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Abstract—Electromagnetic (EM) eigen modes in a fishnet metamate-
rial (MM) slab have been comprehensively analyzed in an experimental
configuration, based only on precise solutions of Maxwell equations.
The EM eigen modes were directly detected from light-absorption
peaks. Each mode was explicitly characterized by the dispersion di-
agram and EM field distributions. It was consequently found that
the modes were classified into either inner modes inside the slab or
a mode at the interface with the surrounding media. The symmetric
properties of the inner modes were clarified using group theory. The in-
terface mode was found to come from surface plasmon polariton at flat
metal/insulator interface. The present analysis procedure is generally
applicable to MM slabs and enables to clarify the properties without
models or assumptions, which have been usually used in MM studies.

1. INTRODUCTION

Metamaterials (MMs) are forming an emerging subfield in artificial
electromagnetic (EM) crystals [1–4]. There are definite features in
MMs: (i) MMs cover a wide range from acoustic frequencies (kHz) [5–
7] to optical frequencies (PHz) [3, 4]; (ii) Most of MMs are composed of
metallic artificial structures; (iii) MMs have subwavelength unit cells.
The last feature can be regarded as the practical definition.

In view of EM studies, optical MMs are tough objects to analyze
rigorously, partially because metals at optical frequencies have non-
negligible loss, i.e., the permittivity ε is complex, so that numerical
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convergence becomes far slow in numerical implementations. In
addition, all the optical MMs in experiment were slab structures
including stacked layers; therefore, all the modes are leaky from the
slab, and the resonant energies are difficult to determine from optical
spectra such as reflection and transmission. Actually, in spite of many
trials, theoretical methods to solve the resonant modes in MM slabs
(for example, Green function method, local-density-of-states theory)
have not been established to our knowledge.

Many experimental results on optical MM slabs have been
reported so far (e.g., references in [3, 4]). The results were
usually interpreted by using effective permittivity-permeability (ε, µ)
framework [8], which assumed the validity of EM-field homogenization.
However, optical MMs usually have a periodicity of about 1/3
incident wavelength and induce very inhomogeneous EM field
distributions on resonances. It has been recently pointed out
that, starting from the fundamental Hamiltonian of EM fields and
matter, such homogenization is hard to be justified in the standard
electromagnetism [9]. Here we show a theoretical analysis based
only on EM first-principle computations for a fishnet MM as a
representative optical MM. This analysis is expected to directly
account for the results in optical measurement and to provide definite
insights for the fishnet MM, since recent numerical studies on the
plasmonic crystals of complex structures successfully clarified the
resonant modes [10–12].

Figure 1 schematically depicts the fishnet MM, which is in a free-
standing perforated metal-insulator-metal (MIM) structure in air. Air
holes periodically perforate the stacked MIM layers, forming a square
array which is assumed to infinitely spread two-dimensionally. The
periodicity a was set to be a = 830 nm and the diameter of the
air holes was set to be 400 nm. Specifically, M was Au and I was
Al2O3. The thicknesses of the M and I layers were set at 30 and
60 nm, respectively. These structural parameters were taken from an
experimental specimen [13].

Fishnet MMs were most extensively studied in experiment [13–
21]. Effective negative refractive index was extracted from the fishnet
MMs. Several theoretical explanations were proposed so far: some of
the theories tried to attribute the electric- and magnetic-field responses
to effective ε and µ, respectively [22–24], and others were restricted
only to the normal incidence [25, 26]. Thus, the entire view of the EM
resonant modes has not been resolved so far. It was shortly shown that
the lowest EM mode, thought to be related to the effective negative
refractive index, is a peculiar planar mode from the Poynting flux [27].
Thus, the whole view of the EM eigen modes in the fishnet MM has
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Figure 1. Schematic drawing of a free-standing fishnet MM in air.
Coordinate axes and incident wavevector kin are also shown. The
plane of incidence is set to be parallel to the xz plane.

not been clarified to date.
Figure 1 also shows an experimental configuration. An incident

plane wave with incident angle θ sheds on the fishnet MM, with
incident wavevector kin in the xz plane. In this configuration, in-
plane wavenumber k|| is the projection of kin onto the x axis, defined
by k|| = |kin| sin θ. When incident electric field Ein is parallel to the xz
plane, the polarization excites transverse magnetic (TM) modes in the
fishnet MM. When the Ein is parallel to the y axis, the polarization
induces transverse electric (TE) modes.

In this paper, we clarify the EM eigen modes in a typical MM by
numerically resolving Maxwell equations precisely. On the basis of light
absorption in the optical configuration, the dispersion diagrams of EM
eigen modes are shown in Section 2. From the EM-field distributions
in each mode, the EM eigen modes are well characterized in Section 3.
This thorough analysis, to our best knowledge, has not been conducted
for any MM slab.

2. ABSORPTION SPECTRA AND DISPERSION

2.1. Linear Optical Responses and Absorption

Linear optical responses such as reflectance (R) and transmittance
(T ) from periodic structures can be computed by solving Fourier-
transformed Maxwell equations. The fast convergent algorithms were
found in 1990s, so-called the improved Fourier modal method [28]
combined with scattering matrix method [29]. In this study, both
TE and TM modes were computed, changing incident angle θ from
0◦ to 85◦ at 5◦ steps. The numerical fluctuations of R and T were
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estimated to be within 1%. The permittivity of Au was taken from
the literature [30]. The permittivities of air and Al2O3 were set to be
1.00054 and 2.7225, respectively.

Figure 2(a) shows typical light absorption (A) spectra of the
fishnet MM shown in Figure 1. In Figure 2(a), the incident plane
wave was TM polarization and the incident angles were 0◦ (solid line),
10◦ (blue dashed line), and 20◦ (dotted line). The absorption A in %
was evaluated by subtracting outgoing EM power (the sum of Rmn and
Tmn) from normalized incident EM power (100%):

A = 100−
∑
m,n

(Rmn + Tmn) (1)

where Rmn and Tmn are usual notations in diffraction theory, and mn-
th reflectance and transmittance, respectively. In particular, R00 and
T00 are R and T , respectively.

Prominent A peaks were observed, explicitly indicating resonant
energies of the EM eigen modes in the fishnet MM. This is one of
the advantages to examine the A spectra because resonant energies
in photonic crystal slabs generally require much elaborate theoretical
analysis for optical spectra [31]. The values of A in Figure 2(a) are
not large, 20% at most, suggesting that large R appears and that the
surface impedance matching is not good. Note that diffraction does not
appear under the conditions in Figure 2(a), that is, Rmn = Tmn = 0
for m 6= 0 or n 6= 0.

   

(b)(a)

Figure 2. (a) Typical A spectra under TM polarization of the fishnet
MM shown in Figure 1. The A spectra are shown at incident angles
of θ = 0◦ (solid line), 10◦ (blue dashed line), and 20◦ (dotted line).
(b) Dispersion diagrams of the EM eigen modes, obtained from the A
peaks. Solid lines denote the light cone (LC) in air. The dispersion of
a homogeneous MIM (h-MIM) waveguide is shown by a dashed line,
for comparison. The dotted line represents the dispersion of reduced
MIM (r-MIM) mode into the first Brillouin zone.
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2.2. Dispersion Analysis

Figure 2(b) shows dispersion diagrams of the EM eigen modes under
TM (right) and TE (left) polarizations; the modes in the A peaks
are plotted in the plane of normalized in-plane wavenumber k||a/(2π)
and photon energy in eV. For comparison, the normalized frequency
ωa/(2πc) (ω: angular frequency of light, c: the velocity of light in
vacuum) is shown on the right axis. Solid oblique lines denote the
light cone in air. Here, we consider the situation that plane waves
probe the fishnet MM slab, so that all the modes appear above the
light cone.

The lowest mode appears at 0.6 eV and k|| = 0 in Figure 2(b)
and is plotted with closed circles. The lowest mode splits into lower
and upper branches at k|| 6= 0 under TM polarization. The lower
branch was well reproduced by a reduced MIM (r-MIM) waveguide
mode (dotted line). The details are described later.

The upper branch of the lowest TM mode is not clearly observed at
0.2 < k||a/(2π) < 0.4. This is a finding obtained from computational
results and is understood as follows. As is shown in Figure 2(a), the
absorption peaks of the upper branch become faint as the incident
angle (or k||) increases. This is probably because the upper branch
gets closer to the nearest-neighbor higher mode, which is called the
second TM mode (open circles), and loses the oscillator strength; in
fact, it is verified in Figure 2(a) that the absorption peak of the second
mode at 0.76 eV and θ = 20◦ is more prominent than the peak of the
upper branch at 0.65 eV. Another branch (closed circles) appearing at
k||a/(2π) > 0.4 and 0.7 eV is possibly connected to the upper branch
of the lowest TM mode, because of the similar dispersive behaviors;
the reappearance is presumably related to the disappearance of the
second mode in Figure 2(b). On the other hand, the upper branch and
the TM mode shown by closed triangles have different origins, and
consequently it is inferred that they do not take away the oscillator
strengths with each other.

In contrast, in Figure 2(b), a single branch of the lowest TE
mode appears, which increases in a quadratic manner, suggesting that
the lowest mode has two-dimensional (2D) property. The symmetry
and dimensionality are examined from the EM field distribution in
Subsection 3.1.

Figure 2(b) also shows the second and third (closed squares) TM
modes. These lower TM modes are single branch and do not show
splitting at all; this is a distinct difference from the lowest TM mode.
In addition, the second TM mode is not excited at k|| = 0, that is,
normal incidence. This property suggests that the second mode is
forbidden at k|| = 0; we examine it from the EM field distributions in
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Subsection 3.1. From the gradients of dispersions, the group velocities
of the second and third TM modes are estimated to be 0.08c and
0.002c, respectively. These modes are thus quite slow; as for the third
mode, it behaves like a local mode rather than a propagating mode.
Under TE polarization, the second (crosses) and third (closed squares)
modes were observed. Obviously, the third TE mode has a common
origin with the third TM mode.

The reduced surface-plasmon-polariton (SPP) mode is shown by
closed triangles in Figure 2(b). In the present configuration that
the fishnet MM stands alone, the background of semi-infinitely thick
homogeneous layer is air only. As a result, the reduced SPP has a single
branch. The dispersion is reproduced by the dispersion equation for
reduced SPP mode, which was already reported [27]. If a substrate
such as quartz exists, the second and third modes under TM and TE
polarizations are swept away and cannot be observed [27].

There is still another TM mode, which is shown by open squares
in Figure 2(b). The mode, which we simply call the fourth TM mode,
exists above the reduced SPP mode and is induced simultaneously with
diffraction. Thus, the mode is not simply described as a mode of single
origin; this is a difference of the fourth mode from the lowest, second,
and third modes induced in the subwavelength range.

Let us analyze MIM-inner modes coming from homogeneous
(or non-perforated) MIM waveguide modes. Basic properties of
homogeneous MIM waveguides were reported in the 1960s [32, 33] and
are now well understood; a new twist is to introduce the perforation.
To derive the dispersion equation for homogeneous MIM waveguides, it
is only necessary to take account of the ordinary boundary conditions
assigned to the EM fields in Maxwell equations. In the past
reports [32, 33], simplified equations were shown by assuming that all
the insulators are vacuum or air. To analyze the present situation, the
full dispersion equation is explicitly written as Eq. (A3) in Appendix A.
Eq. (A3) cannot be solved analytically; instead, the solutions were
found numerically. The lowest one was plotted with dashed line in
Figure 2(b).

The periodic structure enables folding of the waveguide mode in
the homogeneous MIM structure into the first Brillouin zone. The
reduced branch (the dotted line) in Figure 2(b) well reproduces the
lower branch of the lowest TM mode. This analysis strongly suggests
that the lowest mode originates from the MIM waveguide mode. In
addition, the lower branch satisfies the relation of ∂ω/(∂k||) < 0,
suggesting that in-plane negative group velocity is realized; the feature
is tested in Figure 3.

Except for the lowest TM mode, other modes in Figure 2(b) cannot
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be described simply as reduced MIM waveguide modes. The dispersion
in the homogeneous MIM structure is almost linear in the energy
range of present interest and cannot reproduce other TM modes by
any possible folding into the first Brillouin zone. Even for the second
and third TM modes, since the simple analysis is invalid in the free-
standing fishnet MM slab, further explorations are carried out through
EM-field examinations.

3. EM FIELD DISTRIBUTIONS

3.1. Fishnet MM: Perforated MIM Structure

Figure 3 shows the time-averaged EM power flow, which is equivalent
to Poynting flux, at the lower branch of the lowest TM mode. Incident
photon energy is 0.560 eV and incident angle is 10◦ [k||a/(2π) = 0.065];
the excitation condition is indicated by arrows in Figure 2. The
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Figure 3. Time-averaged EM power flow of the lower branch of
the lowest mode under TM polarization. The excitation condition
is indicated by arrows in Figure 2. (a) Power flow on a xy section
located at the center of the perforated I layer. Incident wavevector kin

is shown by red arrows. (b) Power flow on the xz sections. The scale
bars are in units of W/m2; the incident power was 1.45 W/m2 at the
xy input port. Black arrows on the sections denote the 3D vectors at
each point.
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color plots indicate the absolute value of the power flow in units
ofW/m2. The input power was set to be 1 pW at the xy input port;
accordingly, the input power was 1.45 W/m2. The arrows denote the
three-dimensional (3D) vector flows at each point. The left panel shows
the power flow on the xy section at the center of the perforated I layer.
Incident wavevector kin is drawn by red arrows. It is clear that the
in-plane power flow is negative for the incident x-component. The
right panels moreover show that the lowest mode is strongly confined
in the I layer of MIM structure; thus, the lowest mode is an MIM-
inner mode. We mention that the arrows in the transmitted layer are
seemingly missing; actually, they are not omitted but are quite small in
comparing to the MIM-inner mode and the power flow in the incident
layer, due to low transmittance of about 1%. It was confirmed that
the direction of the arrows in the transmitted layer is consistent with
that of incidence.

Numerical details of EM field distributions are briefly described
as follows. Figure 3 shows the unit domain. Periodic boundary
conditions were assigned to the xz and yz boundaries. An incident
plane wave travels along the −z direction and comes through the xy
input port. In the setting, EM fields were computed by the finite
element method (COMSOL Multiphysics). The metallic domains were
divided by triangles and tetrahedra with sides of less than 3 nm. The
insulator and air domains were divided coarsely in comparison with
the metals. Numerical tolerance in the computations was suppressed
to a few percent. The permittivity of metal (Au) was taken from
the literature [30]. As for the input power, here we concentrate on
linear optical responses and assume weak excitation. As the input
power was 1.45 W/m2, the corresponding electric (E) field in air was
33.1V/m, and the magnetic (H) field was 8.78 × 10−2 A/m. These
values are useful for testing resonant enhancements. The following
EM field distributions are evaluated similarly.

We here examine the EM eigen modes systematically. Figure 4
shows time-averaged EM power flow (left column: (a), (c), (e))
and snapshots of H field distributions (right column: (b), (d), (f)).
Figures 4(a) and 4(b) present the lowest TM mode; Figures 4(c) and
4(d) the second TM mode; Figures 4(e) and 4(g) the third TM mode.
The lowest and third modes were excited at the normal incidence
(θ = 0, that is, k|| = 0); the excitation photon energies were 0.600
and 0.895 eV, respectively. Evidently, the net in-plane power flows are
zero in Figures 4(a) and 4(e) because of the cancellation of the x and
y components. The second TM modes can be excited only at oblique
incidence; the incident angle θ was set to be 30◦ [k||a/(2π) = 0.258]
and the energy was 0.775 eV. The power flow exhibits net x-positive
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Figure 4. Time-averaged EM power flows and snapshots of H-field
distributions under TM polarization. The section was taken at the
center of the perforated I layer, similarly to Figure 3(a). The left
column shows the EM power flow and the right column displays H field
distributions. (a) and (b) are the lowest mode; θ = 0◦ (k|| = 0) and
0.600 eV. (c) and (d) are the second mode; θ = 30◦ [k||a/(2π) = 0.258]
and 0.775 eV. (d) and (e) are the third mode; θ = 0◦ (k|| = 0) and
0.895 eV. The scale bars are described in the text.



138 Iwanaga

in-plane power flow. The three modes are enhanced in the perforated
I layer, indicating that they are MIM-inner modes. The symmetric
properties of the in-plane TM modes are explored in the H field
distributions.

In the snapshots of the H field distributions in Figure 4, the phase
φ of the incident plane wave was determined by setting φ = 0 for
Hy(φ) = − cos(φ) at the y edge taking the smallest x value in the xy
input port. Figures 4(b) and 4(f) present the H field distributions at
the normal incidence, and Figure 4(d) shows the H field distribution
at the oblique incidence. The color plots show |H| distributions and
the arrows denote 3D H-field vectors.

The lowest TM mode in Figure 4(b) has simple and symmetric H
field distributions. More specifically, the following two properties hold:
(i) When 180◦ rotation around the center of the air hole is conducted,
the H field distribution is transformed as H → −H, that is, the
intensity is invariant while the vectors have a minus sign; (ii) When
incident polarization is changed from the current x polarization to the
y polarization, the same mode is induced. These two properties come
from the fact that, in terms of group theory, the lowest mode has E
symmetry, which is invariant under C2 operation (or 180◦ rotation)
except for the sign and is twofold degenerated [34]. The E symmetric
modes are peculiar to 2D periodic systems and cannot be realized in
one-dimensional periodic systems. It thus turns out that the lowest
mode is a 2D mode.

The second TM mode is an asymmetric mode. It is confirmed
as follows. In Figure 4(d), one can infer that it would become
symmetric for the air hole as θ → 0◦ and would finally take E-
symmetric distribution at the normal incidence, similarly to the lowest
mode. However, the in-plane H fields are dominantly composed of
−y components. This means that the in-plane EM power flow is one-
directional and cannot be net zero; therefore, asymmetric power flow
for the x axis would be induced even at the normal incidence. Of
course, the asymmetry is not allowed, which is why the second mode
is not excited at normal incidence.

As for the third TM mode, the H field distributions are more
complicated, implying that the mode is a higher mode. We again
consider the H field distribution in terms of group theory and can
identify the third mode E symmetry. Note that the H field distribution
is not closed for 90◦ rotation and the intensity |H| is invariant only
under C2 operation.

Figure 5(a) presents R and T spectra under TM polarization at
θ = 30◦. The shallow R dips at 0.51 and 0.77 eV correspond to the
lowest and third TM modes examined so far. The reduced SPP appears
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as the deepest R dip and the highest T peak at 0.96 eV. Figures 5(b)
and 5(c) show snapshots of E and H field distributions of the reduced
SPP, respectively. The phase φ was defined similarly to Figure 4. The
E field distributions are shown on the xz sections transverse at the
center of the air hole and near the bottom of the unit domain. The H
field distribution is shown on the yz section transverse at the center of
the air hole. The reduced SPP was excited at k||a/(2π) = 0.322. The
field distribution peculiar to the reduced SPP is observed in the H field
distributions as shown in Figure 5(c). The H fields are more than 3-
fold enhanced near the edge of the air hole in comparison with incident
H field. On the other hand, the E fields do not exhibit prominent
enhancement except for the edge of the air hole, which implies that
the E field is not enhanced by the periodic structure but enhanced
locally by the metallic nano-edge.
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Figure 5. (a) R (red solid line) and T (blue dashed line) spectra
under TM polarization at θ = 30◦. (b) E field distribution at reduced
SPP resonance: θ = 30◦ [k||a/(2π) = 0.322] and 0.960 eV. (c) H field
distribution, corresponding to (b).
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The H fields are enhanced by about 5-fold at the lower TM
modes (see Figure 4) and at the reduced SPP mode (see Figure 5(c)).
Note that the H fields are magnified on resonances irrespective of
the MIM-inner modes and the reduced SPP mode. Similar resonant
enhancements were found in the E fields.

3.2. Fishnet MM: Perforated MIMIM Structure

Figure 6 shows time-averaged EM power flow in a fishnet MM slab,
composed of three M layers and two I layers. The two xy sections were
taken at the centers of the I layers. Structural parameters such as the
periodicity, the diameter of air holes, and the thickness of the layers
were set to be the same as those of the fishnet MM in Subsection 3.1.
The lower branch of the lowest TM mode was excited. Incident photon
energy was 0.550 eV and incident angle θ was 30◦ [k||a/(2π) = 0.184].
This situation is similar to that in Figure 3; the difference is the number
of stacked layers. In-plane negative power flows were clearly observed
in the two I layers. Concerning the lowest TM mode, the dispersion
diagram is similar to the diagram in Figure 2(b). Therefore, similar
assignment to the lowest TM mode is valid for the two-I-layers fishnet
MM.
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Figure 6. Time-averaged EM power flow in a perforated MIMIM
structure. The two xy sections are taken at the centers of the I layers.
The lower branch of the lowest mode is excited under TM polarization
at θ = 30◦ [k||a/(2π) = 0.184] and 0.550 eV. The two xy sections are
taken at the centers of the I layers.
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Figure 7. Schematic drawings of mechanism of in-plane backward
shift of rays in fishnet MM slabs including (a) one I layer and (b) two
I layers. The shift seemingly looks as if negative refraction from the
outside.

We here compare the enhancement effect regarding the EM power
flows. As for the in-plane EM power flows P||, the enhancement factors,
defined by the ratio of P||/Pin, take the values of 2 to 5 in the fishnet
MM of one I layer; for example, P||/Pin = 6.0/1.45 = 4.1 at the lowest
TM mode (see Figure 3). The factor P||/Pin took a larger value in the
fishnet MM of two I layers; in fact, P||/Pin = 8.3 (see Figure 6) and
about twofold increase was observed for the one-I-layer fishnet MM.
This was partially because the absorption increases in the two-I-layers
fishnet MM. But only absorption is not the reason for the increase
in the power flow. Actually, the absorptions are about 30% and 20%
in the two-I-layers and one-I-layer fishnet MMs, respectively. Thus,
further resonant enhancement plays a positive role in the power-flow
enhancement by increasing the number of stacking layers. This result
suggests that the more stacked fishnet MM offers better performance
in waveguide applications.

In contrast, the power flow is not significantly enhanced at the
reduced SPP mode. This is probably because the reduced SPP mode
does not efficiently form in-plane power flow in any direction; instead,
it induces locally enhanced EM fields at the interface. This is one of
the features of the reduced SPP mode.
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4. DISCUSSION

Figure 7 schematically depicts the EM power flow at the lower branch
of the lowest TM mode. Figures 3 and 6 clearly show that in-plane
modes are excited and have net negative flow to the incident power
flow. The lateral backward shift looks as if negative refraction of
rays from the outside. One of the features in the in-plane power flow
is that the flow is not reduced by increasing the number of stacked
layers (see Figure 6), enabling to obtain more thick MMs exhibiting
the seeming negative refraction. Note that the EM dynamics inside
the fishnet MMs at oblique incidence has been revealed by the direct
numerical solutions without any model or simplification. Since the
seeming negative refraction of rays are realized in a general way, many
applications, for example, switch back of ray in micro-dimensions, will
be conceived based on the lowest TM mode in the fishnet MMs.

In terms of the wavenumber conservation, the incident in-plane
wavenumber k|| is unequal to net in-plane wavenumber in the I layer,
kI
||. The discrepancy is compensated by a lattice momentum 2π/a.

The negative flow expressed with the kI
|| satisfies the condition of an

umklapp process,

kI
|| = k|| −

2π

a
, (2)

and kI
|| < 0. Eq. (2) represents the conservation of wavenumber at the

interface. The dispersion (the dotted line) in Figure 2(b) evidences the
umklapp process. The excitations through the umklapp process result
in the in-plane backward shift of rays as depicted in Figure 7. It is
worth noting that umklapp processes generally take place in periodic
media [35].

5. CONCLUSIONS

We have precisely resolved Maxwell equations for the fishnet MM
slabs in the configuration of optical experiment and revealed the EM
eigen modes. By evaluating light absorption spectra, the resonant
energies of the eigen modes were explicitly determined, making it
possible to obtain the dispersion diagrams. The lower TM modes
and the reduced SPP mode were characterized by the dispersions and
H field distributions. It was shown that the lower TM modes are
MIM-inner modes and that the reduced SPP mode is an interface TM
mode. The symmetry of the lower TM modes was also identified from
group theory; the first and third modes were found to have 2D E
symmetry. Besides, the resonant enhancements on the eigen modes
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were quantitatively discussed. These features in the fishnet MMs were
directly obtained without relying on the effective (ε, µ) framework or
any other model proposed to MMs. Thus, the present first-principle
analysis offers definite and deeper insights for the fishnet MMs, and
moreover is a general procedure valid to other MM slabs.
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APPENDIX A. FULL DISPERSION EQUATION FOR
HOMOGENOUS MIM WAVEGUIDE MODES

Here we derive the full dispersion equation describing inner eigen
modes in a homogeneous MIM structure. To keep generality, we
think of the configuration shown in Figure A1. Stacked MIM layers of
finite thickness are located between semi-infinitely thick insulators of
permittivities ε1 and ε3. The thickness of the M and I layers is set to
be dM and dI , respectively. The coordinate axes are defined as shown
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and the permittivities are shown.
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in Figure A1. The permittivity of metal is written as εM (ω) and that
of insulator inside the MIM structure is ε2.

The planar modes in the homogeneous MIM structure are
exponentially decreasing solutions in the semi-infinitely thick insulator
layers; the z dependence of E field is expressed as

E±(z) = E± exp(±k(±)
z z) (A1)

and Re(k(±)
z )< 0 where k

(±)
z is the z component of wavevector. The

z dependence satisfies E±(z) → 0 as z → ±∞, respectively. In the
layers of finite thickness, the z dependence is written as

El(z) = E+
l exp(ik(l)

z z) + E−
l exp(−ik(l)

z z) (A2)

where l = 1, 2, 3. General expressions of Eqs. (A1) and (A2) are
connected to each other at the boundaries of z = zj (j = 1, 2, 3, 4). By
eliminating the terms of E±, El, k

(±)
z and k

(l)
z , the dispersion equation

for the planar modes is finally obtained:
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For simplicity, the notation of k0 is used, defined by k0 = ω/c where ω
is angular frequency of the EM wave. Eq. (A3) provides the relation
of k|| and ω. The solutions of Eq. (A3) are dispersion curves of planar
waveguide modes in the homogeneous MIM structure.

In the present analysis, the semi-infinitely thick layers are air, the
metal is Au, and the insulator layer of finite thickness is composed
of Al2O3. Accordingly, the permittivities of insulators were set to be
ε1 = ε3 = 1.00054 and ε2 = 2.7225. The permittivity of Au, εM (ω),
was taken from the literature [30]. Although Eq. (A3) has several
solutions, only the lowest one in energy contributes to describing the
modes in Figure 2(b). The lowest solution in Eq. (A3) was numerically
found, which is shown in Figure 2(b) by the dashed line. The higher
modes are very close to the light cone in Figure 2(a) and therefore are
not shown.
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