

m=0

N∑

n=0

amnΦm[cx, x]Φn[cy, y], (6)

where Φi[cw, w] is the i-th one-dimensional PSWF with “space-
bandwidth” product cw, cx = βūaap, and cy = βv̄bap. The amn’s
are expansion coefficients to be determined according to the design
specifications, by taking into account that Ê is related to the amn’s
via Eqs. (5) and (6).

In the case of pencil-beams, the determination of the amn’s can
be carried out by exploiting results of convex optimization [45–47].

On the other side, in the case of either pencil-beams or shaped-
beams, the determination of the amn’s can be performed in an efficient
and reliable way by a quadratic approach, since the equivalent tapering
concept can be exploited for the step in Section 5. Indeed, the radiation
operator Aco in Eq. (2) is linearly related to the amn’s, so that the
functional Φ is a fourth-order polynomial in the unknown parameters,
i.e., is related to the amn’s with the lowest possible degree of non-
linearity [40, 42]. This, along with the opportunity of performing a
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progressive enlargement of the unknown space, is known to have a
positive effect on the trapping problem [40, 42].

In Section 7, we will show that the two mentioned schemes provide
quite similar results in the case of pencil-beams, so that the quadratic
approach will be selected, in this paper, to construct the starting point
of the APRPOS stage for both, the pencil-beam and shaped-beam
cases.

5. APRPOS

In this stage, the unknowns of the problem are the command phases
of each reflecting element and the element positions on the reflectarray
surface.

In the following, the details concerning this synthesis stage are
provided.

5.1. The PO Radiating Model

Let us denote by (r, θ, φ) the spherical coordinates of an observation
point P located in the far-zone of the reflectarray.

On assuming each patch to be located in the far-zone of the
primary source, then the far-field pattern of the reflectarray can be
written as

(
Fco

Fcr

)
(u, v) = Q(u, v)

N∑

n=1

SA
n
(u, v)E fn

ejβ(uxn+vyn) +
(

FR
co

FR
cr

)
(u, v)

(7)
where
• Fco and Fcr are the co-polar and cross-polar components of the

far-field pattern, respectively:
(

Eco

Ecr

)
=

e−jβr

r

(
Fco

Fcr

)
; (8)

• the first term on the right hand side represents the array
contribution while the second term represents the reflector
contribution;

• u and v in the visible region are related to θ and φ by the well
known relations u = sin θ cosφ, v = sin θ sinφ;

• SA
n

=

[
SA

xxn
SA

xyn

SA
yxn

SA
yyn

]
is the scattering matrix of the n-th element

expressed in terms of the Cartesian components, related to the
array contribution [25];
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• Efn
=

(
E f (xn, yn,−z0) · îx, E f (xn, yn,−z0) · îy

)T
;

• Q is the matrix converting the Cartesian components in the
Oxyz system of the scattered field to the co-polar and cross-polar
components of the reflectarray far-field;

• FR
co and FR

cr are the co-polar and cross-polar components of the
far-field pattern of the reflector contribution, respectively.
Unfortunately, a direct application of the PO approach to the

array terms SA
n
(u, v) can be either not possible, for example because

the amplitudes of the elements of SA
n
(u, v) do not keep approximately

constant, or cumbersome. Indeed, in cases when it is possible,
the phase of SA

n
(u, v) might not range between 0◦ and 360◦, thus

compelling to the use of a constrained synthesis or to the introduction
of nonlinear relations to ensure the final command phase to range
within the prescribed interval.

Actually, we are now showing that [4, 32, 33], also in the aperiodic
case, a scattering matrix S

n
can be introduced so that Eq. (7) turns

into (
Fco

Fcr

)
(u, v) = Q(u, v)

∑N
n=1 S

n
(u, v)E fn

ejβ(uxn+vyn) (9)

and can be approximately expressed as the sum of two contributions,
one due to the dielectric slab and the ground plane (reflector
contribution), and one due to the presence of the corresponding patch
(array contribution), scattering in presence of the reflector, see the
details in Appendix A. In other words

S
n
(u, v) = SA

n
(u, v) + SR

n
(u, v). (10)

Let us observe that, in general, it is more advantageous to write
also the reflector contribution as a summation of different terms and
the approach that has resulted the most convenient to our purposes is
reported in the following.

In a partitioning dictated by the patch positions, one could
conclude that, by changing the patch positions, the portion of ground
subtended by each patch, and thus the overall ground partitioning,
would be modified. Nevertheless, it is possible to observe that:
• the overall reflector contribution due to all the cells forming

the partitioning is independent of the patch positions (see
Appendix B) and can be evaluated by using a Geometrical
Optics/Physical Optics approach, as in standard reflectors [48, 49];
it remains the same for a fixed size of the ground plane,
independently of the patch positioning;
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• the overall reflector contribution can be subdivided as the sum
of different contributions SR

n
’s corresponding to the part of the

ground plane centered around the n-th patch, even in the case of
overlapping partitioning (see Appendix B); indeed, in the direction
of the main beam (assumed to be the specular one), each of
them can be approximately considered as independent of the
position of the corresponding patch and thus of the mentioned
partitioning, including the overlapping; in other words, it is
possible to approximate it by a “mean” contribution, according
to Appendix B, so that SR

n
' SR.

In this way, the subscript n in the definition of S
n

highlights the
dependence of the scattering matrix on

• p
n

= (pn1 , pn2 , . . . , pnL) representing the vector of the L control
parameters of the n-th patch;

• the cosine directors of the impinging directions of the primary field
un = On−O

|On−O| · îx and vn = On−O
|On−O| · îy.

Equation (9) can be simplified, by neglecting some of the involved
dependencies and by exploiting the PO scattering model [4, 26, 32, 33].
Indeed, if the radiating elements and the feed are not electrically large,
the angle under which the primary field impinges on the reflectarray
elements can be assumed to be the same for all the patches so that the
dependence of the scattering matrix from un e vn can be neglected.

Moreover, and according to the PO model, the dependence of the
S

n
’s on the features of the different patches can be lumped in a phase

factor exp(jψn) only and in a term S
0

common to all the S
n
’s, that

is, S
n
(u, v) = S

0
(u, v) exp(jψn). The validity of the PO model is

illustrated in Fig. 3 showing the approximately constant behavior of
the amplitude of Syy for the common case of a rectangular patch. On
the other side, Fig. 4 depicts the behavior of the command phase in
the same circumstances of Fig. 3. As it can be seen, the command
phase ranges approximately between 0◦ and 360◦, thus avoiding the
need of applying any range constraints to the ψn’s or non-linear
transformations.

Following a PO synthesis stage, each patch can be approximately
assigned its corresponding command phase by choosing the resonant
length according to Fig. 4. Numerical simulations have indicated that
the radiation of reflectarrays synthesized by the APRPOS have already
a good degree of matching with the radiation of the same reflectarray
as evaluated by the more “accurate” model in Eq. (9) [18]. Such a
solution can be nevertheless refined by a further synthesis stage, relying
on Eq. (9), which is however beyond the scope of the present paper.
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Figure 3. Absolute value of the contributions to Syy for
different resonating lengths Lp of the rectangular patch. Solid
line: |Syy|. Dashed line: |SA

yy|. Dotted line: |SR
yy|. Substrate of

relative permittivity 2.5 and thickness 0.762 mm (Arlon DiClad 527),
(un, vn) = (−0.1003,−0.2309).

Figure 4. Control phase for different resonating lengths Lp of the
rectangular patch. Substrate of relative permittivity 2.5 and thickness
0.762mm (Arlon DiClad 527), (un, vn) = (−0.1003,−0.2309).

Accordingly, E f can be approximated as

Efn
' Ẽfw

mf
n

e−jβrn

rn
(11)

where Ẽ f is a vector independent on the index n [4], wn =√
1− u2

n − v2
n, rn = |On −O| and a w

mf
n type pattern has been
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assumed.
Summarizing, Eq. (9) can be rewritten as

(
Fco

Fcr

)
(u, v)=Q(u, v)S

0
(u, v)Ẽ f

N∑

n=1

w
mf
n

e−jβrn

rn
ejψnejβ(uxn+vyn). (12)

that is, as the product between an “element factor” Q(u, v)S
0
(u, v)Ẽ f

and an “array factor”

F (u, v) =
N∑

n=1

w
mf
n

e−jβrn

rn
ejψnejβ(uxn+vyn) (13)

containing the control phases ψn useful for the beam shaping and
to be determined by the synthesis algorithm along with the element
positions. Functional (2) is then applied in this stage with Aco =
|Fco|2. In this way, the speedup [55] required by a stage appointed to
quickly provide a solution to be eventually and subsequently refined is
obtained.

5.2. Representation of the Unknowns

5.2.1. Representation of the Element Positions

Regarding the element locations, let us observe that directly exploiting
the coordinates (xn, yn) as optimization variables has three main
drawbacks. The first one is related to the number of the involved
parameters, which would be equal to twice the total number of patches
N . The second one is due to the difficulty of devising an efficient
strategy to enforce constraints on the minimum and maximum element
spacings, without significantly burdening the optimization. The third
one concerns the impossibility of performing a progressive enlargement
of the unknowns.

To this end, proper mapping functions transforming uniform 2D
lattices into non-uniform ones are employed to represent the patch
locations by a prefixed number of parameters [30, 31]. In this way, the
positions (xn, yn) are represented as

(xn, yn) =
(
h

(
t(1)
n , t(2)

n ), g(t(1)
n , t(2)

n

))
, (14)

with

h
(
t(1)
n , t(2)

n

)
=

R∑

r=1

S∑

s=1

αrsLr

(
t(1)
n

)
Ls

(
t(2)
n

)
, (15)
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and

g
(
t(1)
n , t(2)

n

)
=

R∑

r=1

S∑

s=1

βrsLr

(
t(1)
n

)
Ls

(
t(2)
n

)
, (16)

where (t(1)
n , t

(2)
n ) defines a uniform lattice in the square (−1, 1) ×

(−1, 1). Lj is a properly defined set of basis functions (e.g., Legendre
polynomials, as employed in the numerical analysis), and αrs and βrs

are proper expansion coefficients.
The functions h and g serve to map a uniform lattice of (−1, 1)×

(−1, 1) to a non-uniform lattice of the (x, y) plane. Instead of
representing the individual position of each element, which implies
dealing with a large (N) number of unknowns, the patch locations
are obtained by the specifying the αrs and βrs. This point is
pictorially illustrated, for the 1D case, in [30, 56]. The representation
in Eqs. (14), (15) and (16) is able to significantly reduce the number of
the parameters to be sought for during the optimization of Φ, as the
actual unknowns of the procedure reduce to a few coefficients αrs and
βrs [30, 31]. In this way, the computational complexity is reduced. In
the Authors’ experience, and consistently with the results in [57, 58], a
reduction of the number of unknowns strengthens, for the functional at
hand, the approach against the local minima problem by a progressive
increase of the number of unknowns.

5.2.2. Representation of the Element Command Phases

Concerning now the phase representations, let us observe that, starting
from the initial point provided by the AS (see Section 5), the first
step of the APRPOS stage is aimed at returning a reliable, although
rough, determination of the control phases. To this end, only a reduced
number of degrees of freedom, and thus of the unknowns to be searched
for, are involved. This is accomplished by representing the ψn’s by low
order Zernike polynomials Zt, i.e.,

ψn =
∑

t

ctZt

(
t(1)
n , t(2)

n

)
. (17)

The second step provides the ultimate solution by setting ψn =
δ(x − xn, y − yn), so considering all the degrees of freedom of
the structure, since the unknowns now coincide with the control
phases [4, 32, 33].

6. FROM AS TO APRPOS

Following Eq. (12) and the involved approximations, the reflectarray
can be dealt with as an array to all intents and purposes, and so all
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the tools of array synthesis can be exploited. Such an array has a PO
control, unless the element positions do not represent a further degree
of freedom to achieve an “equivalent spatial tapering”.

The starting point of the APRPOS is then chosen following the
AS result, according to a two-steps procedure. The first step is to turn
the aperture field amplitude distribution into an “equivalent spatial
tapering” giving a starting guess for the patch positions. The second
step is to turn the aperture field phase distribution into a starting guess
for the command phases.

Irregularly spacing array elements to provide an “equivalent
spatial tapering” has been firstly faced by Doyle [50] and Skolnik [51]
for the 1D case. The underlying idea is to arranging equally excited
elements so that by their “spatial density” the current of a continuous
aperture radiating a field satisfying the specifications is approximated.
Recently, the work by Doyle and Skolnik has been improved [52, 53],
but these techniques hold only for 1D arrays, whereas the radiating
structure we are dealing with is 2D. Accordingly, a different procedure
should be used here, but taking into account that it should provide a
rough initial guess to be subsequently refined by the APRPOS stage.

The idea is to choose the inter-element patch spacings according
to the reciprocal of the amplitude A = |Ea| of the aperture field
distribution determined by the AS. In this way, the more the aperture
amplitude taper (the lower the field amplitude) the larger the spacing.
This is roughly obtained by fixing the inter-element spacings along the
x- and y-axes according to the solution of the following differential
equations

∂x(ξ, η)
∂ξ

=
C(η)

Ā(ξ, η)
+ D(η) (18)

∂y(ξ, η)
∂η

=
G(ξ)

Ā(ξ, η)
+ H(ξ), (19)

where a proper threshold is applied to A to avoid an exceedingly
large spacing, obtaining Ā. The auxiliary functions C(η), D(η), G(ξ)
and H(ξ) are needed to enforce minimum and maximum tolerable
spacings [17, 18]. Eqs. (18) and (19) represent a rough generalization to
the 2D case of the 1D approach in [30, 31]. Note that, the procedure
is consistent since, when Ā is large, then an approximately uniform
spacing is obtained since in this case ∂x/∂ξ ' D(η) and ∂x/∂η ' H(ξ).
On the other side, when Ā is small, then ∂x/∂ξ ' C(η)/Ā(ξ, η) and
∂y/∂η ' G(η)/Ā(ξ, η).

By defining (ξn, ηm) as an uniform grid of Dap with spacings ∆ξ
and ∆η, Eqs. (18) and (19) can be discretized so that the (xnm, ynm)
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coordinates are obtained by solving the difference equations

xn+1,m − xn,m =
[

Cm

Ā(ξn, ηm)
+ Dm

]
∆ξ (20)

yn,m+1 − yn,m =
[

Gn

Ā(ξn, ηm)
+ Hn

]
∆η (21)

The constants Cm and Dm are then chosen as




Cm =
dmax − dmin

1
minn Ā(ξn, ηm)

− 1
maxn Ā(ξn, ηm)

1
∆ξ

Dm =
[
dmax − dmin

maxn Ā(ξn, ηm)
minn Ā(ξn, ηm)

]
1

∆ξ

, (22)

where dmin and dmax denote the minimum and maximum allowed inter-
element spacings, respectively. Gn and Hn have analogous expressions.

Following the previous step, the initial command phases are
chosen, starting from the phase of the aperture distribution determined
by the AS, according to the following procedure.

We consider the pattern radiated by the aperture discretized at
the (ξn, ηn) points, that is,

Funif (u, v) =
N∑

n=1

A(ξn, ηn)ejΨnej(ξnu+ηnv) (23)

where the Ψn’s are the samples of the aperture field phase. Next, we
consider the array factor in Eq. (13) and compare it to (23). We then
choose the command phases ψn’s so that, around the center (u0, v0) of
the main beam, the phase of each of the terms in Eqs. (13) and (23)
coincide. In other words, we set

ψn = Ψn + u0(ξn − xn) + v0(ηn − xn) + βrn. (24)

7. ALGORITHM IMPLEMENTATION

The algorithm has been implemented in a Matlab script and
made computationally efficient as the radiated field and the
functional gradients for the APRPOS stage are computed by Non-
Uniform Fast Fourier Transform (NUFFT) routines (whose asymptotic
computational burden is comparable to that of standard FFT
routines) [54] and by proper parallel implementations on a GPU in
CUDA language [55, 59].

The processing has been performed on a Genesis Tesla I-7950
workstation, with a 8-core Intel CPU i7-950, working at 3.06GHz and
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with 6 GB of RAM. The workstation is equipped with an Nvidia Tesla
C2050, benefitting of the state-of-the-art Fermi GPU architecture and
consisting of 14 streaming multiprocessors (SMs), each containing 32
streaming processors (SPs), or processor cores, running at 1.15GHz.
The C2050 is further equipped with a 2.8 GB, off-chip, global memory
and supports double precision arithmetics.

7.1. Optimization

Both during the AS and the APRPOS stages, the projection
PUco(|Aco|2) is evaluated and fixed and the functional Φ optimized.
Subsequently, a new projection is evaluated and fixed and Φ optimized
once again iteratively.

Concerning the AS, minimization by the Polak-Ribiére scheme
is employed [40, 42, 60]. Thanks to the fourth-order nature of the
functional for this stage, the line minimization is performed in an
“exact” way and it is very fast to be computed [60].

Regarding the APRPOS, the minimization is performed by the
Matlab function fmincon. In order to avoid computationally burdened
optimizations, at each iteration step, two different minimizations are
performed, one involving the command phases only and one involving
the patch positions only.

7.2. Efficient Evaluation of the Radiation Operator and
Functional Gradient for the AS and APRPOS Stages

To limit the burden, it is necessary to effectively evaluate both the
radiated field and the gradient of Φ for the two stages.

For the AS, Eq. (5) can be effectively performed by standard FFT
routines. On the other side, the functional gradient can be calculated
observing that

∂Φ
∂aR

mn

= 16π2 Re
{〈

φmn,F−1
Ω̄

[
wÊ

(
|Ê|2 − PUco

(
|Aco|2

))]〉}
(25)

and that
∂Φ

∂aI
mn

= 16π2 Im
{〈

φmn,F−1
Ω̄

[
wÊ

(
|Ê|2 − PUco

(
|Aco|2

))]〉}
, (26)

where aR
mn and aI

mn denote the real and imaginary parts, respectively,
of the expansion coefficients amn’s in Eq. (6), 〈·〉 represents the scalar
product in L2(Dap) and F−1

Ω̄
represents the inverse Fourier transform

limited to Ω̄. The derivatives in Eqs. (25) and (26) can be again
effectively evaluated by standard FFT routines [60].
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Regarding the radiation operator for the APRPOS, NUFFT
routines have been adopted to cope with the irregular spacing, see [55].

Concerning the functional gradient, when a representation in
terms of Zernike polynomials is adopted and thanks to representations
(15), (16) and (17) significantly limiting the number of unknowns, the
gradient of Φ with respect to the αrs’s, βrs’s and ct’s, is evaluated by
finite differences. Opposite to this, when a representation of the control
phases in terms of “pulse” basis functions lk(x, y) = δ(x − xk, y − yk)
is adopted, the gradient can be effectively evaluated by the relation

∂Φ
∂ψk

= −4 Im

{
fke

jψk

H∑

h=1

E∗
coh

(|Fcoh
|2 − |(PUco(|Fcoh

|2))h|2
)
ghej[uhxk+vhyk]

}
(27)

where (uh, vh) is one of the H spectral points of interest, gh the co-
polar term of Q S

0
Ẽ f , and fk = w

mf

k θk exp(jψk) exp(−jβrk)/rk. The
derivatives in Eq. (27) can be evaluated again by means of a single
NUFFT routine call.

8. RESULTS

In this section, we present numerical results to show the performance
of the proposed approach.

The results refer to two different kinds of beams, namely, to a
(tilted) pencil-beam and to a shaped-beam involving a typical South
America coverage. The working frequency has been 14.25 GHz. For all
the considered test-cases, the upper co-polar mask has been assumed
to be +0.5 dB within the coverage and −35 dB outside. On the
other side, the lower copolar mask has been assumed to be −0.5 dB
within the coverage and −100 dB outside. Furthermore, constrained
syntheses have been considered with minimum and maximum allowed
spacings equal to 0.5λ and 0.7λ, respectively. Too small spacings
must indeed be avoided, to avoid complex interactions among adjacent
elements preventing to treat them separately and to obviously avoid
overlappings among neighbor patches [30, 31]. Also constraints on
the maximum spacing are necessary, to avoid exceedingly large gaps
between the elements [30, 31] giving rise to large reflections from the
reflectarray substrate and ground plane.

To highlight the benefits arising from the use of a non-uniform
element positioning, the results are compared to those achievable with
a uniform, λ/2 element spacing.
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During the presentation of the results, attention will be given
to the construction of the starting point. Indeed, in the Authors’
experience, the choice of the initial guess by the procedure detailed in
Sections 2 and 5 is very important to obtain a satisfactory result.

For the shaped beam test case, the overall processing time has
been of about four hours on the computing platform indicated in
Section 7.

8.1. Synthesis of a Tilted Pencil-beam

The main antenna parameters for this test case are summarized in
Table 1 (see also Fig. 1). The antenna has been synthesized to radiate
a pencil beam in the direction (u0, v0) = (0, 0.40), i.e., in the specular
direction of the primary field.

Before showing the obtained results, let us stick on the
construction of the initial guess for the APRPOS stage. More in detail,
we want to compare, for the case of pencil-beams, the result achievable
by using a linear (convex) programming scheme [46], not suffering
from the local minima issue, and the AS one. Such a comparison
is performed in Fig. 5. For the sake of simplicity, a 20 × 20 array
has been considered, radiating a centered beam. The array spacing is
uniform and equal to λ/2 for the technique in [46], while the aperture

Figure 5. Comparison between the cuts, along the u-axis, of the
pencil beam pattern radiated by a uniform, 20×20 array (λ/2 spacing)
synthesized by the linear programming approach in [46] (dashed black
line) and that achieved by the described AS scheme (solid blue line).
The green and red line show the upper and lower mask functions,
respectively, which have been applied to the AS.
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Table 1. Main parameters for the tilted pencil-beam test-case.

Number of elements 30× 30
yoff 8.25λ

z0 8.48λ

θf = a tan(yoff/z0) 44◦

Minimum allowed spacing 0.5λ

Maximum allowed spacing 0.7λ

Figure 6. Cut, along the v = 0.4β-axis, of the pencil beam pattern
radiated by the synthesized, 30× 30 aperiodic reflectarray (solid blue
line) as compared to that radiated by the synthesized, 30×30 periodic
(λ/2 spacing) reflectarray (dashed black line). The green and red line
show the upper and lower mask functions, respectively, which have
been applied to both the cases.

field distribution obtained by the AS stage has been sampled with the
same λ/2 rate. The target beam-width has been 10◦, while the target
Side Lobe Level (SLL) has been −30 dB. As it can be seen, the two
approaches have a similar performance, which highlights the robustness
of the AS scheme against the sub-optimal solutions and justifies its use
to construct the starting point.

Let us now turn the attention to the final result of the APRPOS
stage. In Figs. 6 and 7, the cuts along the v = 0.4- and v-axes,
respectively, of the far-field patterns radiated by the synthesized
aperiodic reflectarray are presented and compared to the outcomes
of the corresponding periodic case. As it can be seen, the aperiodic
synthesis outperforms the periodic one, both in terms of main beam-
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Figure 7. Cut, along the v-axis, of the pencil beam pattern radiated
by the synthesized, 30 × 30 aperiodic reflectarray (solid blue line) as
compared to that radiated by the synthesized, 30 × 30 periodic (λ/2
spacing) reflectarray (dashed black line). The green and red line show
the upper and lower mask functions, respectively, which have been
applied to both the cases.

width and of side-lobe behavior. To state this more quantitatively,
we mention that the maximum directivity for the aperiodic case has
been 35.51 dBi, which is better than that for the periodic case, resulted
equal to 33.8 dBi. The increase in directivity reported in Figs. 6 and
7 of the aperiodic reflectarray as compared to the periodic case has
been obtained thanks to the use of the irregular elements positioning
(not shown here for the sake of brevity). In [34], the results achievable
by the described aperiodic synthesis tool have been compared to those
obtained by the same tool as applied to the design of two periodic
reflectarrays, one having the same number of elements of the aperiodic
one, regularly positioned so to allow the same aperture, and the other
having elements spaced half a wavelength. The performance of the
aperiodic reflectarray has outperformed that of both the periodic ones.
For the sake of completeness, in Figs. 8 and 9, the aperiodic result
is compared to the starting point determined from the AS following
the procedure in Section 5. For the aperiodic case, the synthesized
command phases are displayed in Fig. 10. The minimum and maximum
inter-element spacings have been 0.55λ and 0.7λ, respectively. We have
verified that the result of the periodic synthesis has better performance
than a reflectarray obtained by a simple PO control of the beam
pointing direction through a phase tilt.
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Figure 8. Cut, along the v = 0.4β-axis, of the pencil beam pattern
radiated by the synthesized, 30× 30 aperiodic reflectarray (solid blue
line) as compared to the starting point determined from the AS
following the procedure in Section 5 (dashed black line). The green
and red line show the upper and lower mask functions, respectively.

Figure 9. Cut, along the v-axis, of the pencil beam pattern radiated
by the synthesized, 30 × 30 aperiodic reflectarray (solid blue line) as
compared to the starting point determined from the AS following the
procedure in Section 5 (dashed black line). The green and red line
show the upper and lower mask functions, respectively.

Finally, as a further advantage of the irregular element positioning,
we want to remark that the same approach, but based on a proper
multi-frequency formulation, allows to optimize the antenna behavior
over a certain bandwidth. Results concerning improvements on the
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Figure 10. Control phases for the synthesized, 30 × 30 aperiodic
reflectarray.

Table 2. Main parameters for the South America coverage test-case.

Number of elements 51× 51
yoff 13.75λ

z0 28.28λ

θf = a tan(yoff /z0) 26◦

Minimum allowed spacing 0.4λ

Maximum allowed spacing 0.7λ

bandwidth behavior of the aperiodic reflectarray against a single-
frequency synthesis for the case of pencil beams are reported in [61].

8.2. Synthesis of a Shaped Beam with South America
Coverage

We now show results concerning the synthesis of a 51 × 51 shaped-
beam reflectarray radiating according to the typical South America
coverage. The coverage masks have been generated by assuming a
geostationary satellite reflectarray with position 67E0N and the main
antenna parameters for this test-case are summarized in Table 2.

To start with, Figs. 11 and 12 show the amplitude and phase
distributions of the AS procedure referring to a 25 × 25λ2 sized
aperture. On the other side, Fig. 13 displays the pattern radiated
by the same aperture, but discretized in a 51 × 51 array with λ/2
spacing. The mean directivity value has been 26.9 dBi, where the mean
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Table 3. Maximum, mean and minimum directivities over the
coverage for the aperiodic and periodic reflectarrays designed according
to the South America specifications.

Directivity Aperidoic Periodic

Maximum 27.25 dBi 27.09 dBi
Mean 26.60 dBi 26.18 dBi

Minimum 25.55 dBi 24.49 dBi

Figure 11. Amplitude distribution of the aperture field for the
25 × 25λ2 sized aperture synthesized by the AS scheme according to
the South America coverage.

directivity is defined as
1

µ(Ω̄)

∫∫

Ω̄
D(u, v)dΩ̄, (28)

D(u, v) denotes the directivity in the (u, v) direction and µ(Ω̄) is the
measure of Ω̄.

Following this result, the initial positions and phases have been
determined according to the procedure in Section 5. These, in turn,
lead to the initial radiated pattern displayed in Fig. 14. As it can
be seen, the starting point determined according to the mentioned
scheme is far from satisfying the coverage requirements. Nevertheless,
the APRPOS algorithm is capable to successfully exploit this starting
point to synthesize a reflectarray satisfying the design specifications,
see Fig. 15. The element positions and control phases corresponding
to the pattern in Fig. 15 are reported in Figs. 16 and 17, respectively.
The minimum and maximum inter-element spacings have been 0.43λ
and 0.7λ, respectively.
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Figure 12. Phase distribution of the aperture field for the 25× 25λ2

sized aperture synthesized by the AS scheme according to the South
America coverage.

Figure 13. Far-field pattern
(along with the mask traces) ra-
diated by the 25 × 25λ2 sized
aperture synthesized by the AS
scheme according to the South
America coverage, when dis-
cretized in a 51×51 uniform array
with λ/2 spacing.

Figure 14. Initial far-field
pattern (along with the mask
traces) radiated by the 51 ×
51 aperiodic reflectarray obtained
from the AS synthesis performed
according to the South America
coverage and from the procedure
of Section 6.

To better appreciate the performance of the synthesized aperiodic
reflectarray, we compare the obtained far-field pattern in Fig. 15 to that
achievable with a uniform, λ/2 element spacing, see Fig. 18. The better
satisfaction of the coverage requirements of the aperiodic case can be
appreciated. This can be even more emphasized by comparing the
cuts, along the u- and v-axes, of the far-fields, see Figs. 19 and 20. As
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Figure 15. Final far-field
pattern (along with the mask
traces) radiated by the 51 × 51
aperiodic reflectarray synthesized
according to the South America
coverage.

Figure 16. Final element
positions for the 51×51 aperiodic
reflectarray (black circles) and for
a 51 × 51 periodic reflectarray
with λ/2 spacing (red crosses),
both synthesized according to the
South America coverage.

Figure 17. Final control phase
distribution for the 51 × 51 ape-
riodic reflectarray synthesized ac-
cording to the South America cov-
erage.

Figure 18. Far-field pattern
(along with the mask traces)
radiated by the 51 × 51 periodic
reflectarray with λ/2 synthesized
according to the South America
coverage.

it can be seen, the aperiodic case reaches lower side-lobes and a more
uniform far-field behavior within the coverage. To state again more
quantitatively the better performance of the aperiodic reflectarray as
compared to the periodic one, we mention that the mean directivities
over the coverage for both the cases have been 26.2 dBi and 26 dBi,
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Figure 19. Cut, along the u-axis, of the shaped-beam pattern radiated
by the 51 × 51 aperiodic reflectarray (solid blue line) as compared to
the periodic one (dashed black line), both synthesized according to the
South America coverage. The green and red line show the upper and
lower mask functions, respectively, which have been applied to both
the cases.

Figure 20. Cut, along the v-axis, of the shaped-beam pattern radiated
by the 51 × 51 aperiodic reflectarray (solid blue line) as compared to
the periodic one (dashed black line), both synthesized according to the
South America coverage. The green and red line show the upper and
lower mask functions, respectively, which have been applied to both
the cases.

respectively. However, the root mean square error of the directivity
values over the coverage around the mean values have been 0.43 dBi
for the aperiodic case and 0.8 dBi for the periodic one. In other
words, the far-field pattern for the aperiodic reflectarray has a less
varying behavior than that for the periodic one. Furthermore, the
performance of the aperiodic reflectarray has a more stable behavior
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than the periodic one. Indeed, when reducing the number of elements
to 48 × 48 for both the cases, the mean directivities become 26.0 dBi
and 25.6 dBi, respectively. We underline that the mean directivity
value of 26.2 dBi achieved by the 51×51-elements aperiodic reflectarray
should be considered as a good result, being it very close to the mean
directivity value of 26.9 dBi reached by the AS stage. We also would
like to stress that the better performance of the aperiodic reflectarray
as compared to the periodic one have been obtained even by a slightly
smaller overall area (meant as effective scattering area occupied by the
elements, and not as final encumbrance of the realized reflectarray as
defined by the four tips), as it can be appreciated from Fig. 16. Finally,
these results obtained for a single frequency authorize to anticipate
that the fully aperiodic reflectarray will have also better performance
in terms of frequency variations.

9. CONCLUSIONS AND FUTURE DEVELOPMENTS

A two-stages power pattern technique for the synthesis of flat aperiodic
printed reflectarrays, based on the PO radiative model has been
presented.

The approach has been conceived to mitigate the typical design
issues of reflectarray antennas related to the computational burden and
to the possible occurrence of suboptimal solutions which are here even
more significant due to the non-regular element lattice. This is done
by a convenient, two-stage procedure for choosing the starting point
of the iterations and by proper representations of the unknowns of the
problem. Design constraints on the element positions have been also
accommodated.

The approach has been implemented by parallel programming
on GPUs, which has already proven to accelerate computations as
compared to standard sequential programming in the framework of
aperiodic array antenna analysis [55].

The synthesis technique has been compared against the cases of a
pencil-beam and of a shaped-beam involving a typical South America
coverage. In both the instances, the performance have outperformed
that achievable by the same synthesis procedure, but applied to the
case of a periodic radiator.

The method can flexibly accommodate the required specifications
in terms of minimum (depending on the considered element type) and
maximum allowed spacings. Accordingly, better performance, possibly
in terms of bandwidth behavior [64], as compared to that achieved by
the presented test cases, could be obtained by relaxing the constraints
considered in Section 8.
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The method shows a good compromise between accuracy and
computational burden. It should be mentioned that the approach
can represent a stand-alone synthesis stage, if the reached accuracy
can be considered satisfactory, or can represent the core of a more
complex reflectarray synthesis strategy, based on a more accurate
radiative model and aimed at exploiting all the antenna degrees of
freedom [32, 33, 35].

The use of an accurate radiative model [35], the control of
the shape of the reflecting surface [36], for which fast analysis
tools have been already developed [55], of the orientation of the
reflecting elements [36], and the extension to multi-frequency design
specifications [36, 61, 62] are already performed continuations of the
presented activity. They have been herewith omitted due to lack
of space for a thorough discussion, but will be presented in future
communications. We finally wish to mention that, taking also into
account that in the Authors’ experience GPU clusters are becoming
even more affordable [65], the implemented computational solution will
enable the synthesis of aperiodic (also conformal) reflectarrays of size
even larger than the 51× 51 herein considered.
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APPENDIX A. THE REFLECTOR AND ARRAY
CONTRIBUTIONS TO THE SCATTERING MATRIX

In this appendix, we briefly sketch how it is possible to identify the
reflector and array contributions to the scattering matrix also in the
case of aperiodic arrays.

On supposing to work out a complete coverage of the aperture into
cells (see Appendix B), each one corresponding to a different patch (see
Fig. B1) and on assuming each cell to be located in the far-zone of F ,
then the scattering matrix S

n
in Eq. (9) can be expressed as the sum

of two contributions as

S
n
(u, v) = SA

n
(u, v) + SR

n
(u, v), (A1)

where SA
n

is the term due to the n-th patch contribution (in presence
of the other ones) and SR

n
the reflection matrix accounting for the

field reflected by a portion of the dielectric slab on the ground plane



82 Capozzoli et al.

(without any patch). The reflector contribution is due to the currents
induced, over the ground plane, by the primary field impinging on the
dielectric slab leaning on the metallic plate in absence of the patches.
More in detail, SR

n
refers to the ground induced currents restricted

to the portion of ground subtended by the n-th patch, according to a
proper partitioning, as illustrated in Appendix B (see also Fig. B1).

APPENDIX B. MEAN REFLECTOR CONTRIBUTION

In this section, we motivate the reason why, as ground contribution
SR

n
to S

n
, a “mean” contribution can be considered, centered around

the n-th patch and independently of the patch positions.
We use a Physical Optics approach, evaluating the reflected field

E s at the substrate surface (see Fig. 2(b)) by Geometrical Optics, and
then calculating the far-field pattern as F (u, v) ∝ wÊ(u, v), Ê being
the Plane Wave Spectrum (PWS). The PWS can be related to the field
E a on the substrate surface as

Ê(u, v) =
∫∫

R2

E s(x, y)ejβ(ux+vy)dxdy. (B1)

Of course, in Eq. (B1), the field E s is understood to have support
on the substrate surface only, say D.

Under a plane wave incidence, the field E a can be written as

E s(x, y) = SR0 E fe−jβ(u0x+v0y)dxdy (B2)

where SR0 is a constant matrix representing the reflection coefficients
at the substrate surface and E f contains the only x- and y-components
of the impinging plane wave.

According to (B1) and (B2), the PWS can be further expressed
as

Ê(u, v) = SR0 E f

∫∫

R2

f(x, y)e−jβ((u0−u)x+(v0−v)y)dxdy, (B3)

where f is the indicator of the domain D.
Let us now introduce a partition of unity {fn} of the domain D,

where the functions fn’s are vanishing outside cells, centered around
the patch locations, corresponding to a prescribed partitioning of D
(for the sake of illustration, in Fig. B1 a partitioning in rectangular
tiles is displayed). In other words, each function fn corresponds to a
particular patch indexed by n. Accordingly, in the specular direction
(u0, v0), the PWS can be rewritten as

Ê(u0, v0) = SR0 E f

∫∫

R2

∑
n

fn(x, y)dxdy. (B4)
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Figure B1. Illustrating the reflectarray surface partitioning by
rectangular tiles.

Let us now consider the n̄-th patch and translate it, along with the
corresponding function, of (x̄, ȳ). Accordingly, the partition of unity
will be changed. Nevertheless, let us observe that the summation in
Eq. (B4) can be rewritten as

∑
n

fn(x, y) =


fn̄(x− x̄, y − ȳ) +

∑

n6=n̄

fn(x, y)




+fn̄(x, y)− fn̄(x− x̄, y − ȳ). (B5)

The term in square brackets on the right hand side represents a
“new” (possibly overlapped) partition corresponding to the new patch
positions. The second term, instead, represents the overlap “error”.
However, since fn̄(x, y) and fn̄(x − x̄, y − ȳ) subtend the same area,
then this error term does not contribute to the integral in Eq. (B4).

Following this observation, when mild aperiodic lattices are
considered, it is possible to consider, as ground contribution, that
owing to a regular periodic partitioning, which is, from the aperiodic
point of view, a “mean” contribution.

We finally observe that:

• in the most realistic case when the impinging field is not a plane
wave, the above reasoning holds true in a local sense, whenever the
impinging wave can be considered locally plane over subregions of
the reflectarray surface; the latter approximation is usually met
in practice;

• obviously, we expect that, when evaluating the radiated field along
directions different from the specular one owing to the main beam,
considering a “mean” ground contribution would lead to errors;
however, we observe that, throughout the literature, errors on
the lateral lobes are accepted already in well assessed techniques,
as the Physical Optics or the P-series approach [63], which are
commonly used in antenna synthesis.
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