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Abstract—Maxwell’s equations specify that electromagnetic radia-
tion fields are generated by accelerating charges. However, the electro-
magnetic radiation fields of an accelerating charge are seldom used to
derive the electromagnetic fields of radiating systems. In this paper,
the equations pertinent to the electromagnetic fields generated by ac-
celerating charges are utilized to evaluate the electromagnetic fields of
a current path of length l for the case when a pulse of current propa-
gates with constant velocity. According to these equations, radiation is
generated only at the end points of the channel where charges are being
accelerated or decelerated. The electromagnetic fields of a short dipole
are extracted from these equations when r À l, where r is the distance
to the point of observation. The speed of propagation of the pulse
enters into the electromagnetic fields only in the terms that are second
order in l and they can be neglected in the dipole approximation. The
results illustrate how the radiation fields emanating from the two ends
of the dipole give rise to field terms varying as 1/r and 1/r2, while the
time-variant stationary charges at the ends of the dipole contribute to
field terms varying as 1/r2 and 1/r3.

1. INTRODUCTION

Short electric dipole is a classical text book example used to illustrate
the nature of radiation fields in electromagnetism [1]. The standard
procedure to derive the electromagnetic fields of a dipole is to first
derive the vector and scalar potential associated with the time varying
current and subsequently extract the electromagnetic fields from these
potentials.
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Maxwell’s equations predict that electromagnetic radiation fields
are generated only when electric charges are accelerated. However,
to the best of our knowledge electromagnetic fields generated by
accelerating charges have never been used to derive the electromagnetic
fields of a dipole. Here we start with a current channel of length l
through which a current pulse propagates with constant speed. The
electric and magnetic fields pertinent to this system are evaluated
using the field equations corresponding to accelerating charges.
Electromagnetic fields corresponding to a short electric dipole are
extracted from the resulting equations when r À l, where r is the
distance to the point of observation. When using this procedure,
one can observe that electromagnetic radiation emanates from the
end points of the dipole where the charges are being accelerated or
decelerated. The radiation fields generated at the two ends of the
dipole give rise to field terms that vary as 1/r and 1/r2, while the time
varying stationary charges at the ends of the dipole contribute to field
terms varying as 1/r2 and 1/r3, where r is the distance from the source
to the point of observation. The final expressions for the dipole fields
are, of course, identical to those obtained using the standard technique.

In the derivation of the electromagnetic fields of short electric
dipole it is usually assumed that the current flowing along the axis of
the dipole is constant. In principle, this assumes instantaneous transfer
of information along the dipole axis. In the present derivation, this
approximation is relaxed and it is assumed that the current flowing
in the dipole propagates with a finite speed along the dipole axis. As
shown in this paper, this speed enters into the dipole fields only in the
terms that are second order in l, where l is the length of the short
electric dipole.

When calculating electromagnetic fields from extended sources,
such as lightning return strokes, the channel is divided into small
elements and the contribution from each element is determined by
assuming that it is equivalent to a short electric dipole [2]. The physical
problem is somewhat similar to the one under consideration in this
paper because the current enters into the dipole from one end, travels
along it, and exits from the other end. In this paper, the conditions
that have to be satisfied by the length of the channel element, the
current and its speed of propagation for the channel element to be
regarded as a short electric dipole are investigated.
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2. ELECTROMAGNETIC FIELDS OF A MOVING
CHARGE

The theory of electromagnetic fields generated by moving charges is
described in any standard text book on electromagnetic theory, and
it suffices to quote the results directly [1]. The geometry relevant to
the problem under consideration is depicted in Figure 1. A charged
particle is moving with speed u and acceleration u̇. We assume that
the direction of u does not change with time; that is, both u and u̇
are acting in the same direction. The electric field produced by this
charge at point P (with β = u

c and ar = r
r ) is given by

E =
q

4πεor2

1
(1− β · ar)3

(ar − β)
(
1− β2

)

+
q

4πεo

1
cr(1− β · ar)3

[
ar ×

(
ar × β̇

)]
(1)

B =
q

4πεoc

1
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(β × ar)
(
1− β2

)

+
q

4πεo

1
c2(1− β · ar)3r

{
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(
ar × β̇

)]}
(2)

Note that the expressions for E and B both consist of two terms.
The second term, which depends on the acceleration of the charge, is
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Figure 1. Definition of the pa-
rameters that appear in Equa-
tions (1) and (2).
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Figure 2. Geometry relevant to
the parameters in Equations (3)
and (4) (top diagram) and (5)
and (6) (bottom diagram).
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the radiation field and the first term is called the velocity field. Note
that when the term for the velocity field becomes zero, the speed of
propagation of the charge is equal to the speed of light.

Consider the geometry shown in the top diagram of Figure 2. A
pulse of current originates at point S1 and travels along the z-axis
with constant speed and without any attenuation or dispersion. At
the initiation of the current, charges will be accelerated from rest to a
speed u. Once they attain this speed, they travel with constant velocity
along the z-axis. The acceleration of charge at S1 generates a radiation
field and the uniform propagation of charge along the z-axis generates
a velocity field. Recently, using Equations (1) and (2), Cooray and
Cooray [3] derived expressions for the radiation field produced by
the acceleration of charge at S1 and for the velocity field produced
by the uniform motion. According to their results, the expressions
for the electric and magnetic radiation fields generated by the charge
acceleration are

erad(t) =
i(t− r/c)u sin θ

4πεoc2r

1[
1− u cos θ

c

]aθ (3)

brad(t) =
i(t− r/c)u sin θ

4πεoc3r

1[
1− u cos θ

c

]aϕ (4)

respectively. In these equations, i(t) is the temporal variation of the
current emanating from S1.

Second, consider a spatial element of length dz through which
a current pulse i(t) is moving with speed u (see the diagram at the
bottom of Figure 2). The velocity fields generated by this element at
point P are given by [3]

devel =
i(t− r/c)dz

4πεor2
[
1− u

c
cos θ

]2

[
1− u2

c2

] [ar

u
− az

c

]
(5)

dbvel =
i(t− r/c)dz

4πεor2c2
[
1− u

c
cos θ

]2

[
1− u2

c2

]
aϕ (6)

In the next section, these equations together with Coulomb’s law are
used to derive the electric and magnetic fields of a current channel
of length l for the case that a current pulse propagates with constant
velocity.
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Figure 3. Geometry used in deriving the electromagnetic fields of a
current channel.

3. ELECTROMAGNETIC FIELDS GENERATED BY
THE CURRENT CHANNEL

The geometry under consideration is shown in Figure 3. A current
pulse originates at point S1 and it travels without attenuation or
dispersion towards S2. At S2, the current is terminated. The total
electric field at point P , generated by this process has five components.
They are as follows: (i) the radiation field generated from S1 as the
charge accelerates when the current is initiated, (ii) the radiation field
generated from S2 during the charge deceleration as the current is
terminated, (iii) the electrostatic field generated by the negative charge
accumulated at S1 when the positive charge travels towards S2, (iv) the
electrostatic field generated by the accumulation of positive charge at
S2, and (v) the velocity field generated as the current pulse moves along
the element. The magnetic field generated by the element consists of
three terms, namely, two radiation fields generated by S1 and S2, and
the velocity field generated as the current propagates along the path.
Let us now write down the expressions for these field components.

3.1. The Electric Radiation Field Generated from S1

Let us assume that the current pulse leaving S1 can be represented by
I(t). The radiation field at point P is given by Equation (3), and with
the geometry under consideration here, one can rewrite this as

erad,S1 =
I(t− r1/c)u sin θ1

4πεoc2r1

1[
1− u cos θ1

c

]aθ1 (7)



362 Cooray and Cooray

3.2. The Electric Radiation Field Generated from S2

The radiation field generated from S2 as the charges decelerate is given
by

erad,S2 = −I(t− l/u− r2/c)u sin θ2

4πεoc2r2

1[
1− u cos θ2

c

]aθ2 (8)

3.3. The Static Field Generated by the Accumulation of
Charge at S1

The charge accumulation at S1 is equal to the integral of the current,
and the field component generated by the charges is given by

estat,S1 = −

t−r1/c∫
0

I(ξ)dξ

4πεor2
1

ar1 (9)

3.4. The Static Field Generated by the Accumulation of
Positive Charge at S2

The component of the static field generated by the accumulation of
positive charge at S2 is given by

estat,S2 =

t−l/u−r2/c∫
0

I(ξ)dξ

4πεor2
2

ar2 (10)

3.5. The Velocity Field Generated as the Current Pulse
Propagates along the Channel Element

The component attributable to the velocity field generated as the
current pulse propagates along the channel element can be written
directly using Equation (5). The result is

evel =

l∫

0

I(t− ξ/u− r/c)
{

1− u2

c2

}

4πεor2
[
1− u

c
cos θ

]2

[ar

u
− az

c

]
dξ (11)

Note, though, that in writing down this equation, we have assumed
that the current pulse does not vary as it travels along the element l.
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3.6. Magnetic Radiation Field Generated from S1

The magnetic radiation field generated from S1 is given by

brad,S1 =
I(t− r1/c)u sin θ1

4πεoc3r1

1[
1− u cos θ1

c

]aϕ (12)

Note that the magnetic field is in the azimuthal direction.

3.7. Magnetic Radiation Field Generated from S2

The magnetic radiation field generated from S2 is given by

brad,S2 = −I(t− l/u− r2/c)u sin θ2

4πεoc3r2

1[
1− u cos θ2

c

]aϕ (13)

3.8. Magnetic Velocity Field Generated as the Current
Pulse Propagate along the Channel Element

The velocity field generated as the current pulse propagate along the
channel element is given by

bvel =

l∫

0

I(t− ξ/u− r/c)
{

1− u2

c2

}
sin θ

4πεor2c2
[
1− u

c
cos θ

]2 aϕdξ (14)

Again note that, in writing down this equation, it was assumed that
the current pulse does not vary as it travels along the element l.

The field components given by Equations (7) to (14) provide a
complete description of the electric and magnetic fields generated by
the current channel. In the next section, we will utilize these fields
in conjunction with appropriate approximations to derive the electric
and magnetic fields of a dipole.

4. ELECTROMAGNETIC FIELDS GENERATED BY A
SHORT ELECTRIC DIPOLE

The geometry for the problem under consideration, including the
relevant geometrical parameters, is shown in Figure 4. Since the dipole
fields are usually given in the frequency domain, let us assume that the
current waveform in the current channel is given by

i(t) = Ioe
jωt (15)
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Figure 4. Geometry pertinent to the derivation of the electro-
magnetic fields of a current element.

where ω is the angular frequency. In order to derive the electromagnetic
fields of a dipole from the equations given in the previous section, we
have to assume that r À l. When this condition is satisfied, one can
also make the following simplifications:

δθ1 = (θ − θ1) =
l sin θ

2r
; δθ2 = (θ2 − θ) =

l sin θ

2r
(16)

cos δθ1 ≈ 1; cos δθ2 ≈ 1 (17)
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2
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2
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1
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1
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{
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1
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}
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{
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}
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cos θ1 = cos θ +
l sin2 θ
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1− u cos θ1

c
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c
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c
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
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1− ul sin2 θ

2rc
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c
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
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Let us now consider each individual field component derived in
the previous section and simplify them using the geometrical
approximations given in Equations (16) to (25).

4.1. The Radiation Field Generated as the Charges Are
Accelerated from S1

The radiation field generated by the initiation of current can be
obtained directly by substituting the expression for the current in
Equation (7). This gives

Erad,S1,θ1 =
Ioe

jω(t−r1/c)u sin θ1

4πεoc2r1

1[
1− u cos θ1

c

]aθ1 (26)

The above expression is exact, that is, it does not contain any
approximations. In order to extract the electric fields of an infinitesimal
current element we will write down the components of this electric field
in the direction of ar and aθ using the geometrical approximations
listed in Equations (16) to (25), which are valid when r À l. Moreover,
we also need to assume that

ωr

c
¿ 1.0 (27)

which makes it possible for us to write

ejω(t−r1/c) = ejω(t−r/c)

{
1− jωl cos θ

2c

}
(28)

Using these approximations and keeping only the first order terms with
respect to l, the component of this field in the direction of ar and aθ

becomes

Erad,S1,θ

=
Ioe

jω(t−r/c)u sin θ

4πεoc2r
(
1−u

c
cos θ

)


1− jωl cos θ

2c
− l cos θ

r
+

ul sin2 θ

2rc
(
1−u

c
cos θ

)


aθ(29)
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Erad,S1,r =
Ioe

jω(t−r/c)

4πεoc2r2





ul sin2 θ

2
(
1− u

c
cos θ

)


ar (30)

4.2. The Radiation Field Generated as the Charges Are
De-accelerated at S2

During the de-acceleration of the charges at S2 the radiation field
generated is

Erad,S2,θ2 = −Ioe
jω(t−l/u−r2/c)u sin θ2

4πεoc2r2

1[
1− u cos θ2

c

]aθ2 (31)

The above expression is exact, that is, its derivation does not rely
upon any assumptions. In order to derive the electric fields of an
infinitesimal current element we will write down the components of
this electric field in the direction of ar and aθ using the geometrical
approximations specified in Equations (16) to (25). Moreover, we also
assume that

ωr

c
¿ 1.0;

ωl

u
¿ 1.0 (32)

which makes it possible for us to write

ejω(t−l/u−r2/c) = ejω(t−r/c)

{
1− jωl

u
+

jωl cos θ

2c

}
(33)

Using these approximations and keeping only the first order terms with
respect to l, the components of this field in the directions of ar and aθ

are given by

Erad,S2,θ = − Ioe
jω(t−r/c)u sin θ

4πεoc2r
(
1− u

c
cos θ

)



1− jωl

u
+
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+

l cos θ

r
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(
1−u

c
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)


aθ (34)

Erad,S2,r =
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jω(t−r/c)
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



ul sin2 θ

2
(
1− u

c
cos θ

)


ar (35)
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4.3. The Electrostatic Field Generated by the Accumulation
of Negative Charge at S1

As the positive current leaves S1, negative charge starts to accumulate
there and this gives rise to a static field. This static field is given by

Estat,S1,r1(t) = −Ioe
jω(t−r1/c)

4πεor2
1jω

ar1 (36)

After using the approximations given earlier, and noting that

1
r2
1

=
1
r2

{
1− l cos θ

r

}
(37)

the components of this expression in the direction of ar and aθ can be
written as

Estat,S1,r = −Ioe
jω(t−r/c)

4πεor2jω

{
1− jωl cos θ

2c
− l cos θ

r

}
ar (38)

Estat,S1,θ(t) =
Ioe

jω(t−r/c)

4πεor2jω

{
l sin θ

2r

}
aθ (39)

4.4. The Electrostatic Field Generated by the Accumulation
of Negative Charge at S2

The static field generated by the accumulation of positive charge at S2

is given by

Estat,S2,r2(t) =
Ioe

jω(t−l/u−r2/c)

4πεor2
2jω

ar2 (40)

After using the approximations given in Equations (16) to (25), and
noting that

1
r2
2

=
1
r2

{
1 +

l cos θ

r

}
(41)

the components of this expression in the direction of ar and aθ are
given by

Estat,S2,r(t) =
Ioe

jω(t−r/c)

4πεor2jω

{
1− jωl

u
+

jωl cos θ

2c
+

l cos θ

r

}
ar (42)

Estat,S2,θ(t) =
Ioe

jω(t−r/c)

4πεor2jω

{
l sin θ

2r

}
aθ (43)
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4.5. The Velocity Field Generated by the Charges Moving
from S1 to S2

The velocity field generated as the current pulse propagates along the
element can be written directly from (5), and the result is

Evel,r =
Ioe

jω(t−r/c)l

4πεor2u
[
1− u

c
cos θ1

]2

[
1− u2

c2

]
ar (44)

Evel,z = − Ioe
jω(t−r/c)l

4πεor2c
[
1− u

c
cos θ1

]2

[
1− u2

c2

]
az (45)

After some mathematical manipulations, the components of this field
in the directions of ar and aθ are given by

Evel,r,total =
Ioe

jω(t−r/c)l

4πεor2u
[
1− u

c
cos θ

]
[
1− u2

c2

]
ar (46)

Evel,θ = − Ioe
jω(t−r/c)l

4πεor2c
[
1− u

c
cos θ

]2

[
1− u2

c2

]
sin θaθ (47)

4.6. The Total Electric Field of a Short Electric Dipole

The two values for the total electric field of the current element in
the directions ar and aθ is given by the sum of (29), (34), (38), (42)
and (46), and (30), (35), (39), (43) and (47), respectively. The resulting
field can be written as

Eθ =
Ioe

jω(t−r/c)l sin θ

4πεo


 jωu

uc2r
(
1− u

c
cos θ

) − jωu cos θ

uc3r
(
1− u

c
cos θ

)

+
u2 sin2 θ

c3r2
(
1−u

c
cos θ

)2−
2u cos θ

c2r2
(
1−u

c
cos θ

)+
1

r3jω
+

(
1−u2/c2

)

cr2
(
1−u

c
cos θ

)2


aθ (48)

Er =
Ioe

jω(t−r/c)l

4πεo


 u sin2 θ

c2r2
(
1− u

c
cos θ

) +
cos θ

r2c

+
2 cos θ

jωr3
− 1

ur2
−

(
1− u2/c2

)

ur2
(
1− u

c
cos θ

)

ar (49)
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After rearranging the equations given above one obtains

Eθ =
Ioe

jω(t−r/c)l sin θ

4πεo

[
jω

c2r
+

1
cr2

+
1

jωr3
− 1

cr2

+
u2 sin2 θ

c3r2
(
1−u

c
cos θ

)2−
2u cos θ

c2r2
(
1−u

c
cos θ

) +

(
1−u2/c2

)

cr2
(
1−u

c
cos θ

)2


aθ(50)

Er =
Ioe

jω(t−r/c)l

4πεo

[
2 cos θ

cr2
+

2 cos θ

jωr3
− cos θ

cr2
− 1

ur2

+
u sin2 θ

c2r2
(
1− u

c
cos θ

) +

(
1− u2/c2

)

ur2
(
1− u

c
cos θ

)

ar (51)

With some algebraic manipulations, one can show that the last four
terms of Equations (50) and (51) each add up to zero, leaving the total
electric field in the direction of ar and aθ as

Eθ =
Ioe

jω(t−r/c)l sin θ

4πεo

[
jω

c2r
+

1
cr2

+
1

jωr3

]
aθ (52)

and

Er =
Ioe

jω(t−r/c) cos θ

4πεocrjω

[
2
r

+
2c

jωr2

]
ar (53)

These are identical to the short electric dipole fields derived using the
standard technique.

4.7. The Magnetic Radiation Field Generated at S1 during
the Initiation of the Current

The magnetic radiation field generated at S1 during the initiation of
the current

Brad,S1,φ =
Ioe

jω(t−r1/c)u sin θ1

4πεoc3r1

1[
1− u cos θ1

c

]aφ (54)

utilizing the geometrical approximations laid out in Equations (16)
to (25) and keeping only the second order terms in l, one obtains

Brad,S1,φ =
Ioe

jω(t−r/c)u sin θ

4πεoc3r

1[
1− u cos θ

c

]



1− jωl cos θ

2c
− l cos θ

r
+

ul sin2 θ

2rc
(
1− u

c
cos θ

)


aϕ (55)
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4.8. The Magnetic Radiation Field Generated at S2 during
the Cessation of the Current

The magnetic radiation field generated at S1 during the initiation of
the current

Brad,S2,ϕ = −Ioe
jω(t−l/u−r2/c)u sin θ2

4πεoc3r2

1[
1− u cos θ2

c

]aφ (56)

Using the approximations (16) to (25) and keeping only the first order
terms in l one obtains

Brad,S2,φ =−Ioe
jω(t−r/c)u sin θ

4πεoc3r

1[
1− u cos θ

c

]



1− jωl

u
+

jωl cos θ

2c
+

l cos θ

r
− ul sin2 θ

2rc
(
1−u

c
cos θ

)


aϕ (57)

4.9. The Magnetic Velocity Field Generated as the Current
Pulse Propagates along the Axis of the Dipole

The magnetic velocity field generated as the current pulse propagates
along the dipole is given by

Bvel,φ =
ejω(t−r/c)l sin θ

4πεor2c2
[
1− u

c
cos θ

]2

[
1− u2

c2

]
aϕ (58)

4.10. The Total Magnetic Field

The total magnetic field of the dipole is given by the sum of (55), (57)
and (58). The result can be written as

Bφ =
Ioe

jω(t−r/c)l sin θ

4πεo


 jω

c3r
+

1
c2r2

− 1
c2r2

− 2u cos θ

c3r2
(
1− u

c
cos θ

)

+
u2 sin2 θ

r2c4
(
1− u

c
cos θ

)2 +

(
1− u2/c2

)

r2c2
(
1− u

c
cos θ

)2


aϕ (59)
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The last four terms in the above equation add up to zero, making the
total magnetic field equal to

Bϕ =
Ioe

jω(t−r/c)l sin θ

4πεoc2r

[
jω

c
+

1
r

]
aϕ (60)

This expression is identical to the magnetic field for a short electric
dipole derived using the standard technique.

5. DISCUSSION

In the derivation of the electromagnetic fields of a short electric dipole
given in this paper, one can observe that the speed of propagation of
the charges, i.e., u, along the dipole axis enters into the results only
in the second order terms of l. The two conditions r À l and jωl

u ¿ 1
make it possible to neglect the terms containing u thereby leaving the
final result independent of this speed. Also, it is of interest to observe
that if the speed of propagation of the current pulse is assumed to be c,
the velocity term becomes zero and the total field is comprised of pure
radiation and static contributions. It is educational to observe that, in
the expression for the total electric field of the dipole, the term in 1/r
is contributed by the radiation fields, and that in 1/r3 is contributed
by the electrostatic fields. The 1/r2 term is attributable to both the
radiation and the static fields.

Now let us consider the radiation fields in the time domain. If the
current in the dipole is I(t), then the radiation field generated by the
acceleration of charge at S1 is given by

Erad,S1,θ(t) =
I(t− r1/c)u sin θ1

4πεoc2r1

1[
1− u cos θ1

c

]aθ1 (61)

The component of the radiation field in the same direction produced
by the deceleration of charges at S2 is

Erad,S2,θ(t) = −I(t− l/u− r2/c)u sin θ2

4πεoc2r2

1[
1− u cos θ2

c

]aθ2 (62)

Re-writing the terms sin θ1, cos θ1, sin θ2, cos θ2, r1 and r2 in terms of
sin θ, cos θ and r, and separating out the terms varying as 1/r, one
finds:

Erad(t) =
u sin θ

4πεorc2

[
1− u cos θ

c

]

{I(t−r/c−l cos θ/c)−I(t−r/c−l/u+l cos θ/c)}aθ (63)
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Expanding both terms inside the bracket using Taylor series and
neglecting the terms containing l2 and higher powers one obtains

Erad(t)=
l sin θ

4πεorc2

{
dI(t−r/c)

dt
− 1

2
d2I(t−r/c)

dt2
l

u

(
1−u

c
cos θ

)}
(64)

The above equation shows that, in the time domain, the short electric
dipole approximation is valid in addition to r À l (which was necessary
to convert Equations (61) and (62) to (63)) when

{∣∣∣∣
dI(t)
dt

∣∣∣∣ À
∣∣∣∣
1
2

d2I(t)
dt2

l

u

(
1− u

c
cos θ

)∣∣∣∣
}

(65)

when these conditions are satisfied, the radiation field becomes

Erad(t) =
sin θ

4πεorc2

ldI(t− r/c)
dt

(66)

The above is the time domain radiation field of a short electric dipole
of length l supporting a current I(t).

6. CONCLUSIONS

Equations pertinent to the electromagnetic fields generated by
accelerating charges have been utilized to evaluate the electromagnetic
fields of a current path of length l for the case that a current pulse
propagates at constant velocity. The electromagnetic fields of a short
electric dipole are extracted from these equations when r À l, where
r is the distance to the point of observation. Unlike the classical
treatment, which assumes a constant current along the dipole, the
present treatment starts with field equations that are valid for a current
propagating at a finite speed along the dipole channel. It has been
shown that the speed at which the pulse is propagating only enters
into the electromagnetic fields in the terms that are second order in l,
and they can be neglected in the short electric dipole approximation.
The results illustrate how the radiation fields emanating from the two
ends of a dipole give rise to field terms varying as 1/r and 1/r2, while
the time varying stationary charges at the ends of the dipole contribute
to field terms varying as 1/r2 and 1/r3. This physical insight is absent
in the classical treatment.
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