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Abstract—The paper proposes a Composite Right/Left Handed
double periodic transmission line structure with both inductance and
capacitance loaded. The structure exhibits leaky wave radiation
and hence can be considered for leaky wave antenna (LWA)
applications. We have theoretically obtained dispersion characteristics
using Singular perturbation method. Also, the radiation efficiency has
been obtained for different modulation indices. A novel leaky wave
radiation has been obtained below the left handed passband with
narrow bandwidth. The proposed structure has been fabricated on
FR4 substrate and measured. The simulated and measured results
seem to be in good agreement.

1. INTRODUCTION

Composite Right/Left transmission lines (TLs) have attracted a lot
of research interest in recent years. Their adaptation for leaky
wave radiation has been under study by many research groups.
Certain unique radiation properties may be obtained with composite
right/left handed (CRLH) structures due to their unusual propagation
characteristics. CRLH TL when employed as a leaky wave antenna
provides the advantage of compact size along with both backward
and forward radiation [1]. In this paper, we propose a TL whose
inductances and capacitances have been loaded in a double periodic
manner. Attempt has been made to analyse the proposed TL using
single perturbation procedure. It has been found that there exists a
leaky wave below the left handed (LH) passband for the double periodic
TLs.
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We provide an analysis for determining the propagation behaviour
and dispersion characteristics of the proposed double periodic TL.
Instead of going in for the conventional transmission line theory,
Floquet theorem and the equivalent circuit approach, we use singular
perturbation analysis. For conventional methods the nature of mode
of propagation is considered to be a pure transverse electromagnetic
(TEM) mode and the TL characteristics are calculated from the
electrostatic capacitance of the TLs. But, we need to take into
consideration the hybrid nature of the mode of propagation. In case of
microstrip, the hybrid modes cannot be completely described in terms
of static inductances and capacitances only [2]. The power density
distributions of the symmetric electric component are almost similar
to the transverse magnetic (TM) mode and hence we consider TM
mode dispersion here to determine the propagation constant.

The singular perturbation procedure provides a better physical
insight of the analysis. It starts with the exact solution of a related
problem, then it uses mathematical methods to find an approximate
solution to a problem which cannot be solved exactly by full wave
analysis. Perturbation method provides an expression for the desired
solution in terms of a formal power series in a parameter that quantifies
the deviation from the exactly solvable problem. This parameter can
be expressed and expanded as a series which will be an approximation
to the full solution. The expression is given as H = δ0H0 + δ1H1 +
δ2H2 + . . . + δnHn where δ is the depth of modulation [3].

Here H0 represents the known solution to the exactly solvable
initial problem, and H1,H2, . . . ,Hn represent the higher-order terms
which may be found iteratively by some systematic procedure. It is
noted that in addition to the dispersion characteristic derived from the
zeroth-order problem, the perturbation method also gives information
about the radiation efficiency and the radiation angle for the optimum
radiation efficiency, which are derived from the first-order and second-
order problem. The flow chart of the singular perturbation procedure
for the analysis of the periodic structure is shown in Fig. 2.

2. SINGULAR PERTURBATION ANALYSIS

The layouts of the double periodic TLs investigated are shown in Fig. 1.
Singular perturbation method has been used to analyze the dispersion
characteristics and the radiation efficiency of the compact LWAs and
they are numerically estimated as a function of the frequency and the
antenna length, respectively [3]. Also, the radiation angle has been
estimated at the novel leaky-wave region. Single periodic CRLH TL
structures have an equivalent circuit comprising of inductances and
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Figure 1. Layouts of the periodic TLs. (a) Model of unit cell of double
periodic TLs. (b) Double periodic TL with different capacitances
and inductances loaded. Substrate: εr = 4.5, thickness = 1.6mm.
l1 = 4.35, l2 = 3.7, l∗3 = 4.5, l#3 = 7.9, l4 = 1, l5 = 1, l6 = 0.5,
S1 = 0.15, S2 = 0.15, w =0.2, d = 5. All are in mm.

capacitances.
The effective permeability and permittivity in double periodic TLs

can be represented by the series inductance LR = µ0d and the shunt
capacitance CR = ε0d, where d is the periodicity of the unit cell as
shown in Fig. 1(a). The cell dimension (∆z = d) is normally small
compared to the wavelength. The series capacitances Ci and the shunt
inductances Li (i = 1, 2) are equivalent models for the effect of the LH
property. This contributes to the simultaneous exhibition of negative
effective permittivity and negative effective permeability, which results
in left-handedness behavior. We can directly relate the free-space
permittivity and permeability and the per-unit-length capacitance and
inductance [11] as given by Equation (2).

The geometry shown in the Fig. 1 can be used to construct the
double periodic TL. Assumption is made that the wave is propagating
along the z-direction, and independent of the y-direction. In a thin
homogeneous isotropic medium, such as microstrip lines, a quasi-static
TMx mode wave is considered because of a weak x-variation [11]. The
field equations and Helmholtz equation of the TMx mode are given
from Maxwell’s equations [13] by





Ez =
1

jωε

∂Hy

∂x
Ex = − 1

jωε

∂Hy

∂z
∂2Hy

∂x2
+

∂2Hy

∂z2
+ ω2µεHy =

∂ε

∂z

∂Hy

ε∂z

(1)

Contributed by the series capacitances and shunt inductances, the
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Figure 2. The flow chart of the singular perturbation procedure.

dielectric and magnetic properties consist of a positive contribution
due to the host medium and a negative dispersive contribution due to
the loaded shunt inductances and series capacitances. The effective
permittivity (ε) and permeability (µ) of the material can be given
by [11]. These expressions are obtained from Lorentz model.

ε = ε0εeff − 1
ω2Ld

, µ = µ0 − 1
ω2C0d

(2)

where L and C are the double periodically loaded inductances and
capacitances, respectively. The effective permittivity of microstrip
lines is [9]

εeff =
εr + 1

2
+

εr − 1
2

√
1

1 + 12h/w

where h/w is the ratio of height to width of the microstrip line. The

Bloch impedance is ZB = g
√

µ
ε where g is the geometric factor, and
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(a) (b)

Figure 3. (a) Layout of the periodic TL. (b) Analytical model of
double periodic dielectric on a ground plane.

is dependent on the width and substrate height of the microstrip line.
From the expressions, it is noted that the relative permittivity of the
host medium is not doubled comparing with the expressions in [11]
because of effect of the open-circuited stubs in shunt to the TL is
none.

These are the key parameters in the analysis of the double periodic
transmission lines. The investigation of the material parameters
requires that the series and shunt branches are dominated by Ci

and Li (i = 1, 2). The analytical model of the transmission lines
investigated is shown in Fig. 3. As previously shown, the effective
material permittivity and permeability of the guide are expressed as a
function of frequency, periodically loaded capacitances and inductances
as shown in (2).

In the double periodic transmission lines, lumped inductances
Li and capacitances Ci are loaded with periodicity ‘d’, as shown in
Fig. 1(a). We consider the transmission line with double periodically
loaded both inductances and capacitances. For the transmission line
with double periodically loaded inductances and double periodically
loaded capacitances, the inductances and capacitances are expanded
by
{

L=L0

(
1+δLηL1 cos(Kz0+θ1)+δ2

LηL2 cos(2Kz0+θ2)+O
(
δ3
L

))

C =C0

(
1+δCηC1 cos(Kz0+θ1)+δ2

CηC2 cos(2Kz0+θ2)+O
(
δ3
C

)) (3)

where L0 is the average inductance, ηL1 and ηC1 are the amplitudes of
the fundamental (first harmonic) component of the periodically loaded
inductance and capacitance respectively, while ηL2 and ηC2 are the
amplitudes of the second harmonic, δ is a perturbation coefficient
smaller than 1, and K is satisfied with Bragg condition K = 2π/d.
The material is assumed to be lossless. The TM mode is considered
here with non-vanishing field components Hy, Ex and Ez having no
variation in the y-direction. By substituting (3) into (2), a periodically
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modulated permittivity profile can be expressed as

ε =ε0εeff − 1
ω2L0d

+
1

ω2L0d
δη1 cos (kz0 + θ1)

+
1

ω2L0d
δ2η2 cos (2kz0 + θ2) + O

(
δ3

)

∂ε

∂z
=

1
ω2L0d

(−δLηL1k sin(kz0+θ1)−2δ2
LηL2k sin(2kz0+θ2)+O

(
δ3

))
(4a)

Including the periodically modulated permeability profile

µ = µ0 − 1
ω2C0d

+
1

ω2C0d
δCηC1 cos (kz0 + θ1)

+
1

ω2L0d
δ2
CηC2 cos (2kz0 + θ2) + O

(
δ3

)
(4b)

The perturbation is carried up to the second-order by introducing space
scales in the z-direction as zo = z, z2 = δ2z with ∂

∂z1
= 0





∂

∂z
=

(
∂

∂z0
+ δ2 ∂

∂z2

)

∂2

∂z2
=

∂2

∂z2
0

+ 2δ2 ∂2

∂z0∂z2

(5)

and the expression for Hy is given by

Hy = Hy0 + δHy1 + δ2Hy2

∂Hy

∂z
=

(
∂

∂z0
+ δ2 ∂

∂z2

)[
Hy0 + δHy1 + δ2Hy2

]

=
∂

∂z0
Hy0 + δ

∂

∂z0
Hy1 + δ2

(
∂

∂z2
Hy0 +

∂

∂z0
Hy2

) (6)

where Hy0, Hy1 and Hy2 are functions of x, z0 and z2.

2.1. Zeroth Order of the Problem

The zeroth-order component of Hy inside the substrate satisfies the
following differential equation [12]

{
∂2

∂x2
+

∂2

∂z2
0

+ ω2µεs0

}
Hy0 = 0 (7)

The fields Hy0 and Ez0 are continuous at the air-medium interface
(x = s), and the field Ez0 = 0 at the ground plane (x = 0). The
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boundary conditions are obtained as



For x = 0: Ez0s = 0
∂Hy0s

∂x
= 0

For x = s: Hy0s = Hy0a Ez0s = Ez0a

1
εs0

∂

∂x
Hy0s =

1
ε0

∂

∂x
Hy0a

(8)

Hy0s and Hy0a are the TM mode fields in the medium and free space,
respectively.

Based on the differential Equation (7) and the boundary
conditions (8), the TM mode field in the medium is satisfied as

Hy0s = Ngag
cos (kxsx)
cos (kxss)

e−jkzz0 (9)

The TM mode field in the air region is satisfied with Helmholtz
Equation (1) and is given by

Hy0a = Ngage
−kxa(x−s)e−jkzz0 (10)

where kxa and kxs are defined from (1):
{

k2
xa + k2

z = ω2µ0ε0 (x > s),
k2

xs + k2
z = ω2µs0εs0 (0 < x < s).

(11)

kxa, kz, kxs are complex wavenumbers:

kxa = k′xa + jk′′xa = βxa − jαxa; kxs = k′xs + jk′′xs = βxs − jαxs;
kz = k′z + jk′′z = βz − jαz

By applying the boundary conditions on the air-medium interface
x = s and the ground plane x = 0 (8) to the TM mode fields in the
medium and air with (9) and (10), the solution satisfies the relationship
as 




∂

∂x
Hy0s= −Ngagkxs tan (kxss) e−jkzz0

∂

∂x
Hy0a= −Ngagkxae

−jkzz0

(12)

The dispersion relation can be obtained from (11) and satisfies

kxs tan (kxss) =
εs0

ε0
kxa (13)

The field is a wave of varying amplitude ag and the unknown
normalization constant Ng in (9) and (10) is chosen by considering
the power carrier by the guided wave in the z-direction as |ag|2 over
a unit width in the y-direction, where ag is a guided power along the
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transmission line. In the passband, the z component of the attenuation
constant of the fundamental harmonic (αz) is zero. With help of the
Poynting power of |ag|2 toward z-direction, the normalization constant
Ng in the passband is obtained as

Ng =





4ωεs0β
2
xsαxa

βz

[
εs0

ε0

(
α2

xa + β2
xs

)
+ sαxa

(
β2

xs +
sα2

xaεs0
2

ε2
0

)]





1
2

(14)

2.2. First and Second Order of the Problem

The harmonic variation of the permittivity generates many higher
order Floquet modes. For, simplicity, first order Floquet mode is
considered along with perturbation orders of δ1 and δ2 in first and
second order analyses. The corresponding differential equations are
given below.

First Order{
∂2

∂x2
+

∂2

∂z2
0

+ ω2µs0εs0

}
Hy1 +

µs0

L0d
ηL1 cos (Kz0 + θ1)Hy0

+
εs0

C0d
ηC1 cos (Kz0 + θ1) Hy0 = −ηL1K sin (Kz0 + θ1)

(ω2L0dε0εeff − 1)
∂

∂z0
Hy0 (15)

Second Order{
∂2

∂x2
+

∂2

∂z2
0

+ω2µεs0

}
Hy2 =−2

∂2

∂z0∂z2
Hy0− µs0

L0d
ηL2 cos(2Kz0+θ2)Hy0

− εs0

C0d
ηC2 cos(2Kz0+θ2)Hy0− ηL1ηC1Kcos(Kz0+θ1)cos(Kz0+θ1)

ω2L0C0d2
Hy0

−ηL1ηC1K cos (Kz0 + θ1) sin (Kz0 + θ1)

(ω2L0dε0εeff − 1)
2

∂

∂z0
Hy0

−2ηL2K sin (2Kz0 + θ2)
(ω2L0dε0εeff − 1)

∂

∂z0
Hy0

− µs0

L0d
ηL1 cos (Kz0 + θ1) Hy1 − εs0

C0d
ηC1 cos (Kz0 + θ1) Hy1

−ηL1K sin (Kz0 + θ1)
(ω2L0dε0εeff − 1)

∂

∂z0
Hy1 (16)

For each order δn, the boundary conditions are obtained when the
fields Hy and Ez are continuous at x = s and the field Ez = 0 at
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x = 0. Based on the boundary conditions, the solutions of (14) for the
first-order is assumed.



Hy1a =F1ae
−α1a(x−s)e−j(kz+K)

+Nraie
jθ1

(
aie

jk−1a(x−s) + bie
−jk−1a(x−s)

)
e−j(kz−K)z0

Hy1s =
∑

i=±1 e−j(kz±K)z0

[
F±1s cos(k±1sx)

cos(k±1ss)
+

G±1s cos(kxsx)
cos(kxss)

] (17)

where

G±1s =
Ngage

jθ1

2(2Kkz ±K2)

(
kzηL1

ω2ε0εeff L0d− 1
− µs0ηL1

L0d
− εs0ηC1

C0d

)

And
k2
−1a = ω2µ0ε0 − (kz −K)2

α2
1a = −ω2µ0ε0 − (kz + K)2

k2
±1a = ω2µ0ε0 − (kz ±K)2

(18)

The first-order solutions contain kz−K and (kz +K) terms, which are
the wave numbers in z-direction, at least one of the scattered Floquet
modes must be a fast wave and then leaky-wave phenomenon occurs.
The power flow in the negative x and positive x-directions as incident
power |ai|2 and radiated power |bi|2, respectively. The normalization
factor Nr is evaluated as

Nr =

√
2ωε0

k−1a

The electric fields Ez and Ex can be obtained from Maxwell’s equations
as (1). Substituting (17) into the boundary conditions of the first-
order, F−1s, F1s are obtained. The relation between radiated wave bi,
incident wave ai and guided wave ag (as shown in Fig. 4) with in-phase
condition e−j(kz−K)z0 of cos(Kx) also be derived as [13]

bi = Crgag + Cggai (19)
where

Crg =

Nge
jθ1

2(2Kkz −K2)

(
kzηL1

ω2ε0εeff L0d− 1
− µs0ηL1

L0d
− εs0ηC1

C0d

)

(−(−k−1s) tan(k−1ss)− ki tan(kis))

− ω2L0dηL1 cos(Kz0 + θ1)
2 cos(Kz0) (ω2ε0εeff L0d− 1)2

Ng(−ki) tan(kis)

Nrejθ1

[
(−k−1s) tan(k−1ss)

εs0
+

jk−1a

ε0

]

Cgg = −ε0k−1s tan (k−1ss) + jk−1sεs0

ε0k−1s tan (k−1ss)− jk−1sεs0

(20)



122 Mujumdar, Jin, and Alphones

Figure 4. Interaction of the coupling: ai incident wave, bi radiated
wave, ag principle guided wave.

where Crg is the coupling coefficient and Crr is the reflection coefficient.
The solutions for the second order are field are assumed as{

Hy2a = ∅a(x)e−jkzz0

Hy2s = ∅s(x)e−jkzz0
(21)

Substituting the assumed solution and solving the differential
equations we get kxakz and kxs




∅a (x) = A1e
−kxa(x−s) − jkz

kxa
Ng

dag

dz2
xe−kxa(x−s)

∅s (x) = B1
cos kxsx

cos kxss
+ C1

sin kxsx

cos kxss
+

jkzNg

kxs

dag

dz2

x sin (kxsx)
cos (kxss)

(22)

Substituting (21) into the boundary conditions for the second-order at
x = 0, yield C1 = 0. At x = s, followed by the elimination of the
arbitrary constants, amplitude transport equation is obtained as

dag

dz2
= Cggag + Cgrai (23)

Cgg = Cggr + jCggi is the extinction coefficient. Its real part Cggr

gives the leakage coefficient and the imaginary part Cggi determines
the exact radiation angle for the optimum radiation efficiency.

In the LWA problem, the incident wave ai is not considered, since
it is based on the scattering of guided waves into a radiated wave due
to the presence of a non-uniformity along the waveguide and hence the
relations

bi = Crgag

dag

dz2
= Cggag

(24)

In a finite length Zg of the permittivity modulated TL, the radiation
efficiency Q0 and radiation angle θr of the leaky wave radiating from
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the TL with double periodically loaded inductances and capacitances
can be obtained from

Q0 =

Zg∫
0

|bi|2 dz2

|ag|2z2=0

= 1− e2CggrZg (25)

θr = tan−1

(
k−1a

β −K − Cggi

)

where Zg is the total length of the periodic TL. The radiation efficiency
is defined as the ratio of the total power radiated from the modulated
region to the guided wave power incident at z2 = 0 [13].

3. NUMERICAL RESULTS

It is assumed that the thickness of the TL s = 1.6mm, the average
loaded inductance L0 = 5.05 nH, the loaded capacitance C0 = 0.5 pF,
periodicity of the loaded elements is d = 10 mm, relative permittivity
of the substrate εr = 4.5, and it is considered as non-magnetic. We
can calculate the phase constant of the fundamental space harmonic,
only when we assume the periodic permittivity modulation applied is
same as the unperturbed phase constant. When kxs 6= 0, we need to
consider Quasistate TM mode solution.

Dispersion Diagram aids a better understanding of left Handed
and the right Handed regions of the given structure. In Fig. 5, we can
see the dispersion diagram of the proposed Double periodic TL. We

Figure 5. Dispersion characteristics of the double periodic TL based
on singular perturbation procedure, quasi-static TM mode.
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Figure 6. Radiation efficiency as a function of antenna length for
different modulation indices.

can identify three main regions: (1) New Leaky wave region, (2) Left
Handed Passband (3) Right Handed Passband. The frequencies at
which these properties are displayed are f1 = 1.023GHz, f2 =
2.467GHz and f3 = 4.567GHz respectively. The curves at f1, f2 and
f3 are inside the airline boundary (β = ω

√
µ0ε0

). In addition to the
fact that the proposed antenna radiates both backward and forward
at frequencies f2 and f3 respectively, it can radiate a forward wave at
fleaky = f1 which is below the LH passband.

The bandwidth of the stopband is comparatively wider than in
the case of single periodic TL [1]. In both right handed (RH) and LH
passband, the phase constant of the double periodic TL approaches
that of single periodic.

From the Single Periodic Method we also obtain the radiation
efficiency Q0. We have obtained the radiation efficiency at around
frequencies f1 and f2. We have four parameters which play an
important role in deciding the radiation efficiency viz. ηL1, ηC1, ηL2

and ηC2. The values of the modulation index have been suitable chosen
so as to give better efficiency. The two combinations of values chosen
are ηL1 = 0.1, ηC1 = 0.2, ηL2 = 0.2, ηC2 = 0.1 and ηL1 = 0.3,
ηC1 = 0.3, ηL2 = 0.2, ηC2 = 0.2. The radiation efficiency Q0 of (27) is
numerically estimated around the new right-handed leaky-wave region
(fleaky = f1) and the LH leaky-wave region (f = f2) as a function
of TL length Zg as shown in Fig. 6. It can be seen from Fig. 6 that
the radiation efficiency for the new leaky-wave right-handed region
is smaller than the radiation behavior in the LH region. It may be
developed for large η values from 0.1 up to 0.3 beyond which it exceeds
the limit of singular perturbation procedure [12]. It is noted that the
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radiation efficiency at fleaky = f1 is less than that at f = f2 and longer
transmission lines are needed to get more radiation efficiency.

4. REALIZATION

The proposed structure has been realized in a double periodic manner
with both inductance and the capacitance modulated along the
propagation axis. The structure has been implemented on a microstrip
line. The periodicity for the given structure (d) is 10 mm with
eight unit cells. The dimensions of the structure follow the single
perturbation analysis and they can be referred from fig. The width
of the microstrip line is 3.7 mm and the thickness is 1.6mm. The
proposed structure is implemented on a FR-4 substrate with relative
dielectric constant εr = 4.5.

Figure 7. Fabricated proposed double periodic TL structure.

Figure 7 shows the fabricated prototype of the proposed double
periodic CRLH TL. It can be seen that the inductance that has been
realized as a stub with a via, and the capacitance which has been
realized as gap between interdigited fingers which is shown in Fig. 1,
have both been varied in length in a double periodic fashion. We
can see the simulated and measured scattering parameters of the TL
in Fig. 8. The frequency responses of the double periodic TL which
is predicted by the singular perturbation method (SPM) can be seen
exhibiting a new leaky wave phenomenon. The measurements have
been made using Agilent N5230 PNA-L Network Analyzer.

It has been experimentally verified [1] that no leaky wave property
in the LH passband can be found in the single periodic CRLH TL.
This highlights the fact that double periodic TL has an advantage
over single periodic TL in terms of leaky wave radiation in the given
frequency range. Fig. 8 also shows the double periodic composite
right/left handed (DP CRLH) group delay.

The far-field radiation patterns of the proposed antenna designed
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Figure 8. Measured frequency responses of TLs.

(a) (b)

(c) 

Figure 9. Measurement E-field radiation patterns in decibel scale at
measured at (a) f1 = 1.023GHz, (b) f2 = 2.467 GHz and (c) f3 =
4.567GHz.

using microstrip line double periodically loaded with both series
interdigital capacitances and shunt inductances are measured at f1 =
1.023GHz (new leaky wave, forward radiation), f2 = 2.467GHz (LH,
backward radiation) and f3 = 4.567GHz (conventional RH, forward
radiation) as shown in Fig. 9. Both the simulated and measured
results have been shown. The theoretical farfield pattern has been
obtained from Eq. (25). The experimental discrepancies arise because
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of soldering errors, shorting of interdigital gap if not etched properly
etc.

5. CONCLUSION

We have proposed a double periodic TL structure with both inductance
and capacitance loaded. Single perturbation method has been
employed to analyze the proposed CRLH structure. Numerical
Expressions have been obtained which aid in obtaining dispersion
characteristics, propagation constant and radiation characteristics.
We have also included the modulation of the permittivity which has
increased the degree of freedom of the analysis. The radiation efficiency
has been plotted as a function of antennas length to illustrate the
effect of modulating indices on the antenna performance. It has been
obtained at the three frequencies of interest. We also observe a novel
leaky wave region with narrow bandwidth.
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