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Abstract—This paper mainly deals with the detection problem of
the target with low Radar Cross-Section (RCS) in heavy sea clutter
with unknown Power Spectral Density (PSD). Since the performance
of traditional single-scan detectors degrades as the target of interest is
smaller and weaker, three adaptive detectors, based upon a two-step
design procedure, are proposed within the framework of the multiple-
scan signal model. Firstly, the Multiple-Scan Detectors (MSDs) are
derived according to the Generalized Likelihood Ratio Test (GLRT),
Rao and Wald tests respectively under the assumption that the PSD
of primary data is known. Secondly, three strategies are resorted to
estimate the unknown PSD, and their Constant False Alarm Rate
(CFAR) properties are assessed. Finally, numerical simulation results
show that the adaptive MSDs outperform the traditional single-scan
detector using Monte Carlo method.

1. INTRODUCTION

Detection for small targets has become a critical application for
High Resolution (HR) radar [1–4], specially the buoys, human divers,
or small boats in the marine surveillance radar [5]. Since HR
reduces the resolution cell size in the scenario illuminated by a radar
system, the statistical assumption that the sea clutter is Gaussian or
Rayleigh distributed [6, 7] may not be appropriate for the real world.
Consequently, for the sake of accurately describing the distribution of
the sea clutter to avoid the deterioration of the detection performance
in HR radar, numerous research efforts are devoted to both the
theoretical modeling of sea backscatter [8–10] and the statistical
analysis of the recorded live data of HR sea clutter [11–15].
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The results of both the theoretical and empirical analysis show
that HR sea clutter can be modeled as a physically motivated
compound-Gaussian process, which can be mathematically described
as Spherically Invariant Random Process (SIRP) of the produce of two
components, speckle and texture. The speckle component represents
the local backscattering, and the texture component denotes the
local clutter power fluctuation along the resolution cells. Meanwhile,
the experimental evidence indicates that more heavy-tailed clutter
models should be considered in HR radar, especially at low grazing
angles [16]. In particular, the K-distributed clutter, a kind of
compound-Gaussian clutter, has fairly mathematical benefits that
other heavy-tailed distributions lack and is thereby popular in the
literature [8].

Traditionally, the backscattered energy of large obstacles with
high Radar Cross-Section (RCS), such as icebergs or ships, is generally
greater than that of sea clutter. Hence, they can be easily detectable
given the observational samples corresponding to the output of HR
radar system. Conversely, since the target with low RCS is commonly
covered by the heavy sea clutter, many conventional single-scan
processors, such as the Kelly detector, the Adaptive Matched Filter
(AMF) and the Normalized Adaptive Matched Filter (NAMF), suffer
serious performance loss and present low detectability. Consequently,
in order to improve the detectability for the small target in an
oceanic environment, some multiple-scan methods are proposed in the
literature. The researchers provide the method of multiple-scan signal
averaging to mitigate the effect of noise (not clutter), resulting in the
detection performance improvement [17]. The scan-to-scan processors
of fast scan rates have been extensively used to suppress approximately
Gaussian clutter and detect the radar target of interest [18, 19].
Recently, the detection performance of a multiple-scan application, so-
called Radon transform, is tested against the real HR sea clutter [20].
According to these methods, both the empirical results with the real
sea clutter and the theoretical counterparts with Gaussian-distributed
noise or clutter, ensure that the detectability for the small target can be
efficiently improved by using multiple-scan procedures. However, these
methods do not concentrate on the theoretical analysis of adaptive
multiple-scan detection for a signal of interest under a background of
compound-Gaussian clutter.

Therefore, within the multiple-scan framework, the theoretical
derivation of optimum, yet nonadaptive Multiple-Scan Detector (MSD)
based on Neyman-Pearson (NP) criterion is first proposed. In order
to adapt the MSD to unknown clutter covariance matrix, three
suboptimum MSDs are then presented. More precisely, the adaptive
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MSDs are designed by two-step procedure. In the first step, resorting
to the Generalized Likelihood Ratio Test (GLRT), Rao and Wald
tests, respectively, the MSDs are derived under the assumption for the
known prior information of the clutter, i.e., the Power Spectral Density
(PSD), also referred to as the clutter covariance matrix. Obviously, in
general conditions, the PSD of the clutter is unknown. Therefore,
three methods, i.e., the Sample Covariance Matrix (SCM) estimation,
the Normalized Sample Covariance Matrix (NSCM) estimation and
the Recursive Maximum Likelihood Estimation (RMLE), are used to
estimate the PSD based upon the training data set in the second
step. Subsequently, the Constant False Alarm Rate (CFAR) properties
of the estimation strategies are thoroughly evaluated under the null
hypothesis. Finally, the simulation results, using a comprehensive
Monte Carlo method, show that the detection performance of the
adaptive MSDs is superior to that of the traditional single-scan
detector in the presence of different target types. Meanwhile, the
effects of the three estimators on the performance are analyzed under
the various scenarios.

The remainder of the paper is organized as follows. Section 2
describes the signal models of the target echo and the compound-
Gaussian clutter. The MSDs are introduced in Section 3. In Section 4,
numerical simulation results based on Monte Carlo are presented. The
conclusions are provided in Sections 5.

2. SIGNAL MODEL

To simplify the signal processing considerations associated with the
target migration, the data returned from the small target with low
speed appear in the same resolution cell for all pluses. Clearly this
assumption is commonly unrealistic under real surveillance operations,
but selective alignment techniques can be implemented to achieve the
same end [21].

Then, assume that a radar transmits a coherent train of N
Coherent Processing Interval (CPI) pulses in a single scan and that
the receiver properly demodulates, filters and samples the incoming
waveform. The observation vector zls ∈ CN×1 (CN×1 denotes the
N × 1 dimensional complex vector space), independent between two
scans, corresponds to the output of the lth range cell and the sth
azimuth cell, given by

zls = [zls(1), zls(2), . . . , zls(N)]T ∈ CN×1 (1)

where (·)T denotes the transposition operation. Moreover, the problem
of detecting a target, occupied in the lkth range cell and skth azimuth
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cell in the kth scan (k = 1, . . . ,K), can be formulated in terms of the
following binary hypothesis test:

H0 :zlksk
= clksk

, lk ∈ {1, . . . , L}, sk ∈ {1, . . . , S}

H1 :





zlksk
=alksk

plksk
+clksk

, lk∈{1, . . . , L}, sk∈{1, . . . , S}
zlkwskw

= clkwskw
,

lkw∈{1, . . . , L}\{lk}, skw∈{1, . . . , S}\{sk}, w=1, . . . ,W

(2)

where alksk
is the unknown parameter, accounting for the target and

the channel propagation effects, and plksk
indicates the known steering

vector while zlkwskw
stands for the observation sample of target free in

kth scan and W denotes the number of secondary data. Additionally,
A\B means the set that contains all those elements of A that are not
in B.

In (2), clksk
is modeled as a Spherically Invariant Random Vector

(SIRV) of the produce of two components: speckle and texture.
Precisely, it is represented as

clksk
=
√

τlksk
xlksk

(3)

where the speckle component xlksk
is a complex, circle, zero mean

stationary Gaussian vector, and covariance matrix M is assumed the
same for every scan:

M = E
[
xlksk

xH
lksk

]
(4)

where (·)H denotes the complex conjugate transpose operation, and
E[·] is the statistical expectation. The texture component τlksk

is
a nonnegative real random variable with the Probability Density
Function (PDF) pτlksk

(τlksk
).

Given τlksk
, a conditional covariance matrix of clksk

denotes

Mlksk|τlksk
= E

[
clksk

cH
lksk

|τlksk

]
= τlksk

M (5)

Under H0, the PDF of zlksk
can be expressed as

p (zlksk
|M;H0)=

1
πN‖M‖hN (q0(zlksk

))

=
1

πN‖M‖
∫ ∞

0
τ−N
lksk

exp
(
− q0(zlksk

)
τlksk

)
pτlksk

(τlksk
)dτlksk

(6)

with
q0(zlksk

) = zH
lksk

M−1zlksk
(7)

where ‖ · ‖ denotes the determinant of a square matrix.
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And under H1, the PDF of zlksk
can be written as

p(zlksk
|alksk

,M;H1)=
1

πN‖M‖hN (q1(zlksk
))

=
1

πN‖M‖
∫ ∞

0
τ−N
lksk

exp
(
−q1(zlksk

)
τlksk

)
pτlksk

(τlksk
)dτlksk

(8)

with

q1(zlksk
) = (zlksk

− alksk
plksk

)H M−1 (zlksk
− alksk

plksk
) (9)

In the slow scan HR radar typically operating with scan rates
of about 6–60 rpm, the independence of data is commonly considered
between kth scan and (k + 1)th scan [19], and thereby the joint PDFs
of K scans under H0 and H1 are:

p(zl1s1:lKsK
|M;H0)

=
1

πKN‖M‖K

K∏

k=1

∫ ∞

0
τ−N
lksk

exp
(
− q0(zlksk

)
τlksk

)
·pτlksk

(τlksk
) dτlksk

(10)

and

p(zl1s1:lKsK
|al1s1:lKsK

,M; H1)

=
1

πKN‖M‖K

K∏

k=1

∫ ∞

0
τ−N
lksk

exp
(
− q1(zlksk

)
τlksk

)
pτlksk

(τlksk
) dτlksk

(11)

3. MULTIPLE-SCAN DETECTORS

According to the NP criterion, the optimum detector is the Likelihood
Ratio Test (LRT):

ΛNP (zl1s1:lKsK
)=

p(zl1s1:lKsK
|al1s1:lKsK

,M; H1)
p(zl1s1:lKsK

|M;H0)

=
K∏

k=1

∫∞
0 τ−N

lksk
exp

(
−q1(zlksk

)

τlksk

)
pτlksk

(τlksk
)dτlksk

∫∞
0 τ−N

lksk
exp

(
−q0(zlksk

)

τlksk

)
pτlksk

(τlksk
)dτlksk

H1

≷
H0

γNP (12)

where γNP is the detection threshold to be set according to the desired
value of the probability of false-alarm (Pfa).

In many real scenarios, the prior information of τlksk
, alksk

or M
is hardly known, and the NP detector needs a heavy computational
integration in test (12). The references [21, 22] show that it is difficult
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Figure 1. Block diagram of the two-step design procedure.

to jointly maximize with respect to alksk
and unknown M, and a closed-

form solution is nonexistent. In order to overcome the drawback, three
adaptive MSDs are proposed, resorting to the following two-step design
procedure. Firstly, we derive the MSD based upon the GLRT [23, 24],
Rao test [25, 26] or Wald test [27] assuming that the structure of
covariance matrix is known. Then, the true covariance matrix is
substituted by its estimate based upon three suitable estimation
methods using the secondary data. Figure 1 illustrates the process
of two-step design procedure.

3.1. Step One: Known M

GLRT: The detection algorithm, based upon the primary data, is
tantamount to the following decision rule, shown as

ΛGLRT (zl1s1:lKsK
)

=
max

al1s1:lKsK

(
p(zl1s1:lKsK

|al1s1:lKsK
; H1)

)

p(zl1s1:lKsK
|H0)

=

max
al1s1:lKsK

(
K∏

k=1

∫ ∞

0
τ−N
lksk

exp
(
−q1(zlksk

)
τlksk

)
plksk

(τlksk
)dτlksk

)

∏K
k=1

∫∞
0 τ−N

lksk
exp

(
− q0(zlksk

)

τlksk

)
plksk

(τlksk
)dτlksk

H1

≷
H0

γGLRT (13)

where γGLRT is the threshold, setting with respect to the desired
probability of false-alarm.

Generally, further developments of the detector (13) require the
specifying pτlksk

(τlksk
). K-distributed clutter with the modulating
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variate τlksk
, as the most popular model for compound-Gaussian

clutter, is taken into account in this paper for two reasons: physical
plausibility and mathematical convenience, while the PDF of τlksk

,
pτlksk

(τlksk
), is a Gamma distribution, is expressed as

pτlksk
(τlksk

) =
1

Γ(ν)

(
ν

µ

)ν

τν−1
lksk

exp
(
−ν

µ
τlksk

)
(14)

where µ determines the mean of the distribution, and the
shape parameter ν controls the derivation from the Rayleigh
distribution [12, 28] with µ =

√
2ν guaranteeing the unit power of

the complex K-distributed clutter in each cell, and Eulerian Gamma
function Γ(·). In this paper, the two parameters are assumed to
be known, and they can also be obtained in terms of the statistical
moments as well as goodness-of-fit tests [29].

Then the PDF of zlksk
under the condition of H0 leads to

p(zl1s1:lKsK
|H0) =

1
2−KΓK(ν)

(
ν

µ

)K(ν+N)
2

K∏

k=1

q
ν−N

2
0 (zlksk

)Kν−N

(√
4ν

q0(zlksk
)

µ

)
(15)

Similarly, the PDF of zlksk
under the condition of H1 yields

p(zl1s1:lKsK
|alksk

;H1)

=
1

2−KΓK(ν)

(
ν

µ

)K(ν+N)
2

K∏

k=1

q
ν−N

2
1 (zlksk

)Kν−N

(√
4ν

q1(zlksk
)

µ

)
(16)

with the modified second-kind Bessel function Kb(·) of order b.
Therefore, the test (13) can be rewritten as

ΛGLRT (zl1s1:lKsK
)

=

max
al1s1:lKsK

(
K∏

k=1

q
ν−N

2
1 (zlksk

)KN−ν

(√
4ν

q1(zlksk
)

µ

))

∏K
k=1 q

ν−N
2

0 (zlksk
)KN−ν

(√
4ν

q0(zlksk
)

µ

)
H1

≷
H0

γGLRT (17)

And the Maximum Likelihood Estimation (MLE) of alksk
is

âlksk
=

pH
lksk

M−1zlksk

pH
lksk

M−1plksk

(18)
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Substitute âlksk
into the test (17), then, it is reduced to

ΛGLRT

(
zl1s1:lKsK

)
=

K∏

k=1




q̂
ν−N

2
1

(
zlksk

)
KN−ν

(√
4ν

q̂1

(
zlksk

)
µ

)

q
ν−N

2
0

(
zlksk

)
KN−ν

(√
4ν

q0

(
zlksk

)
µ

)



H1

≷
H0

γGLRT (19)

with

q̂1 (zlksk
)=(zlksk

− âlksk
plksk

)H M−1 (zlksk
− âlksk

plksk
)

=zH
lksk

M−1zlksk
− |pH

lksk
M−1zlksk

|2
pH

lksk
M−1plksk

(20)

while | · | denotes the modulus of a complex number.
According to [30], we model the texture as unknown deterministic

parameter in the Rao and Wald tests. Then the joint PDFs under H0

and H1 are:

p(zl1s1:lKsK
|τl1s1:lKsK

;H0)=
1

πKN‖M‖K

K∏

k=1

1
τN
lksk

exp
(
q0 (zlksk

)
τlksk

)
(21)

and

p (zl1s1:lKsK
|al1s1:lKsK

, τl1s1:lKsK
;H1)

=
1

πKN‖M‖K

K∏

k=1

1
τN
lksk

exp
(

q1(zlksk
)

τlksk

)
(22)

Rao test: Starting from the primary data and assuming the known
M, the detection algorithm implementing the Rao test can be obtained
expanding the likelihood ratio in the neighborhood of the MLEs of
parameters.

In order to evaluate the decision statistic, we denote with

• alksk,R and alksk,I are the real and the imaginary parts of alksk
, k =

1, . . . , K, respectively;
• θr = [al1s1,R, al1s1,I , . . . , alKsK ,R, alKsK ,I ]T a 2K-dimensional real

vector;
• θu = [τl1s1 , .., τlKsK

]T a K-dimensional real column vector of
nuisance parameters;

• θ = [θT
r , θT

u ]T a 3K-dimensional real vector.
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Therefore, the Rao test for the problem of interest is the following
decision rule:

ΛRao (zl1s1:lKsK
)

=
∂lnp(zl1s1:lKsK

|θ)
∂θr

∣∣∣∣Tθ=θ̂0

[
I−1

(
θ̂0

)]
θr,θr

∂lnp (zl1s1:lKsK
|θ)

∂θr

∣∣∣∣
θ=θ̂0

H1

≷
H0

γRao (23)

where

• γRao is the detection threshold to be set with respect to the desired
value of the probability of false-alarm;

• p(zl1s1:lKsK
|θ) denotes the PDF of the data under H1;

• ∂θr = [ ∂
∂al1s1,R

, ∂
∂al1s1,I

, . . . , ∂
∂alKsK,R

, ∂
∂alKsK,I

]T denotes the
gradient operator with respect to θr;

• θ̂0 = [θT
r,0, θ̂

T
u,0]

T , where θT
r,0 = [0, . . . , 0]T and θ̂u,0 is the MLE of

θu under H0;
• I(θ) = I(θr, θu) is the Fisher Information Matrix (FIM) [24], which

can be partitioned as

I(θ) =
[
Iθr,θr(θ) Iθr,θu(θ)
Iθu,θr(θ) Iθu,θu(θ)

]
(24)

• I−1(θ)θr,θr =
(
Iθr,θr(θ)− Iθr,θuIθu,θu(θ)Iθu,θr(θ)

)−1

.

Hence, according to the Rao test rule, θ̂u,0 can be easily obtained
as

θ̂u,0 =
1
N

[q0(zl1s1), q0(zl2s2), . . . , q0(zlKsK
)]T (25)

Moreover,

∂lnp(zl1s1:lKsK
|θ)

∂alksk,R
= 2Re

(
pH

lksk
M−1(zlksk

− alksk
plksk

)
τlksk

)
(26)

∂lnp(zl1s1:lKsK
|θ)

∂alksk,I
= 2Im

(
pH

lksk
M−1(zlksk

− alksk
plksk

)
τlksk

)
(27)

where Re(·) and Im(·) are the real and the imaginary part of the
argument, respectively.
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Considering θT
r,0 = [0, . . . , 0]T , therefore,

∂lnp(zl1s1:lKsK
|θ)

∂θr

∣∣∣
T

θ=θ̂0

= 2

[
Re

(
pH

l1s1
M−1zl1s1

τl1s1

)
, Im

(
pH

l1s1
M−1zl1s1

τl1s1

)
,

. . . , Re

(
pH

lKsK
M−1zlKsK

τlKsK

)
, Im

(
pH

lKsK
M−1zlKsK

τlKsK

)]
(28)

Further developments require evaluating the blocks of FIM. Then,
it can be shown that

Iθr,θr(θ) = 2diag

(
pH

l1s1
M−1pl1s1

τl1s1

,
pH

l1s1
M−1pl1s1

τl1s1

,

. . . ,
pH

lKsK
M−1plKsK

τlKsK

,
pH

lKsK
M−1plKsK

τlKsK

)
(29)

and
Iθr,θu(θ) = 02K,K (30)

where 02K,K is a 2K × K matrix of zeros and diag(·) denotes the
diagonal matrix.

As a consequence, plugging (25), (28), (29), (30) into (23), after
some algebra, yields

ΛRao (zl1s1:lKsK
)=N

K∑

k=1

|pH
lksk

M−1zlksk
|2

pH
lksk

M−1plksk
zH

lksk
M−1zlksk

H1

≷
H0

γRao (31)

Wald test: The Wald test, based on the primary data, can be
obtained exploiting the asymptotic efficiency of the MLE. Precisely,
its decision rule denotes

ΛWald(zl1s1:lKsK
) = θ̂T

r,1

(
[I−1(θ̂1)]θr,θr

)−1
θ̂r,1

H1

≷
H0

γwald (32)

where
• γwald is the detection threshold to be set with respect to the desired

value of the probability of false-alarm;
• θ̂1 = [θ̂T

r,1, θ̂
T
u,1]

T is the MLE of θ under H1, i.e.,

θ̂1 = argmaxθ1

(
1

πKN‖M‖K

K∏

k=1

1
τN
lksk

exp
(

q1(zlksk
)

τlksk

))
(33)
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Maximizing the expression (33) yields

θ̂r,1 =

[
Re

(
pH

l1s1
M−1zl1s1

pH
l1s1

M−1pl1s1

)
, Im

(
pH

l1s1
M−1zl1s1

pH
l1s1

M−1pl1s1

)
,

. . . ,Re

(
pH

lKsK
M−1zlKsK

pH
lKsK

M−1plKsK

)
, Im

(
pH

lKsK
M−1zlKsK

pH
lKsK

M−1plKsK

)]T

(34)

and

θ̂u,1 =
1
N

[
zH

l1s1
M−1zl1s1 −

|pH
l1s1

M−1zl1s1 |2
pH

l1s1
M−1pl1s1

,

. . . , zH
lKsK

M−1zlKsK
− |pH

lKsK
M−1zlKsK

|2
pH

lKsK
M−1plKsK

]T

(35)

Hence, substituting (29), (34) and (35) into (32), we can get
ΛWald(zl1s1:lKsK

)

=N
K∑

k=1

|pH
lksk

M−1zlksk
|2

pH
lksk

M−1plksk
zH

lksk
M−1zlksk

−|pH
lksk

M−1zlksk
|2

H1

≷
H0

γwald (36)

In general, the GLRT, Rao and Wald tests have the same
asymptotic performance. However, the Rao test does not require
evaluating the MLEs of the unknown parameters under H1 hypothesis,
leaving only the MLEs under H0 to be found, and the Wald test only
adopts the data components orthogonal to the useful signal subspace.
Therefore, the Rao and Wald tests might require a lower computational
complexity than the GLRT for their implementation.

3.2. Step Two: Estimation of M

In order to adapt the MSDs fully to the covariance matrix of
clutter, several covariance matrix estimations substitute M in the
tests (19), (31) and (36), respectively.

Herein, the simple and widely method used in Gaussian
environment is SCM. In the kth scan, it is shown as

M̂SCMk
=

1
W

W∑

w=1

zlkwskw
zH

lkwskw
(37)

When in non-Gaussian clutter scenarios, the NSCM method in
the kth scan is commonly applied and written as

M̂NSCM k
=

N

W

W∑

w=1

zlkwskw
zH

lkwskw

zH
lkwskw

zlkwskw

(38)
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The NSCM eliminates the effect of the data-dependent normal-
ization factor τlkwskw

= zH
lkwskw

zlkwskw
accounted for the random local

power change from cell to cell.
The third estimation method is called RMLE, in the kth scan,

which is

M̂RMLEk
(t)=

N

W

W∑

w=1

zlkwskw
zH

lkwskw

zH
lkwskw

M̂RMLEk
(t−1)−1zlkwskw

, t=2,. . . ,Nt (39)

while the original estimation is

M̂RMLEk
(1) =

N

W

W∑

w=1

zlkwskw
zH

lkwskw

zH
lkwskw

zlkwskw

(40)

with Nt = 4 [21].
Finally, the CFAR properties of three strategies of covariance

matrix estimation are evaluated. The adaptive MSDs with
SCM estimation strategy have an independent relationship with
Gaussian clutter, yet dependent on the texture component in
compound-Gaussian environment. Although in the compound-
Gaussian background, the MSDs with NSCM estimation strategy
are independent of the texture component for considering the
normalization factor, they still depend on the structure of M [31].
And it has been proved that the RMLE is independent of both texture
component and M [32].

4. SIMULATION

This section is devoted to the performance assessment on the adaptive
MSDs based on the GLRT, Rao and Wald tests with different M
estimators, SCM, NSCM and RMLE (M-SCM, M-NSCM, M-RMLE
in simulation). Assuming that the speckle component of the generated
clutter data has an exponential correlation structure covariance matrix,
hence M can be expressed as

[M]NiNj = ρ|Ni−Nj |, 1 ≤ Ni, Nj ≤ N (41)

where ρ is the one-lag correlation coefficient. Additionally, the target
is set as Swerling 0 or Swerling 1 [33], usually encountered in various
real conditions.

Since the closed-form expressions for both the Pfa and the
probability of detection (Pd) are not available, we resort to standard
Monte Carlo technique. More precisely, in order to evaluate the
threshold necessary to ensure a preassigned value of Pfa and to
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Figure 2. Pd versus SCR for
60 rpm, N = 10, K = 4, ν = 0.6,
ρ = 0.9, W = 40, and Swerling 0
target.
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Figure 3. Pd versus SCR for
60 rpm, N = 10, K = 4, ν = 0.6,
ρ = 0.9, W = 40, and Swerling 1
target.

compute Pd, we resort to 100/Pfa and 106 independent trials,
respectively.

Moreover, since laking of the sufficient multiple-scan real data,
we resort to the simulation data, where the known steering vector is
given by plksk

= [1, exp(j2πflksk
), . . . , exp

(
j2π(N − 1)flksk

)
]T with

j =
√−1 to match the condition when the normalized Doppler

frequency fd of the moving target is 0.8, i.e., flksk
= fd = 0.8, and

all simulations refer to the data parameters of a coherent X-band
Enhanced Surveillance Radar [19] with a hypothetical 3◦ azimuth
beamwidth antenna scanning at different rates, PRF = 750 Hz, and
multiple scans, are combined over the integration time of 5 s with the
unit power of the clutter in every scan.

The Signal-to-Clutter Ratio (SCR) is defined as

SCR =
K∑

k=1

|alksk
|2pH

lksk
M−1plksk

(42)

In the first case, we consider the scenario: 60 rpm, N = 10,
K = 4, ν = 0.6, ρ = 0.9, and W = 40. The detection performance
of MSD based on two-step GLRT (GLRT-MSD), Rao test (Rao-MSD)
or Wald test (Wald-MSD) is compared with that of the traditional
single-scan detector (NAMF). Figures 2 and 3 show the probability
of detection curves versus SCR for Swerling 0 target and Swerling
1 target, respectively. Considering the correlation lengths of the
texture component and speckle component, the data can be potentially
deemed as statistically independent in reality [34].

As can be observed in Figure 2 and Figure 3, the performance
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of both Wald-MSD and GLRT-MSD is better than that of the single-
scan detector. The Rao-MSD with RMLE or NSCM estimator also
outperforms NAMF when SCR > −8 dB. The discrepancy of detection
performance is even more obvious as the value of SCR increases. In
brief, the results clearly show that the adaptive MSDs exhibit the
performance advantages over the single-scan processor.

In multiple-scan detection comparison, the performance of
detectors with RMLE is superior to that with SCM estimator and
slightly better than that with NSCM estimator. Additionally, both
the Wald-MSD and GLRT-MSD show the better performance than
the Rao-MSD whether the estimator M is.

In more general condition, when the RCS of the small target is
Rayleigh-distributed across multiple scans, the detection curves shown
in Figure 3 exhibit quite close to the results in Figure 2. It indicates
that the fluctuating RCS of the target has little influence on multiple-
scan detection. Similarly, all MSDs with RMLE strategy, shown in
Figure 3, perform relatively well among the three estimators, almost
as the same as the results in Figure 2. In summary, the comparison of
detection curves reveals the similar superiority of MSDs under the two
conditions (Swerling 0 and Swerling 1) in heavy compound-Gaussian
clutter.

In the second case, to aim at researching the influence of scan
rate on the multiple-scan detection performance in the same processing
time (5 s), we consider another scenario of less scan-to-scan integrations
(30 rpm) than that in the first case (60 rpm). Unlike the condition of
60 rpm (N = 10 and K = 4), though there are not straightforward
parameters for 30 rpm presented in [19], according to the existing data
parameters, we can be capable of setting the reasonable and available
parameters: the value of N is 20 and the number of K is 2 where the
other parameters are unchanged (ν = 0.6, ρ = 0.9, and W = 40).

Obviously, in the single scan detection, it can be anticipated that
the performance of all the algorithms will improve as the number of CPI
increases due to the greater integrations with sufficient secondary data.
However, in the multiple-scan detection, although the scanning radar
can achieve more scan-to-scan integrations as the scan rate increases
in a given integration period, there is an associated decrease in the
number of pulse-to-pulse integrations within the dwell time of the
antenna beamwidth. Consequently, considering the interplay of the
CPI (pulse-to-pulse) and the scan rate (scan-to-scan) in the same time
(5 s), we investigate the detection performance discrepancy of MSDs
when the scan rate changes from 60 rpm to 30 rpm.

According to the results in Figures 2 and 3, the MSDs provide
approximate detection performance for different target models. Hence,
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for the purpose of conciseness, we only show the curves of the
probability of detection for Swerling 0 target in Figure 4, and the
results illustrate the serious performance degradation in the presence
of slower scan rate. This can be explained by the fact that the effective
multiple-scan detection is dependent on the coherence of the target
signature. Hence, when the CPI increases from 10 to 20 pulses, there is
a greater chance that the target Doppler will vary from the determinate
targeted frequency flksk

in the known steering vector, resulting in
the detection performance loss [19]. Moreover, the poorer frequency
selectivity maybe also offset by the greater number of scan-to-scan
integrations.

In the third case, turning our attention to the detection
performance of MSDs under the distinct clutter conditions, shown in
Figure 5, the curves depict the detection performance variation when
the shape parameter changes (ν = 0.4 and ν = 0.6). Additionally, the
target is set as Swerling 1 while the correlation coefficient of clutter
is ρ = 0.9, and the radar parameters are 60 rpm, N = 10 and K = 4
with W = 40. The results in Figure 5 show that all the MSDs with
RMLE or NSCM estimator have better detection performance when
the shape parameter decreases.

Moreover, when the shape parameter is equal to infinity, the
K-distribution reduces to a Rayleigh distribution in amplitude,
and on the contrary, it can be seen that the smaller ν is, the
greater difference between K-distribution and Rayleigh distribution
presents [12]. Additionally, U.S. Naval Research Laboratory does
research on different sea-state scenarios using the HR X-band radar
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Figure 4. Pd versus SCR for 30 rpm, N = 20, K = 2, ν = 0.6, ρ = 0.9,
W = 40, and Swerling 0 target.
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Figure 5. Pds of GLRT-MSD, Rao-MSD and Wald-MSD versus SCR,
for 60 rpm, N = 10, K = 4, ρ = 0.9, W = 40, and Swerling 1 target
with different νs (ν = 0.4 and ν = 0.6); MSDs with SCM estimator:
circle marker and solid line; MSDs with NSCM estimator: cross marker
and solid line; MSDs with RMLE: triangle marker and solid line.

with vertical polarization and 0.5◦ beamwidth antenna in 1967. The
observed results indicate that the higher sea-state is, the farther the
distribution of sea clutter deviates from Rayleigh distribution.

Hence, the comparison results shown in Figure 5 declare that the
adaptive MSDs, specially GLRT-MSD and Wald-MSD, are even more
effective in relatively high sea-state scenario regardless of Swerling 0
(not shown in the paper) or Swerling 1 target. Clearly, when ν
increases, the complex clutter in the paper gradually approximates
to the complex Gaussian clutter. Therefore, it can be noticed that
the clutter with ν = 0.6 more tends to the complex Gaussian clutter
compared to that with ν = 0.4. Meanwhile, considering the effect of
the texture nonexistent in the complex Gaussian clutter, the adaptive
MSDs are derived on the basis of the compound-Gaussian background,
and thereby they suffer some performance loss when it is closer to
the complex Gaussian clutter. In additional, the MSDs with SCM
estimator show the worse performance, indicating that the SCM
estimator is indeed not appropriate for the compound-Gaussian clutter
as discussed before.

In the last case, it is focused on the impact of the correlation



Progress In Electromagnetics Research B, Vol. 44, 2012 421

 -20  -15  -10  -5 0 5 10 15
SCR, dB

P d

 

 

ρ=0.9

ρ=0.95

ρ=0.99

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 6. Pd of Wald-MSD based upon RMLE versus SCR for 60 rpm,
N = 10, K = 4, ν = 0.6, W = 40, and Swerling 1 target with different
ρs.

coefficient on the detection performance. Observing that the typical
values for radar sea clutter are in the range [0.9, 0.99] [21], hence,
we consider the scenario: N = 10, K = 4, 60 rpm, ν = 0.6,
W = 40 and Swerling 1 target with various ρs. When the correlation
coefficient varies, the detection performance of Wald-MSD with RMLE
in Figure 6, or the other MSDs with it (not reported here), is almost
unchanged. These MSDs are completely insensitive to the fluctuation
in the value of ρ, presenting the robustness to the correlation property
of the sea clutter.

In fact, it is straightforwardly seen that the model of the clutter
is mainly determined by the shape parameter and the correlation
coefficient. Therefore, combining the four cases, the adaptive MSDs
with RMLE achieve the higher detectability than the conventional
single-scan detector for the small target under the various conditions
of sea clutter.

5. CONCLUSION

In this paper, we present the derivations of MSDs and analyze the
detection performance of MSDs for the small RCS target embedded in
the heavy sea clutter illuminated by the HR radar system. In HR radar
scenario, the sea clutter is generally modeled as compound-Gaussian
distribution described as SIRP. In the heavy clutter, the performance
of single-scan detectors degrades, and hence the optimum MSD based
on NP criterion is presented. Precisely, the NP criterion is resorted
to derive the nonadaptive detector under the assumptions for known
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clutter covariance matrix M, the texture component τlksk
and the

parameter alksk
. However, the prior knowledge of M, τlksk

or alksk

is commonly absent in the realistic environment. Consequently, for
the purpose of overcoming this drawback, the adaptive MSDs based
on the two-step GLRT, Rao and Wald tests are proposed, and three
methods are used to estimate the unknown PSD.

Finally, Monte Carlo simulation results show that the adaptive
MSDs significantly outperform the traditional single-scan detector
for different targets. Obviously, the MSDs can availably reduce the
effect of clutter outlier in a single scan, and also allow the target to
be detectable with the smaller values of SCR across multiple scans.
Additionally, the MSDs can attain more training data even in the
heterogeneous scenarios where it is difficult to obtain enough secondary
data in single-scan detection. Meanwhile, the results show that the
performance of MSDs with RMLE is superior to that of MSDs with
SCM or NSCM estimator in various backgrounds of sea clutter.
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