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Abstract—Compressed sensing (CS) has attracted significant atten-
tion in the radar community. The better understanding of CS theory
has led to substantial improvements over existing methods in CS radar.
But there are also some challenges that should be resolved in order to
benefit the most from CS radar, such as radar signal with low signal
to noise ratio (Low-SNR). In this paper, we will focuses on mono-
static chaotic multiple-inputmultiple-output (MIMO) radar systems
and analyze theoretically and numerically the performance of sparsity-
exploiting algorithms for the parameter estimation of targets at Low-
SNR. The novelty of this paper is that it capitalizes on chaotic coded
waveform to construct measurement operator incoherent with noise
and singular value decomposition (SVD) to suppress noise. In order
to improve the robustness of azimuth estimation interpolation method
is applied to construction of sparse bases. The gradient pursuit (GP)
algorithm for reconstruction is implemented at Low-SNR. Finally, the
conclusions are all demonstrated by simulation experiments.

1. INTRODUCTION

Chaotic waveform radars transmit pseudorandom signals and apply
coherent reception to achieve low probability of interception (LPI)
and low probability of detection (LPD). Chaotic waveform radars
have the unique property that allows them to achieve high resolution
in both range and Doppler which can be independently controlled
by varying the bandwidth and integration time respectively. They
also have excellent resistance to jamming and interference. Another
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advantage of chaotic waveform radars is their ability to efficiently
share the frequency spectrum, thereby allowing a number of chaotic
waveform radars to operate over the same frequency band with
minimal cross-interference. This spectrally parsimonious feature can
be used to integrate several chaotic waveform radars to a network
centric platform. Therefore, this field has attracted more and more
attention [1–4].

Unlike a conventional transmit beamforming radar system that
uses highly correlated waveforms, a MIMO radar system transmits
multiple independent waveforms via its antennas [5, 6]. A MIMO radar
system is advantageous in both widely separated antennas scenario
and collocated antennas scenario. In the first scenario, the transmit
antennas are located far apart from each other relative to their
distance to the target, which make the radar system offer considerable
advantages for estimation of target parameters, such as location and
velocity. In the second scenario, the transmit antennas and receive
antennas are located close to each other relative to the target that all
antennas view the same aspect of the target, which enables the MIMO
radar to achieve superior resolution in terms of direction finding [7].
The latter scenario, which is adopted in this paper, performs direction
finding (DF) for monostatic MIMO chaotic waveform radar using
compressive sensing.

In this paper, the chaotic waveform radar concept is extended to
an array of NT transmit antenna and NR receive antenna. When
independent chaotic waveform sources are transmitted from each
antenna the approach may be viewed as a special case of MIMO radar
and direction finding may be derived. In this case, the monostatic
MIMO chaotic radar is equipped with NT transmit and NR receive
antennas that are close to each other relative to the target, so that the
RCS does not vary between the different paths. In this case, the phase
differences induced by transmit and receive antennas can be exploited
to form a long virtual array with NT NR elements. This enables the
MIMO chaotic radar system to achieve superior spatial resolution as
compared to a traditional chaotic waveform radar system.

CS is a new paradigm in signal processing that trades sampling
frequency for computing power and allows accurate reconstruction
of signals sampled at rates many times less than the conventional
Nyquist frequency, received considerable attention recently and has
been applied successfully in diverse fields. The theory of CS states
that a K-sparse signal η of length Nη can be recovered exactly from
few measurements with high probability via linear programming. Let
Ψ denote the basis matrix that spans this sparse space, and Φ a
measurement matrix. The convex optimization problem arising from
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CS is formulated as follows:

min ‖η‖1 , subject to X = ΦΨη + N (1)

where η is a sparse vector with K principal elements and the remaining
elements can be ignored; Φ is an matrix incoherent with Ψ. N denotes
the interference term which is a complex Gaussian noise vector.

CS techniques offer a framework for the detection and allocation
of sparse signals for radar with a reduced number of samples [8, 9].
The application of compressive sensing to MIMO radar system was
investigated in [10–12]. The problem discussed in [10] is of the
targets angular separation and reduction of the physical array elements
required for the system. [10] uses CS to reduce the number of real
receiving elements so as to obtain a sparse MIMO array. The sensing
matrix is obtained from the conventional digital beam forming matrix
by selecting only a subset of rows corresponding the sparse MIMO
receive channels. In [11], the DOA estimation for MIMO radar in
a distributed scenario is proposed. The transmitted waveforms in
MIMO radar are known at each receive antennas, so that each receive
antenna can construct the basis matrix locally, without the knowledge
of the received signal at other antennas. In [12], CS approach to
accurately estimate properties (position, velocity) of multiple targets
was exploited for MIMO radar. The sampled outputs of the matched
filter at the receivers are used to estimate the positions and velocities
of multiple targets using MIMO radar systems with widely separated
antennas by employing sparse modeling and CS.

In this paper, we present one specific scenario in which the
proposed system improves the performance of estimating target
parameters and reducing sampling rate considerably at Low-SNR.
Unlike the scenario considered in [10–12], this paper capitalizes on
chaotic coded waveform to construct measurement operator at the
transmitter and presents a new method of how the influence of
deviation and noise in the MIMO radar can be reduced through the
use of CS. Further, we provide SVD method and interpolation method
for the noise suppression and robustness respectively for the proposed
approach. We also provide simulation results to show that the proposed
approach can accomplish superresolution in MIMO chaotic waveform
radar systems at Low-SNR than existing methods, such as amplitude
and phase estimation (APES), Capon method, generalized likelihood
ratio (GLR) [6], and Bayes-ics in CS-based monostatic noise MIMO
radar [13, 14].
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2. SYSTEM ARCHITECTURE

In this section, we describe a signal model for the MIMO radar. The
model focuses on the effect of the target spatial properties including
azimuth, Doppler and range effects. For simplicity, we consider a
monostatic MIMO radar system, shown in Figure 1, with an NT -
element transmit array and an NR-element receive array, both of
which are closely spaced uniform linear arrays (ULA). The targets
and antennas all lie in the same plane. Assume that the inter-element
spaces of the transmit and receive arrays are denoted by ∆T and ∆R,
respectively. The targets appear in the far-field of transmit and receive
arrays.

At the transmit site, NT different waveforms transmitted are
modeled as

sj (t) = uj (t) exp (i2πfct) (2)

where 1 ≤ j ≤ NT and fc is the carrier frequency of the waveform.
It is assumed that the chaotic MIMO radars transmit NT -array
chaotic modulated signals, consisting of L pulses and with each
pulse containing N sub-pulses. At the transmit site, NT different
bandlimited and chaotic logistic signal transmitted are modeled as

uj (t) =
L∑

l=1

N∑

n=1

Ajµj (t) exp
(
i2πϕn

j t
/
Ts + φl,n

j

)
(3)

µj (t) =
{

µn
j , (n− 1)Ts < t ≤ nTs

0, else (4)

where 1 ≤ j ≤ NT . Ts is a subpulse width. NTs is a single
pulse width. {µn

j }N
n=1 are discrete chaotic pseudo-random sequences.

Figure 1. Monostatic MIMO chaotic radar scenario.
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ϕl
j ∈ {1, 2, . . . , L} is the chaotic frequency-hopping code. φl,n

j is chaotic
phase code, and LN is the length of the code.

Let sj (t) denote the waveform transmitted by the j-th transmit
antenna.

aj (θ) = exp (i (2π/λ) (j − 1)∆T sin θ) (5)

is the transmit array steering vector, where λ denotes the wavelength.

A (θ) = [a1 (θ) , a2 (θ) , . . . , aNT
(θ)] (6)

is the transmitted signal steering matrix.

bj (θ) = exp (i (2π/λ) (j − 1) ∆R sin θ) (7)

is the steering vector of the receive array. We further define

B (θ) = [b1 (θ), b2 (θ) , . . . , bNR
(θ)] (8)

as the received signal steering matrix.
The backscatter from a point target observed at the j-th receiver

(1 ≤ j ≤ NR), is given by

xj (t; θ, r, fd) = S (t− τ) ei2πfdtAT (θ)bj(θ)η + Nj(t) (9)

where S(t) = [s1(t), s2(t), . . . , sNT
(t)], (·)T denotes the transpose. η is

the complex amplitude proportional to the radar-cross-section (RCS)
of the point target, θ is the azimuth parameter, fd is the Doppler
parameter (corresponding to its radial velocity with respect to the
radar), r is the range parameter, and Nj(t) denotes the complex
Gaussian noise term. The unknown parameters, to be estimated from
xj(t), are azimuth θ, Doppler fd and range r.

3. COMPRESSED SENSING FOR MIMO CHAOTIC
RADAR

3.1. Chaotic Waveforms

Chaotic sequences are usually generated using discrete chaotic maps,
such as the logistic map, triangular map, and exponential map. The
logistic map is one of the simplest and most widely studied

xk+1 = βxk
(
1− xk

)
(10)

where xk ∈ [0, 1], β ∈ [3.57, 4], and α is called a bifurcation parameter.
Depending on the value of β, the dynamics of this system can change
dramatically, exhibiting periodicity or chaos. For β ∈ [3.57, 4], the
sequence is nonperiodic and nonconverging. The parameter β = 4
is adopted in this paper. The sequence {xk} is used as the chaotic



372 Yang and Zhang

sequences throughout this paper. To improve the random and the
efficiency of chaotic Logistic coded algorithm, a new algorithm is
proposed. This algorithm gives a new amplitude modulation method
of chaotic sequences. Firstly, random numbers x0

j (1 ≤ j ≤ NT ) from
uniform distribution are used to generate NT real chaos sequences
by Logistic map. Then NT chaotic sequences are sorted to generate
an array of indices by ordinal numbers corresponding to the original
sequences, and these index sequences are used for chaotic frequency-
hopping modulation. Finally, the NT chaotic sequences are used for
chaotic amplitude modulation of waveform.

The main steps of the proposed algorithm are as follows:

1) Generate uniform distribution random numbers x0
j (1 ≤ j ≤ NT )

in the interval (0, 1) as the initial values.
2) Generate NT chaotic sequences by formula (10), then take the last

state values as the new initial value to generate NT new chaotic
sequence, and so on. After Tc (Tc > LN) times’ iteration, NT

different chaotic sequences are generated. Selecting the last LN
elements of sequences, these new sequences are generated.

3) Sort NT real chaotic sequences and generate NT new integer
sequences by ordinal numbers corresponding to the chaotic
sequences, these new sequences are use to realize chaotic
frequency-hopping modulation.

4) Use the NT chaotic sequences to realize chaotic amplitude
modulation by formula (4).

3.2. Compressed Sensing in Receiver

For simple but without loss of generality, the treatment of CS-MIMO
chaotic radar focuses on the azimuth estimation at Low-SNR ignoring
Doppler effects and range. The proposed approach for CS-MIMO
chaotic waveform radar is based on two key observations. First, there
exists a small number of targets, the unknown parameters θ are sparse
in the angle space, i.e., η = [η1, η2, . . . , ηNη ]T is a sparse vector. A non-
zero element with index j in η indicates that there is a target at the
azimuth angles θj . Second, modulated version of the stationary chaotic
waveform process transmitted as radar waveforms sj(t) (1 ≤ j ≤ NT )
of the target form a measurement matrix

Φj = [s1 (t) , s2 (t) , . . . , sNT
(t)]⊗ I (11)

where Φj is incoherent with the frequency base Ψj (1 ≤ j ≤ NR).
⊗ denotes kronecker product, and I is a 1 × NI matrix as shown in
formula (16). By combining these observations we can both eliminate
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Figure 2. CS-based MIMO chaotic waveform radar receivers for the
transmitters.

the matched filter in the radar receiver and lower the receiver A/D
converter bandwidth using CS principles. Consider a new design
for a radar system that consists of the following components. The
transmitter is the same as in a classical MIMO chaotic waveform radar;
the transmit antenna emit the bandlimited and chaotic logistic signal.
However, the receiver does not consist of a matched filter and high-rate
A/D converter but rather only a low-rate A/D converter that operates
not at the Nyquist rate but at a rate proportional to the target sparsity
(see Figure 2).

By CS theory, we can construct a NT NI ×NI basis matrix Ψj for
the j-th receive antenna as

Ψj = diag
(
AT (θ) bj (θ) , . . . ,AT (θ) bj (θ)

)
(12)

Considering the discrete azimuth grid, it is assumed that Nθ is the
resolution of the angle, NI is an odd number, we have linear projections
of the received signal at the j-th antenna as

xj (k) = ΦjΨjη + Nj (k) (13)

where 1 ≤ k ≤ Ns and Ns is the snapshot number. The measurement
matrix Φj is incoherent with the basis matrix Ψj (the signal steering
matrix of a discrete-angle). Placing the output of NR receive antennas,
i.e., x1, x2, . . . , xNR

, in measurement vector X one have

X = ΦΨη + N (14)

where X = [x1 (1) , . . . , x1 (Ns) , x2 (1) , . . . , xNR
(Ns)]

T is the NRNs×1
virtual data vector associated with the CS-MIMO chaotic waveform
radar.

Φ = diag(Φ1, Φ2, . . . ,ΦNR
) (15)

is a NRNs ×NT NRNI diagonal matrix of the discrete-time waveform.
Φj = S⊗ I, where

I =
[
e−i2πNI/2NI , ei2π(NI−1)/2NI , . . . , ei2πNI/2NI

]
(16)

represents the interpolation.

Ψ =
[
ΨT

1 ,ΨT
2 , . . . ,ΨT

NR

]T
(17)
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is a NT NRNI ×NθNI basis matrix.

N =
[
NT

1 ,NT
2 , . . . ,NT

NR

]T
(18)

is a NRNs × 1 matrix of the noise term.

3.3. Sparse Recovery

The received data is complex valued, while the standard sparse
optimization algorithms have been developed for real valued signals.
We break the signal into its real and imaginary parts as follows

Y =
[ < (X)
= (X)

]
, T =

[ < (ΦΨ) −= (ΦΨ)
= (ΦΨ) < (ΦΨ)

]
,

α =
[ < (η)
= (η)

]
, Z =

[ < (N)
= (N)

] (19)

where < (·) and = (·) indicate the real and imaginary part of the
complex number, respectively. Equation (14) becomes

Y = Tα + Z (20)

Our goal is to solve for the vector η in Equation (14). Solving
for η in Equation (14) can be viewed as an ordinary inverse problem.
Sparse optimization strategies such as convex relaxation, nonconvex
(often gradient based) local optimization or greedy search strategies
are used in practice. In this paper, we apply the GP method [15] (as
discussed in Section 4 below) in the monostatic MIMO noise radar to
reconstruct the sparse target scene vector η in Equation (14).

4. GP METHOD FOR SPARSE RECOVERY

In this section, let Γj be a set containing the indices of the elements
selected up to and including iteration j. Using this index set as a
subscript enables the matrix TΓj to be a submatrix of T containing
only those columns of T with indices in Γj . The same convention
is used for vectors. For example, ηΓj is a subvector of η containing
only those elements of η with indices in Γj . In addition, we use the
superscript j in the subscript Γj of ηΓj to label the j-th iteration
However, we sometimes resort to using superscript j of ηj to label the
j-th iteration. The same convention is used for vectors. We have inner
products between vectors with angled brackets (e.g., 〈η, η〉 = ηT η).

The GP algorithm can be summarized as follows [15]:
1) Initialize r0 = Y, η0 = 0 and Γ0 = ∅;
2) For j = 1; j

∆= j + 1 until the stopping criterion is met:



Progress In Electromagnetics Research B, Vol. 44, 2012 375

a) γj = TT rj−1;
b) kj = arg max

k

∣∣∣γj
k

∣∣∣;
c) Γj = Γj−1 ∪ kj ;
d) dΓj = TT rj−1;
e) δΓj =

〈
rj−1,TdΓj

〉
/‖TdΓj‖2

2;
f) ηΓj = ηΓj−1 + δΓjdΓj ;
g) rj = rj−1 −TkjδΓjdΓj

3) Output rj and ηj .

The problem addressed in this section is to solve the Equation (20)
by using GP algorithm and SVD method, determine the number of
targets in the received signals and estimate the azimuth angles of
targets at Low-SNR. We propose the singular value decomposition
(SVD) of the complex matrix XXH (where XH is the conjugate
transpose of X)

XXH = UXΛXVH
X (21)

where UX and VX denote the NRNs × NRNs complex unitary
matrixes, and ΛX is a diagonal matrix, with nonnegative diagonal
elements in decreasing order

ΛX = diag (λ1, . . . , λNR
, . . . , λNRNs) (22)

The vector υ is defined by

υ =
[√

λ1, . . . ,
√

λNR
, 0, . . . , 0

]T
(23)

Figure 3. Histogram of the off-diagonal elements of the Gramm
matrix.
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from which we can define

Xυ = UXυ (24)

Solving for αυ in (20) can be viewed as the problem

min
αυ

‖αυ‖1 , subject to ‖Yυ −Tαυ‖2
2 < ε (25)

where

Yυ =
[ < (Xυ)
= (Xυ)

]
(26)

The GP algorithm is proposed to solve (25) for the estimation of the
azimuth parameter θ and vector αυ. Then, we reshape the NθNI × 1
vector αυ into a NI × Nθ matrix Vα, and treat the columns of Vα

as vectors, obtaining a vector να of the maximum element from each
column vector.

Figure 4. Estimation of the vector αυ.
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5. SIMULATION RESULTS

In this section, the simulation is carried out to illustrate the correctness
and the performance of the proposed method. A MIMO monostatic
radar system, with uniform linear array (ULA) in which the half-
wavelength spacing between adjacent antennas is used both for
transmitting and for receiving. The transmitted waveforms are chaotic
coded signals. The transmitted pulse width is 55µs, and the pulse
repeat period is 500µs.

5.1. Coherence of Sensing Matrix

The sensing matrix ΦΨ was designed by making the Gram matrix
as close to the identity matrix as possible. In the case, it was
experimentally shown that the obtained sensing matrix leads to a
better the sensing matrix and thus to improved CS reconstruction
performance [13]. The histogram of the off-diagonal elements of the

Figure 5. Estimation of the vector να.
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Gramm matrix (ΦΨ)H ΦΨ is shown in Figure 3. From Figure 3, one
can see that the proposed chaotic coded signal has an ideal Gram
matrix close to the identity matrix.

5.2. Estimation Using the Proposed Method

As parameter values NT , NI and Ns are increased, the reconstruction
accuracy as well as the SNR advantage increases also according to
Equation (14) and CS theory. The number NR of receive antennas is
greater than the number of targets. Here, NT = 100, NR = 14 and
NI = 11 are considered. The number of snapshots is Ns = 70 during
the simulation. ∆a = 0.1◦, azimuth angle of minimum resolution, is
used during the simulation experiments. Assume that three targets
locate at θ1 = −5.0◦, θ2 = 5.0◦ and θ3 = 15.0◦ with the same complex
amplitudes η = 1, K = 3. The estimated result for azimuth angles θ,
vector αυ, and vector να are shown in Figure 4 and Figure 5. From
Figure 4 and Figure 5, one can see that the azimuth angles of the

Figure 6. Estimated results with Ns = 256.
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targets can accurately be estimated by the proposed method at low
enough SNR (−25 dB ∼ −5 dB).

5.3. Estimation Using the Existing Methods

NT = 100 and NR = 12, are considered ∆a = 0.1◦, azimuth angle
of minimum resolution, is used during the simulation experiments.
Assume that three targets locate at θ1 = −5.0◦, θ2 = 5.0◦ and
θ3 = 15.0◦ with the same complex amplitudes η = 1, SNR = −20 dB,
K = 3. Figure 6 and Figure 7 show the reconstructed target scene
using APES method, Capon method, GLR method [6], and Bayesian
framework method (i.e., Bayes-ics in CS-based monostatic noise MIMO
radar [13, 14]).

Figure 7. Estimated results with Ns = 110.
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Figure 8. RMSE of azimuth angles versus SNR.

5.4. Robustness of the Proposed Method

NT = 100, NR = 14 and NI = 11 are considered. The number of
snapshots is Ns = 70 during the simulation. ∆a = 0.1◦, azimuth angle
of minimum resolution, is used during the simulation experiments.
Assume that three targets locate at θ1 = −5.0◦, θ2 = 5.0◦ and
θ3 = 15.0◦ with the same complex amplitudes η = 1, K = 3, and the
number of Monte-Carlo trials is 10000. The root mean square error
(RMSE) of the azimuth angles versus SNR are shown in Figure 8. It
can be seen from Figure 8, the proposed method has low RMSE for
azimuth angles estimation.

6. CONCLUSION

In this paper, we investigate sparsity-exploiting algorithm for the
estimation of targets in the azimuth domain at Low-SNR. A new
waveform design technique that exploits the chaotic behavior of
nonlinear dynamical systems to generate a quasi-orthogonal set is
developed. The chaotic coded waveforms are proposed to construct
measurement operator incoherent with sparse bases and noise.
Therefore, noise is suppressed using the SVD method. Sparse bases
are constructed using interpolation method to improve the robustness
of azimuth estimation. One can solve for the sparse vector by GP
algorithm with many fewer samples than some existing methods,
i.e., the APES method, Capon method GLR method, and Bayesian
framework method. The proposed method is superior to these existing
methods at Low-SNR.
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