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Abstract—The design of resonators with degenerate magnetic and
electric modes usually requires the ability to perturb one or both
types of modes in order to induce alignment of magnetic and electric
properties. In this paper perturbation theory is used to identify
different types of inclusions that can be used to realize fundamental-
mode degeneracy in a rectangular dielectric resonator and thus, can
ultimately be used in the design of negative-index metamaterials. For
reasons associated with fabrication in the infrared-frequency regime,
rectangular resonator designs are of particular interest.

1. INTRODUCTION

Metamaterials based on resonant-cell structures are often used to
obtain a negative index of refraction, where both the effective
permittivity and permeability are negative, and operation is adjusted
to occur just above (in frequency) spectrally overlapping magnetic
and electric resonances of the cell structures [1]. Other applications
of metamaterials, including cloaking, require independent tuning of
the permittivity and permeability and thus require the ability to
place the resonances at the desired spectral positions. In addition
to the selective placement of resonances, remaining in the effective
material limit (with diffraction suppressed [2–6]) is another goal in
these types of metamaterial applications. Often times unit cells
containing metallic split-ring resonators (yielding the magnetically-
resonant component [7]) and loaded dipoles (yielding the electrically-
resonant component [8–10]) are used in constructing negative-index
metamaterials since they can be small and still attain both negative
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permittivity and permeability. In these cases, tuning of the electric and
magnetic resonances is achieved through the design of the respective
resonators. In another approach, core-shell nanoclusters (including
metal cores), which are compatible with self-assembly technologies,
have also been explored as a means of realizing a double-negative
medium in the visible range [11].

In recent years, all-dielectric resonant structures utilizing high-
permittivity materials have drawn much attention since their use
reduces the material absorption inherent to metallic structures (which
can become prohibitive at higher frequencies [11]). While dielectric
cylinders and rectangles have frequently been used to realize a medium
of negative-permeability [12–14], all-dielectric resonators are not a
natural fit for negative-index applications, since the first magnetic
resonance occurs at a lower frequency than the first electric resonance.

Well-known approaches that have been used to attempt to align
the resonances of all-dielectric resonators include the core-shell designs
of [15, 16] and the AB-type designs of [17, 18]. While both of these
methods introduce an additional degree of freedom that provides for
the tuning of the resonances (in [15, 16] by introducing a surrounding
dielectric shell layer to a dielectric core and in [17, 18] by introducing
an additional resonator particle into the unit cell), unfortunately these
two approaches can easily bring into question the applicability of
effective media; this becomes particularly apparent at higher operating
frequencies. In the case of the AB-type design, the size of the unit cell
is physically extended (perhaps by a factor of two) to accommodate
the additional resonator while, alternatively, in the core-shell design
the electrical size of the resonator is forced to increase because overlap
of only higher-order modes is possible. As the operating frequency is
increased, an additional problem that arises in both these approaches
(and any other all-dielectric designs) is that the range of available
permittivities becomes much more limited. For example, in the long-
wave infrared (8µm–15µm) the largest relative permittivities available
in low-loss dielectric materials are in the range of 25–32 [19], while
relative permittivities in the hundreds (or higher) are common at radio
frequencies. To achieve resonance and still remain in the effective
medium limit then becomes a difficult proposition. Nevertheless, as
metamaterial designs are pushed to higher frequencies, the need for
dielectric resonators is imperative since absorption associated with
the metallic resonators becomes significant. Any methods based on
dielectric resonators where degeneracy of the lowest-order magnetic
and electric-resonant modes is realized and which consequently do not
increase the lattice spacing become especially appealing.

This paper discusses different types of perturbations that can be
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made within a single rectangular dielectric resonator for the purpose
of changing the spectral positions of the lowest magnetic and electric
resonant modes. The lowest modes are selected in order to keep the
resonator as electrically small as possible. (In [20], a similar approach
is presented for spherical dielectric resonators.) Here we focus on
rectangular resonators since infrared is the frequency band of interest
and these resonators are easier to fabricate by lithographic techniques
in this frequency range (as in the visible band). Several microwave-
frequency designs utilizing perturbed dielectric sphere resonators are
presented in [21].

Included in this paper are the frequencies and field distributions
for rectangular dielectric resonators found through a waveguide
approximation, as well as through numerical simulations. Perturbation
theory is introduced for design purposes since it can be used to arrive
at approximate predictions for the modal shifts (in terms of frequency
or wavelength) realized with particular inclusions. Although resonator
designs demonstrating modal degeneracy (which can be used for the
construction of negative-index metamaterials) at infrared wavelengths
will be the focus of this paper, our approach can also be used to
tune the spectral locations of the modes to achieve other desired
combinations of effective permittivity and permeability.

2. DIELECTRIC RESONATORS

The modes of dielectric resonators are typically interlaced in frequency,
with the lowest magnetic resonance occurring before (lower frequency)
the lowest electric resonance. In this paper we treat the rectangular
resonators as isolated (corresponding to lower packing fractions in
the periodic lattice) and discuss the effects of the periodic lattice
where appropriate. Throughout the paper we consider PbTe dielectric
resonators at infrared frequencies where the relative permittivity is
given by εr = 32.04+i0.0566 (where εr = ε/ε0 and ε0 = 8.854188 pF/m
is the free space permittivity) [19]. (For simplicity in the theoretical
analysis, we consider only the real part of the PbTe permittivity.)
All simulations are generated using an integral-equation, method-of-
moments code called EIGERTM [22].

2.1. Boundary Value Problem

In this section we briefly discuss the global and local coordinate systems
used in the modeling and review the boundary conditions associated
with the use of high-contrast materials inside the resonators.
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2.1.1. Coordinate Systems

It is convenient to use a global coordinate system for the incident
plane wave and the array of particles, and two local coordinate systems
attached to a single particle. The global system has x in the direction
of the incident magnetic field, y in the direction of the incident electric
field, −z in the direction of the incident wavevector k0 (direction of
the incident wave), and the origin will be taken at the center of one
particle. This global coordinate system is used in all the simulations
that follow.

Since the modes in the resonators naturally separate into
transverse electric (TE) and transverse magnetic (TM), in the
theoretical analysis it is convenient to use two local coordinate systems
where the z axis is aligned with the direction of the incident magnetic
field (TE), or alternatively with the incident electric field (TM). These
local coordinates are used in the sections where the modal fields and
the inclusions are discussed. These sections use a, b, and c, for the
half dimensions of the rectangular resonator along the local x, y, and
z directions, respectively, and do not permute the dimensions (which
would have to be done for a rectangular geometry to make the link
to the global coordinate system); this approach is taken since we are
primarily interested in a cubic resonator.

2.1.2. High-contrast Conditions

For the resonator geometry shown in Fig. 1, the continuity of the
normal displacement ε2E2n = ε1E1n and tangential electric field
intensity E2t = E1t at the resonator boundary imply that the exterior

 1
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ε

Figure 1. The exterior and interior electric fields at the resonator
boundary, corresponding to regions of permittivity ε1 and ε2

respectively, can be used to obtain the energy just outside and inside
of the resonator.
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Thus, the exterior electric energy density for the tangential field part
is O (ε1/ε2) of the interior, but the normal field part is O (ε2/ε1) of the
interior. For a confined mode we expect the energy to be concentrated
on the interior and therefore we would anticipate that E2n/E2t → 0
as a wall is approached. This corresponds to the condition we would
expect at the surface of a perfect magnetic conductor (PMC). We can
apply this condition on the electric field but we must remember that the
normal magnetic field will penetrate the walls of the resonator [23, 24].
Furthermore, as described in [23, 24], the application of PMC boundary
conditions to the tangential magnetic field (for example, in the case of
the magnetic mode) is generally not correct.

2.2. Rectangular Dielectric Resonators

The goal of this section is to theoretically characterize the two
lowest-order modes associated with a rectangular dielectric resonator.
Numerical simulations are also presented as verification to the
theoretical predictions. As previously discussed, rectangular dielectric
resonators are of particular interest in the infrared and visible
frequency range since they are easier to fabricate lithographically.

2.2.1. Waveguide Method for First Magnetic Mode

An approximate treatment of these resonators is based on using
waveguide extensions of the resonator in one direction, as in [25]. The
local coordinate system is being used where z is along the magnetic
field and transverse to the electric field. The first magnetic mode is
an open form of the PMC mode TEz

110 often denoted by TEz
11δ with

fields

H = ∇ (∇ ·Πm) + k2Πm (3)
E = iωµ0∇×Πm (4)

and potential

Πm = ψmez (5)(
∇2 + k2

)
ψm = 0 (6)
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For a dielectric resonator of dimensions 2a, 2b, 2c with −a < x < a,
−b < y < b, −c < z < c the potential of the TEz

11δ mode is taken as

ψm = A cos (kxx) cos (kyy) cos (kzz) (7)

for the interior region and

ψm = A cos (kxx) cos (kyy) cos (kzc) eik1z(|z|−c) (8)

for the exterior region (here we have matched the normal magnetic
field for the case of nonmagnetic materials). The relationship between
wavenumbers is given by

k2 − k2
z = k2

x + k2
y = k2

t = k2
1 − k2

1z (9)

where k = ω
√

µ0ε2 is the wavenumber inside the dielectric cavity,
k1 = ω

√
µ0ε1 the wavenumber in the host media, and kt the transverse

wavenumber. In the case of PMC side walls we must have Ex(x =
±a) = 0 = Ey(y = ±b) and Hx(y = ±b) = 0 = Hy(x = ±a) which
hold for kx = π/(2a) and ky = π/(2b). Matching the tangential field
at the z = c interface gives

kz tan (kzc) = −ik1z (10)

where eliminating k1z gives

kzc = arctan
√

k2
t (1− ε1/ε2) /k2

z − ε1/ε2 (11)

Thus, for ε2/ε1 = 32 and the limiting case of a cube where a = b = c
we find that kzc ≈ 1.10225 (or kz ≈ 0.7017π/(2c)). This corresponds
to a resonant interior wavenumber of k11δ ≈ π

√
2.49/(2c). For the

case of b → b/2, we have (ktc)2 → π2(5/4) and kzc ≈ 1.2287 (or
kz ≈ 0.7822π/(2c)) and resonant wavenumber k11δ ≈ π

√
5.61/(2c).

This waveguide method is not extremely accurate for this range of
aspect ratios, but is nevertheless useful (in the next paragraph it is
compared to the first resonance that is observed in the numerical
simulations).

Figure 2 shows the simulation result (using the global coordinate
system) for the magnetic field (Hx) distribution within a dielectric
cube with εr = ε2/ε1 = 32 and 2a = 1.53µm at a resonant
wavelength of 10.57µm and ky = kz ≈ 1.06π/(2a), as well as
kx ≈ 0.68π/(2a). This numerical simulation result is obtained by
employing a symmetric magnetic excitation of an isolated dielectric
cube as described in [10]. We note that the normalized simulated
wavenumber (0.68) in the direction of the incident magnetic field is
close to the one-dimension waveguide prediction of 0.70. In Fig. 3 the
simulated electric field distributions along the y and z directions of the
PbTe cube are presented and clearly illustrate the near-magnetic wall
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Figure 2. Magnitude of the scattered Hx along the x, y, and z-
dimensions of a PbTe cubic resonator (centered about the origin) of
side length 1.53 µm. The fields are sampled at an operating wavelength
of 10.57 µm and along the y = z = 0; x = z = 0; and x = y = 0 planes,
respectively.

Figure 3. Magnitude of the scattered Ey and Ez along the y and z-
dimensions of a PbTe cubic resonator (centered about the origin) of side
length 1.53 µm. The fields are sampled at an operating wavelength of
10.57µm and along the x = 0, z = 0.765µm; and x = 0, y = 0.765µm
planes, respectively.

(PMC) behavior. Note that the interior fields shown are total fields
(the incident field is relatively small at 1 A/m from each of the two
directions, and is in approximate phase quadrature with the resonant
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Figure 4. Magnitude of the scattered Hx along the x, y, and z-
dimensions of a PbTe cubic resonator (centered about the origin) of
side lengths a = b = 1.53µm, and c = 0.765µm. The fields are sampled
at an operating wavelength of 7.17µm and along the y = z = 0;
x = z = 0; and x = y = 0 planes, respectively.

response).
The interior magnetic field generated by a symmetric excita-

tion [10] of a single PbTe half-cube resonator with the reduced di-
mension occurring in the direction of propagation (2b → a in the local
coordinate system, but 2c → a in the global coordinate system) is
shown in Fig. 4. The simulated resonance is found to occur at 7.17 µm
and kx ≈ 0.75π/(2a). Thus, the normalized wavenumber in the mag-
netic field direction (0.75) is near the waveguide prediction of 0.78.

2.2.2. First Electric Mode

Here the local coordinate system is being used where z is now along
the electric field and transverse to the magnetic field. The first electric
mode is taken to be an open form of TM z

111 with fields

E = ∇ (∇ ·Πe) + k2Πe (12)
H = −iωε∇×Πe (13)

and potential
Πe = ψeez (14)(
∇2 + k2

)
ψe = 0 (15)

We take the potential to consist of approximately
ψe = A cos (kxx) cos (kyy) cos (kzz) (16)
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Note that if near-PMC boundary conditions [23] are imposed on the
boundary, we expect that kz ≈ π/(2c). We denote the first mode by
TM z

ξζ1 with ξ > 1 and ζ < 2, where kx = ξπ/(2a) and ky = ζπ/(2b).
For the case where a = b = c, we have observed from the numerical

simulation that ξ ≈ ζ ≈ 1.4 ≈ √
2 and a cutoff wavelength in the cube

corresponding to kξζ1 ≈ π
√

5/(2a) is realized. Fig. 5 shows the Ey

field distribution (again using a symmetric electric excitation [10] of a
single resonator via EIGERTM ) along selected planes in a PbTe cubic
resonator of side length s = 1.53 µm. In the simulations the global
coordinate system is used and the mode of interest is TMy

ζ1ξ.

2.2.3. Results for the Unperturbed Rectangular Resonator

It is important to note that while the spectral locations of the
resonances determined from a single-particle simulation are directly
correlated with the transmission coefficient associated with a periodic
assembly of the resonators (an example of this is shown in the next
section), a simulation of an isolated resonator is being used here for the
purposes of also identifying the nature of the resonance (electric versus
magnetic and dipole versus quadrupole). This additional information
(together with the resonant wavelength) is key in moving towards a
degenerate resonator design with overlapping lowest-order magnetic
and electric resonances and which ultimately demonstrates negative-

Figure 5. Magnitude of the scattered Ey along the x, y, and z-
dimensions of a PbTe cubic resonator (centered about the origin) of
side length 1.53 µm. The fields are sampled at an operating wavelength
of 7.83µm and along the y = z = 0; x = z = 0; and x = y = 0 planes,
respectively.
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index behavior.
In general, the far-zone radiation patterns of the isolated resonator

can be used to extract the magnetic (in the local coordinates Mzz →
Mxx in the global coordinates) and electric (in the local coordinates
Pzz → Pyy in the global coordinates) polarizabilities and ultimately
determine the constitutive parameters describing an effective media
comprised of an infinite array of these resonators [10]. That is, for
a periodic arrangement of resonators the effective permeability and
permittivity by means of the Clausius-Mossotti relation are

µeff /µ0 = µreff = 1 +
ndMzz

1− ndMzz/3
(17)

and
εeff /ε1 = εreff = 1 +

ndPzz

1− ndPzz/3
(18)

where nd = 1/d3 is the packing density of the resonators in a periodic
cubic lattice with spacing d [1]. Thus, for the simulations, a single
resonator excited with the plane-wave orientation shown in Fig. 6
is considered. (To facilitate the interpretation of the response, a
superposition of plane waves is set up to create a cancellation of either
the electric or magnetic field at the center of the resonator [10].)
Following the same procedure as described in [10] and implemented
in [21], the resonant wavelengths are determined by the peaks in the
far-zone scattered fields generated by the isolated resonator. The
results for a PbTe cubic resonator of side length s = 1.53µm are shown
in Fig. 7 (sampled on the θ = 90◦ plane for φ = 0◦ and 90◦), where
peaks in the far-field amplitude (for the isolated particle) are seen to
occur at 10.6µm, 7.8µm, and 7.0µm.

Figure 6. Coordinate system and excitation used in the rectangular
resonator simulations.
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Figure 7. Radiated far-field amplitudes of a single PbTe (εr =
32.04 + i0.0566) cubic resonator of side length 1.53µm. Sampling
positions are located on the θ = 90◦ plane at φ = 0◦ and 90◦.

Figure 8. Transmission coefficient for an array of PbTe cubic
resonators (of side length 1.53µm) with period 2.88µm.

Figure 8 shows the transmission coefficient for a periodic array
(single layer) of PbTe cubic resonators arranged with a volume-packing
fraction of 0.15. Here the minima of the transmission coefficient are
seen to occur at wavelengths in the vicinity of those yielding peaks in
the far-field amplitudes shown in Fig. 7. (Note that due to the periodic
loading the magnetic resonance is slightly shifted in position relative
to the isolated resonator case.)

As in [10, 20, 21], we use the far-field scattered patterns to extract
the dipole moments of the isolated resonator. The scattered patterns
sampled at each of the wavelengths identified from Fig. 7 are plotted
in Fig. 9. These pattern results are used to extract the effective-
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Figure 9. The radiation patterns associated with a cubic PbTe
resonator at each of the peak frequencies determined from the
results in Fig. 7. In order of decreasing wavelength, the radiation
patterns indicate that a magnetic dipole, electric dipole, and magnetic
quadrupole characterize the cubic resonator within this spectral band.

media parameters ((17), (18)), shown in Fig. 10, for a cubic array
of PbTe cubes (s = 1.53 µm) with period 3.30µm. Here we note that
the magnetic dipole as well as the electric-dipole resonances are clearly
indicated in the effective permittivity and permeability response (the
quadrupole effect at 7µm is due to the single-point polar sampling used
to approximately determine the dipole moments [10]). In addition,
the spectral locations for the effective-media resonances are nicely
correlated with the single-particle simulations.

It is the goal of the next section to manipulate the cavity-field
structures (via perturbations) of the cubic dielectric resonator so that
overlapping lowest-order electric and magnetic modes is achieved.
With this type of single-resonator degenerate design, a metamaterial
design realizing negative-index behavior and satisfying effective-media
constraints is made more accessible.
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Figure 10. The extracted effective permeability and permittivity
(relative to free space) for a PbTe cube of side length 1.53µm. For
simplicity, only the real parts of the effective parameters are shown.

3. PERTURBATION APPROACH

From Maxwell’s equations for a dielectric resonator with permittivity
function ε operating at frequency ω0 and a resonator with a small
perturbation εp operating at frequency ω0 + δω we find

−
∮

S

(E ×H∗
0+E∗

0 ×H) · ndS

= −iω0

∫

Vp

(εp−ε)E∗
0 · EdV − i (δω)

∫

V
(εE ·E∗

0+µ0H ·H∗
0) dV (19)

where E0 and H0 are the unperturbed fields. V is the resonator
volume (including a region outside the resonator where the interior
fields have penetrated), S the closed surface bounding the volume
V , n the outward pointing unit vector on S, ε the permittivity
function inside and outside the resonator (ε → ε1 outside) and here
assumed to be real, and εp the value in the perturbation contained in
volume Vp. Since we will ignore the effect of radiation (approximating
the exterior as quasistatic), the surface integral in (19) can be
dropped. Approximating the fields in the perturbed resonator by the
unperturbed fields εE · E∗

0 ≈ εE0 · E∗
0 and µ0H · H∗

0 ≈ µ0H0 · H∗
0

throughout most of the cavity volume (and the local exterior) in the
second term, we arrive at the typical formula

−δω

ω0
≈

∫
Vp

(εp − ε) E∗
0 · EpdV∫

V (εE0 · E∗
0 + µ0H0 ·H∗

0) dV
≈

∫
Vp

(εp − ε) E∗
0 · EpdV

2
∫
V εE0 · E∗

0dV
(20)
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[26]. The final formula on the right makes use of the equivalence of the
magnetic and electric energies stored in the resonator and the field in
the perturbation εp is denoted by Ep. If εp is complex the inclusion
is lossy; thus, care should be taken to choose materials with low loss
since the field may be magnified in this region. Note that to treat
absorption in the resonator material ε we remove the conjugates in the
final expression on the right [26] (with only electric field terms). This
expression provides us with the means to estimate the frequency shift
from the inclusion properties.

3.1. Inclusions and Placement

One approach to alignment of resonances is to place perturbations
within the resonator volume in an effort to perturb the resonant
frequencies into alignment. It is useful to select polarization-dependent
perturbations of high contrast relative to the resonator material so
that one of the modes is selected (by virtue of the associated field
orientation) and the respective resonant frequency is shifted in the
appropriate direction. High-permittivity inclusions can be realized
with metallic dipoles which are oriented along electric field lines
associated with the first excited electric mode (and ideally at a null of
the electric field of the first magnetic mode) as shown in Fig. 11. This
type of perturbation has the effect of shifting the electric resonance
downward in frequency toward the first magnetic mode. Whereas
we are using these inclusions to obtain single-particle degeneracy (as
in [20, 21] for spherical resonator designs), it should be noted that
inclusions of this type have been used previously to establish gradient
properties for a lens design [27].

Figure 11. In order to realize a frequency downshift in the electric
resonance (towards the magnetic resonance), a metallic dipole is
embedded within the dielectric resonator (the outer medium in this
figure has ε1 = ε0). A cubic dielectric resonator is shown as an
example, where the dipole is oriented along the direction of the incident
electric field.
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Figure 12. A split (or cutout) along the center of the dielectric
resonator can be introduced to upshift (in frequency) the magnetic
resonance towards the higher-frequency electric resonance. A cubic
resonator is shown as an example, where the cut plane is positioned to
contain both the electric and magnetic incident field (here the outer
medium and the perturbation cutout have ε1 = ε0 = εp).

Alternatively, low-permittivity inclusions can be realized by splits
(or cuts), filled with gas or other low-permittivity materials, oriented
perpendicular to electric field lines associated with the lowest magnetic
mode (and ideally having no normal electric field from the first electric
mode). With the type of perturbation shown in Fig. 12, the first
magnetic mode is shifted upward in frequency toward the first electric
mode. It is important to recognize that dielectric inclusions of this
type have been used previously for bandwidth enhancements [28] and
tuning purposes [29, 30].

The effects resulting from metal inclusions and air splits (or
cutouts) on the dielectric resonator performance are illustrated
pictorially in Fig. 13. (Specific design examples are provided in a
subsequent section.) It is important to point out that, depending on
the frequency range of interest, each of these designs offer different
advantages in terms of ease of manufacturing, losses, and electrical
size. For example, at microwave frequencies a resonator with a dipole
insert may be fairly easy to realize, without a significant deterioration
in the loss performance. The reasonable maintenance of the loss
performance, together with the fact that the electric size of the
resonator becomes smaller as the electric mode is downshifted to lower
frequencies (ultimately overlapping the magnetic resonance), are clear
advantages of this type of design. On the other hand, as the frequency
is increased, lower-loss perturbations such as air inclusions may become
a more attractive option.

3.1.1. Dielectric Cuts

For a rectangular resonator operating in the first magnetic, or TEz
11δ,

mode with a cutout at the center x = 0 (Fig. 12), the electric field in
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Figure 13. Illustration of resonance shifting due to metallic-dipole
and air-split inclusions in the resonator. Also, as the packing fraction
of the resonators is increased, the amplitudes of the responses are
enhanced.

the local coordinate system is given by
E = iωµ0A cos(kzz)·[eykx sin(kxx) cos(kyy)−exkycos(kxx)sin(kyy)](21)

(note that in the local-coordinate system associated with the magnetic
mode, for which H inc is aligned with z, we take Einc to be y directed
so that it does not interact much with the x = 0 cutout). For this type
of perturbed resonator design, we then have∫

V
εE0 · E∗

0dV ≈ µ0ab |A|2 k2
(
k2

x + k2
y

)∫ c

−c
cos2 (kzz) dz

≈ µ0abc |A|2 k2
(
k2

x + k2
y

)
·
[
1 +

sin(2kzc)
2kzc

]
(22)

so that the numerator in the perturbation formula (corresponding to
the air-split inclusion) becomes
∫

Vp

(εp−ε) Ep ·E∗
0dV ≈∆(εp−ε2) (ε2/εp)

∫ b

−b
dy

∫ c

−c
|Ex (0, y, z)|2 dz

≈ µ0
∆b

εp
(εp − ε2) |A|2 k2k2

y

∫ c

−c
cos2 (kzz) dz

≈ −µ0∆bc (ε2/εp−1)|A|2k2k2
y

[
1+

sin(2kzc)
2kzc

]
(23)

Finally we obtain

−δω

ω0
≈−∆

2a
(ε2/εp − 1)

(
k2

y

k2
x + k2

y

)
≈−∆

2a
(ε2/εp − 1)

(
a2

a2 + b2

)
(24)
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Figure 14. A comparison between the spectral positions of the
electric and magnetic resonances for an unperturbed cubic resonator
(in this case a PbTe cube with side length 1.53µm) and the same cubic
resonator with a 100 nm gap positioned as shown in in Fig. 12. With
a 100 nm gap, near-degeneracy between the lowest order electric and
magnetic modes is realized.

where for the case of a cube (a = b = c) the normalized frequency shift
becomes

−δω

ω0
= −∆

4a
(ε2/εp − 1) (25)

From the approximate waveguide model, the first magnetic mode
occurs near the TEz

11δ frequency kz
11δ = π

√
2.49/(2a) and from the

simulation we find that the first excited electric mode occurs near
TM z

ξζ1 or kξζ1 ≈ π
√

5/(2a). Thus to obtain overlapping electric and
magnetic modes, the desired shift is δω/ω0 =

√
5/2.49 − 1 ≈ 0.42

(for comparison, the numerical simulation for the first magnetic mode
indicates that δω/ω0 ≈ 0.36 is required). Using (25), this shift is
realized with an air split of normalized thickness ∆/a ≈ 0.054 for
the case of a cubic resonator of side length 1.53 µm and permittivities
ε2 = 32ε0 and εp = ε0. For comparison, we find from the simulation
in Fig. 14 that with a normalized cutout of ∆/a ≈ 0.07, the magnetic
resonance is shifted from about 10.6µm to approximately 8µm. For
this case of the air-split cube, we observe the electric resonance to shift
slightly with the introduction of a split, but remain relatively fixed for
all split dimensions thereafter.

If the rectangular resonator is split in half and the halves are
separated by a region of εp (instead of a change of state of the material
in the cutout) we need to include the magnetic energy for an introduced
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volume rather than a change in the material state [20, 31]

−δω

ω0
≈

∫
Vp

µ0H
∗
0 ·H0dV −∫

Vp
εpE

∗
p ·EpdV

2
∫
V εE0 ·E∗

0dV
≈ ∆

2a

[
(
1−k2

z/k2
)
+

(
k2

y

k2
x+k2

y

)

·
{

(kz/k)2
(

1− sin (2kzc)
2kzc

) /(
1 +

sin (2kzc)
2kzc

)
− ε2/εp

}]
(26)

(note that the tangential electric field for this first magnetic mode
vanishes at the cutout). Thus, we find for an ε2 = 32ε0 cube with
k2

x = k2
y, 2kzc ≈ 0.7017π and k = π

√
2.49/(2a) that

−δω

ω0
≈ ∆

4a
(1.696− ε2/εp) (27)

This result is similar to that of the sphere given in [20] and not too
much different from the original estimate (25) (where we changed the
state of the material in the split).

It is important to note that for the rectangular resonator (as
shown in [20] for the spherical resonator), the wavelength shift in the
position of the magnetic resonance decreases as the thickness of the
cutout is increased and eventually saturates to the magnetic resonance
spectral position associated with the half-resonator structure. This
effect will be discussed in further detail in the next section. Numerical
simulations for a variety of cutout thicknesses will also be presented.

3.1.2. Normal Electric Field in Cutouts (Shift Saturation)

An impedance boundary condition can be constructed to describe the
cutouts in a manner that in some cases is simpler and allows a level
of analytical treatment of the structural response to the presence of
the cutouts. The boundary condition is easily derived by taking the
electric field to be quasistatic in the cutout such that E = −∇Ve,
∇2Ve = 0, and Ve ≈ −f0(t)−nf1(t), where the local tangent vector to
the cutout is t, and the local normal coordinate is n. fj(t), j = 1, 2 are
both slowly varying in t compared to the distance ∆ and can thus be
taken locally as constants, and En ≈ f1. The boundary condition can
thus be written as a jump in the tangential electric field (or magnetic
current) over split thickness ∆, where the jump is proportional to the
tangential derivative of the normal field at the split. Thus, we have

−Km = n× (
E+ −E−)

=
(

∆ε2

2εp

)
n×∇t

[
n · (E+ + E−)]

(28)

This boundary condition immediately gives an estimate on how thick a
cutout can be before the structural response to the perturbation must
be included in the normal field.
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The analysis for the rectangular resonator is somewhat easier
than for the sphere [20] because a constant thickness cut conforms
with the rectangular geometry of the rectangular resonator; further
simplification is used here (because of the complicated interior-exterior
boundary value problem of the rectangular resonator) by considering
only the interior resonator problem with PMC walls. Thus for a
rectangular resonator using an interior PMC approach, starting with
the TEz

110 mode instead of TEz
11δ and using the TEz

n10 modes to match
the impedance boundary condition at the split, we find that the normal
field in the split is

En = Ex (x = 0)≈−iωµ0A
ε2

εp
ky sin (kyy)·

[
1−

(
∆ε2

εp

) (a

2

)
k2

y+. . .

]

≈ E
(0)
x (x = 0)

ε2

εp

/[
1 +

(
∆ε2

εp

) (a

2

)( π

2b

)2
+ . . .

]
(29)

where E
(0)
x is the field without the perturbation being present. Note

here that the cutout is at x = 0, and Einc is y directed so it does
not interact much with the perturbation. Although this result is
not extremely accurate (due to the simplifications under which it was
derived), it does demonstrate the frequency shift (if this normal field is
inserted into the perturbation formula) resulting from a split thickness
∆ and permittivity contrast ε2/εp, as well as a “saturation” effect
associated with the normal field. The saturation effect is observed
in Fig. 15, where the numerically-simulated shift in the magnetic
resonance is seen to lessen with increasing split size. Thus, if we
examine the cube limit of (29), the normal field in the split becomes

En ≈ E
(0)
x (x = 0)

ε2

εp

/[
1 + (ε2/εp) (∆/a) π2/8 + . . .

]
(30)

Furthermore, if we ignore any change in total energy in the
perturbation formula, but change the numerator value due to this
normal field change, we obtain

δω

ω0
≈ ∆

4a
(ε2/εp − 1) / [1 + c1 (ε2/εp − 1) (∆/a)] (31)

(Here we used the same factor ε2/εp−1 in the denominator as the initial
numerator factor (25). As with the spherical resonators discussed
in [20], it is interesting that we can match the widely-spaced half
resonator (in this case, the half-cube) by resetting c1. A cube with
dimension 2a = 1.53 µm, ε2 = 32ε0, and ε1 = ε0 has resonant
wavenumber from the waveguide formula k11δ ≈ π

√
2.49/(2a) or a

wavelength λ0 ≈ 10.97µm. If this cube is split in half (b → b/2),
each half has a resonant wavenumber predicted from the waveguide
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Figure 15. As the split in the cubic resonator (s = 1.53 µm) is
increased, the shift in the magnetic resonators saturates to the half-
cube magnetic resonance limit. For comparison, the wavelength shifts
predicted via the perturbation formula are shown for the cases of the
unperturbed cubic resonator, a cube with a 50 nm, 70 nm, and 100 nm
cutout, as well as a half-cube resonator (note that the ordinate values
associated with the points have been selected arbitrarily to place them
in the vicinity of the resonant peaks of the simulations).

approximation k11δ ≈ π
√

5.61/(2a) or a wavelength λ0 ≈ 7.3µm.
Hence from the waveguide formula we expect a saturation value of
δω/ω0 →

√
5.61/2.49 − 1 ≈ 0.50, which requires us to change the

coefficient to
c1 → 0.5 (32)

Finally, formula (31), constant (32), and the waveguide value for
ω0 with εp = ε0 are used to predict the position of the shifted
magnetic resonance. These frequency predictions are shown as points
in Fig. 15, with the far-field amplitudes (ordinate axis) having been
arbitrarily chosen to occur near the resonant peaks of the simulation.
(The scattering results associated with the numerical simulation of an
isolated rectangular resonator with different split sizes are shown with
varying line types.) The initial error results from the error in the
simple waveguide prediction for the unperturbed resonance. This can
be eliminated by using the simulation values, but as a design tool based
purely on the analytical results, this is useful as it stands.

3.2. Combining Perturbation Effects

This subsection discusses combining perturbations for the purpose of:
1) enabling operation further from the resonant peaks and consequently
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enabling loss reductions, 2) overcoming the shift saturation discussed
in the previous section and allowing smaller individual inclusions to be
used, and in the final case, 3) making the resulting design somewhat
invariant with respect to incident plane-wave angle.

3.2.1. Inclusion and Packing

In order to allow flexibility in precise alignment of the modal
resonances, as well as to operate further away from the large losses
associated with the resonant peak region, the responses in a lattice of
perturbed resonators (including either dipole inclusions or air splits,
for example) can be boosted by using a larger volume-packing fraction.
An example of a periodic-array of cubic dielectric resonators is shown
in Fig. 16. With the extra degree of freedom associated with the lattice
arrangement (versus the single-resonator response), it is possible, for
example, to achieve negative index in the tail regions of the two
resonances where the losses are lower. While results showing packing
effects on the loss performance of degenerate all-dielectric resonator
designs will be presented in a follow-on effort, increases in the packing
fraction is shown to decrease the loss associated with a metal-core,
dielectric-shell spherical design in [16].

3.2.2. Air Split and Metallic Decorations

If minimizing the size of the perturbations is of interest (in
accordance with fabrication issues or loss considerations, for example),
perturbations can be combined so as to simultaneously frequency shift
the magnetic and electric resonances toward each other and ultimately
realize overlap at some intermediate frequency to the fundamental
ones. We note that in the approaches discussed previously, one
inclusion type was employed to selectively frequency shift one
resonance while leaving the other unperturbed. Figure 17 shows a

Figure 16. A periodic array of dielectric cubic resonators.
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Figure 17. A dual-perturbation cubic resonator design that uses an
air split together with metallic-strip dipoles (on each face of the split)
to realize modal degeneracy.

rectangular resonator design that includes an air split used to interact
with the lowest-order magnetic resonance plus two strip dipoles placed
on each face of the split for interaction with the lowest-order electric
resonance. Here modal degeneracy is obtained by orienting the air split
perpendicular to the direction of propagation (and parallel to the plane
containing the incident plane-wave polarizations H and E), orienting
the strip dipoles along the direction of the incident electric field E, and
choosing the appropriate split-thickness and dimensions of the dipole
to realize the desired frequency shifts.

Advantages of the dual-perturbation design, such as that shown
in Fig. 17, are that the electrical size of the resonator is kept smaller
versus the single air-split design (since alignment of the resonances
occurs at an intermediate frequency rather than at the higher frequency
of the fundamental electric resonance characterizing the unperturbed
rectangular resonator) and that the saturation effect discussed in
Section 3.1.2 is circumvented. It is important to recognize however,
that for higher-frequency operation where losses associated with
the metallic dipoles may not be tolerable, the multiple-perturbation
designs discussed in the next two sections may be preferable.

3.2.3. Air Split and Aspect Ratio

As an alternative to the cubic-resonator designs that have been
discussed thus far, the aspect ratio of the resonators can also be
manipulated (going from cubic to rectangular) to help bring about
modal degeneracy. More specifically, a slight elongation in the incident
magnetic field direction results in a wavelength upshift of the electric
resonance but yields less of an upshift (in wavelength) of the magnetic
resonance (since the magnetic field already penetrates the exterior
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Figure 18. A cubic PbTe resonator is stretched along the direction of
the incident magnetic field to realize a wavelength upshift in the electric
resonance and a cut is introduced along the direction of propagation
to yield a wavelength downshift in the magnetic resonance.

region in this direction). This approach can thus be used to progress
toward resonance alignment (since the magnetic resonance already
existed at a longer wavelength than the electric resonance). Combining
this perturbation effect with that accompanying an air-split inclusion
(which can be used to further downshift the magnetic resonance
in wavelength) provides a path towards an alternative degenerate
resonator design. Figure 18 shows the simulation results for a slightly
elongated PbTe resonator (the side lengths of the resonator in the y and
z-directions are s = 1.53µm, while the length along the x-direction of
the incident H field is sx = 1.91 µm) and containing a single air split of
50 nm. Thus, with the elongation of the cube together with a relatively
minor cut perturbation, modal degeneracy is observed (for this design
degeneracy occurs at λ ≈ 8.3 µm). The electric resonance position
has been shifted upward in wavelength from its original position of
7.8µm (Fig. 7) to 8.7µm due to the stretching of the cube in the
x-direction (along the direction of the incident H field) but moves
down slightly in wavelength with the introduction of the air split. For
comparison, we note that in using a cubic resonator geometry (1.53 µm
for all sides), an air split of over 150 nm is necessary to achieve modal
alignment (however, by this point saturation in the shifting of the
magnetic resonance becomes a significant factor). It is also important
to point out that although further increasing the aspect ratio of the
cube (here we have used an aspect ratio of 1.25) does lead to greater
shifts in the electric resonance, our goal with these designs is to keep
the size of the resonators down with the combination of the elongation
and the split perturbation so as to remain in the effective-media limit.
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3.2.4. Multiple Cuts (Dielectric Anisotropy)

We have also observed that the modal-shifting limitations discussed in
Section 3.1.2 can be overcome by introducing multiple air splits in the
dielectric resonator. Multiple air-split spherical designs are discussed
in [20, 21]; in a similar manner, rectangular resonators split in the
cross section perpendicular to the incident electric field can be used to
realize a greater tuning range (beyond the saturation limit inherent to
the single air-split approach). A multiple air-split rectangular design
with cuts in the cross section denoted by the local x-y plane with
the incident electric field oriented along the local z direction (that is,
cuts in the local x-z and y-z planes) is shown in the leftmost part of
Fig. 19. It is important to recognize that an additional advantage of
this approach, besides overcoming saturation limitations, is that the
resonator response becomes more independent of the azimuthal angle
of incidence (for a spherical resonator with many cuts [20, 21], the
response becomes independent of azimuthal angle of incidence).

In the specialized case of a rectangular resonator with a square
cross section perpendicular to the incident electric field direction, the
symmetries can be further used to cut the dielectric along the diagonals
since there is no normal electric field with respect to these additional

Figure 19. Air-split perturbations are introduced in the cross section
of a rectangular dielectric resonator to realize more flexibility in the
tuning range of the magnetic resonance. In the case that the resonator
has a square cross section, diagonal cuts can also be introduced.

Figure 20. A three-dimensional view of the four-cut cube geometry
shown in Fig. 19.



Progress In Electromagnetics Research B, Vol. 44, 2012 25

Figure 21. With the introduction of four air splits (of 50 nm each) in a
cubic PbTe resonator of side length s = 1.53 µm, modal degeneracy of
the two lowest-order modes is realized and the second magnetic mode
is pushed away from the degenerate frequency.

Figure 22. The scattered patterns associated with a four-cut cubic
PbTe resonator (s = 1.53µm) with 50 nm gaps. The patterns are
sampled at each of the peak frequencies determined from the results
in Fig. 21.
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cuts for the first electric mode by virtue of the relation

Et = ∇t

(
∂ψe

∂z

)
(33)

(here we have evenness of the mode about the diagonals of the square
and ∇t = ex∂/∂x + ey∂/∂y). We thus arrive at split-rectangular
resonators as shown in Figs. 19 and 20.

Four-split rectangular resonator designs also have the advantage
that the second magnetic mode will be further displaced from the
degenerate frequency of the two lowest-order modes; this can be
observed by comparing results in Fig. 14 where this mode is located at
approximately 7.0µm to those in Fig. 21 where the second magnetic
mode occurs at about 6.1µm. Fig. 21 also demonstrates that with
the inclusion of four air splits of 50 nm thickness, alignment between
the magnetic and electric modes is seen to occur at approximately
7.5µm. Realizing further separation between these modes is worth
acknowledging since suppressing this higher-order mode near the
operating frequency means that additional losses are not incurred.
To verify the dipole nature of the modes in the four-split design, the
scattered patterns at the two-lowest order resonances are presented in
Fig. 22.

4. CONCLUSIONS

This paper discusses an approach for tuning resonances in rectangular
dielectric resonators which can then be used to construct single-
particle, negative-index metamaterials. In particular, high-contrast
inclusions in the form of metallic dipoles are employed to shift the
first electric resonance down (in frequency) to the first magnetic
resonance, or alternatively, air splits are used to shift the first
magnetic resonance up (in frequency) near the first electric resonance.
Degenerate dielectric designs become especially useful in infrared or
visible-frequency applications where the resonator sizes associated with
the lack of high-permittivity materials can become sufficiently large
to enable propagation of higher-order lattice modes in the resulting
medium.

Cavity-perturbation theory has been used to initially motivate
the types of perturbations within the dielectric resonators (including
the polarization and placement) that would provide the necessary
modal shifts, and finally to arrive at simple formulas that can
be used for degenerate-resonator design. Alternative designs, each
with different advantages varying from minimizing the electrical size
to minimizing loss mechanisms, have been presented. Multiple-
perturbation designs in particular have been shown to allow for the
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tuning of the first-order magnetic resonance clear past the frequency of
the first electric resonance and thus make the accessibility to negative-
index metamaterials that adhere to effective-media limits much more
promising.
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