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Abstract—We study the propagation of waves on infinite and finite
size arrays made of subwavelength magnetoelectric resonators. We
propose an analytical study where each magnetoelectric resonator is
modelled simultaneously by an electric and a magnetic dipole. We
show how near field coupling and wavenumber quantification due to the
finite size of the structure induce a frequency splitting of the resonator
fundamental mode. We theoretically demonstrate that despite a spatial
period of the waves smaller than half wavelength (in vacuum), the
structure can efficiently emits radiations. An analytic expression of the
Q factor associated to the radiation losses is proposed. To correctly
estimate this factor, we show that not only near but also far field
interaction terms between the dipoles must to be considered.

1. INTRODUCTION

Interaction of electromagnetic waves with periodic structures of
resonant metallic scatterers when these last are separated by less than
a fraction of a wavelength is a challenging field. Such structures
were first studied in microwave engineering with two-dimensional
periodic metallic arrays [1–3] (also known as frequency selective
surfaces) and raised significant interests in various fields, such as
metallic photonic crystals [4–8], plasmonic devices [9–12] and latter for
developing metamaterials [13]. Indeed, metamaterials are composite
structures based on periodic arrays of metallic resonators interacting
simultaneously with magnetic and electric fields. Many different
metallic resonators have been studied such as the well-know split ring
resonator (SRR) [10, 13], thin wires [9, 14] or Jerusalem crosses [2], etc..
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More recently, metamaterial-like effects have been obtained thanks to
hybridization effects between two electrical resonators [15–20].

In 2000, Pendry predicted that a metamaterial with a negative
index makes a perfect lens [21]. However, other ways have been
proposed to overcome the limit of resolution. Some of them are based
on plasmonic-like behaviour of arrays of metallic resonators [8, 22–
25]. In [24, 25], they take benefit of the spatio-temporal control of
the wavefront to focus electromagnetic pulses on sub-wavelength spots
from the far field radiation. The work presented here is directly
related to these last works because we provide a simple model of
the sub-wavelength waves that propagates along a finite size array of
resonators. We also explain how the can emits electromagnetic energy.

Different approaches have been proposed to model and simulate
the interaction of wave with resonant inclusions. Among them, we can
mention plane wave expansion, finite element method, finite difference
time domain method, method of moments (MoM), etc. MoM [26] is
especially well suited for periodic arrays of metallic resonators [1, 27].
About ten years ago, a model derived from transmission line theory has
also been proposed to describe the propagation of magneto-inductive
waves, i.e., surface waves on an array of magnetic resonators [28].
The approach has been validated experimentally [29]. One major
advantage of this model consists of providing some straightforward
physical interpretations of the results.

Here, we propose to extend the last approach to small metallic
resonators that interact simultaneously with the electric and the
magnetic field. To that end, like in [30], we assume that a resonator
can be approximated as the superposition of an electric and a magnetic
dipole. The two dipole moments are driven by the same complex
current intensity. Considering infinite arrays of resonators, we work out
the relation of dispersion with respect to the direction of propagation.
Then we compute the eigen-modes of a finite size array. These modes
are interpreted as the splitting of the resonator fundamental mode. We
show that the maximum number of resonances is equal to the number
of cells. The complex current on each resonator is worked out from
the diagonalization of the mutual coupling matrix. To finish with, the
radiated fields of the eigenmodes are investigated. We focus on the Q
factor due to ohmic and radiative losses. We show that the radiative
losses are due to the tiny components of the eigenmodes with a spatial
period larger than the wavelength.

In the first part of this article, we present the results of two
“numerical experiments” computed with single resonating cells and
arrays of 4 by 4 cells. The spectra obtained with 3-gap SRR and 4-gap
SRRs provide a basis for discussions. The second part begins with
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the derivation of the mutual coupling between electric and magnetic
dipoles. Then the system of equations that takes into account all
the interactions between every cells is introduced. We show how the
relation of dispersion of waves can be deduced from the previous set of
equations in case of an infinite array. In a third part, we study finite
size arrays of electromagnetic resonators. In the last part, we focus on
the losses of such arrays.

2. COUPLING EFFECTS ON ARRAYS OF
SUBWAVELENGTH RESONATORS

2.1. Fundamental Mode of Isolated Resonators

The study is focused on arrays of subwavelength electromagnetic
resonators. These resonators can interact simultaneously with the
electric and magnetic field. Here, we deal with two simple geometries
with different symmetries to illustrate the survey. The two structures
are multi-gap split ring resonators [31–33]. Fig. 1 shows a schematic
view of the two proposed cells and their dimensions. The first one
is a square ring with 3 gaps (see Fig. 1(a)) etched on 1 mm-thick
epoxy substrate (ε = 4, tan δ = 0.02). Each gap is at middle of one
side. The 3-gap cell is symmetric with respect to plane (Oyz). The
second one, shown in Fig. 1(b), is obtained by adding a gap on the
fourth side. Therefore, this 4-gap cell is also symmetric with respect
to (Oxz) plane. We are going to show that the spectral properties are
strongly relied on symmetry. Before studying arrays of cells, we first
characterize the electromagnetic response of the individual cells. In
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Figure 1. Two resonant metallic cells with two different geometrical
symmetries: (a) Is a 3-gap SRR and (b) is a 4-gap SRR.
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Figure 2. Transient response (continuous red line) of the small loop
in front of the 4-gap SRR to a wide-band burst excitation. The burst
frequency bandwidth is between 6 and 11GHz. (a) Show the radio
frequency signals and (b) the envelop of the signals.

the following, our developments are sustained with numerical results
obtained with a FDTD electromagnetic simulation (CST Computer
Simulation Technology AG).

Because we are going to study the response of arrays composed of
such cells to a local excitation, we numerically estimate the reflection
parameter of a small magnetic antenna, a 3 mm-diameter current loop,
placed above the 3-gap and 4-gap cell. The transient response obtained
with the 4-gap SRR is shown in Fig. 2. From the Fourier transform
of the transient signal, CST works out the reflection coefficient versus
frequency. Fig. 3 plots the reflection coefficient for the 3 and 4-gap
SRR. The magnetic loop alone does not radiate in this frequency
band because its radius is very small compared to the wavelength.
Therefore the reflection coefficient is mainly due to the multi-gap SRR.
We clearly observe a first strong resonance at 5.5 GHz for the 3-gap
cell and at 7.3 GHz for the 4-gap cell. These resonances correspond
to the fundamental mode of each cell. Near the resonance, we assume
that the multi-gap SRR behaves as a simple resistor-inductor-capacitor
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Figure 3. The continuous line is the frequency dependence of the
reflection coefficient of a small magnetic loop antenna in front of (a) a
single 3-gap SRR and (b) a 4-gap SRR. The dash-line is the reflection
coefficient of the small magnetic loop antenna alone. The inset figures
represent the current distribution.

circuit. Hence, the resonance frequency ω0 is then equal to 1/
√

LsCs

where Ls and Cs are the equivalent inductance and capacitance of the
resonator.

Fig. 3 also shows the current distributions at ω0 for the two cell
geometries. For both of them, we observe that the electric current
forms a closed loop which induces a magnetic dipole like in a magnetic
loop. Due to the flat cell geometry, the magnetic moment is normal
to the surface. The origin of the difference between the 3 and 4-gap
arrays comes from the symmetry breaking. In both cases, due to the
plane geometry, the charge density distribution induces electric dipoles
parallel to the substrate. But because 4-gap cells are also symmetric
with respect to (Oxz) and (Oyz) planes (see Fig. 1), the charge
distribution of the fundamental resonating mode is anti-symmetric
with respect to these two last planes. Thus the 4 electric dipoles
that are induced between the 4 gaps cancel in pair and the coupling
between cells is mainly magnetic. On the contrary three gap cells
show a symmetry only with respect to (Oyz) plane. Because the charge
density is antisymmetric with respect to this plane but not with respect
to (Oxz) plane, it generates a dipole parallel to y-axis.

In the next section, we propose a simple method to model
the coupling between two electromagnetic cells based on these
observations.
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2.2. Mode Splitting in a Finite Array of Resonators

We are interested in the coupling between such cells when they are
periodically arranged in a finite array and separated by a distance of
about a tenth of a wavelength. To that end, we simulate a structure
made of 4 by 4 cells as shown in Fig. 4. For simulations, the distance
between the cells is 1 mm. The periodicity of the array is consequently
of 11 mm. One cell of the array is excited by a small magnetic loop
antenna, whose axis is coincident with the axis of the considered cell.
By this way, a normal magnetic field excites the structure. Because of
the flat geometry of the structure, the electric field mainly lies in the
Oxy plane and the magnetic field is parallel to z-axis. Fig. 4 compares
the reflection coefficients of the small magnetic loop antenna when this
last is alone and in front of the 3-gap cell array. With the 4 by 4 cell
array, several strong resonant frequencies appear. This mode splitting
of the fundamental mode is due to the coupling between the 16 cells.
These resonances correspond to Fabry-Perot modes. For some of the
important dips (resonant modes), we have shown the map of the normal
component of the magnetic field in the plane of the structure. To begin,
as frequency increases, the complexity of the mode pattern (M1, M2,
M3) increases too. For the mode M4, the spatial fluctuations of the
mode pattern is maximum because the current of two adjacent cells are
opposite in direction. Then, as the frequency continues to increase, the
complexity of the modes M5, M6, M7 decreases. Expressed in terms
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Figure 4. Continuous line is the reflection coefficient of a small
magnetic loop in front of a 4 by 4 array of 3-gap SRR (see subfigure).
The dash-line is the reflection coefficient of the small magnetic loop
alone. The grey level maps correspond to the phase sign of the normal
magnetic field distribution at some resonant frequencies.
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Figure 5. Reflection coefficient of a small magnetic loop in front of a
4 by 4 array of 4-gap SRR (continuous line) and of the small magnetic
loop alone (dash-line). The grey level maps correspond to the normal
magnetic field distribution at the resonant frequency.

of wavenumber, the Ox and Oy components (kx, ky) of modes M1, M4

and M7 are respectively given by (π
a , 0), (π

a , π
a ) and (0, π

a ) where a is
the period of the lattice. Hence, it seems that the coupling between
the cells is mainly vertical at low frequency and horizontal at high
frequency. This complicated behavior is due to the Oxz symmetry
breaking of the 3 gap geometry. Indeed, in case of 4 gaps, only the
main resonance M4 appears (see Fig. 5).

In the next sections, we show that the spectrum behavior is well
explained by considering the coupling between electric and magnetic
dipoles.

3. THEORY

3.1. Dipole Model for Magnetoelectric Resonators

For thin conductors, the magnetic moment at the center of the
structure is given by 1/2

∫
I(l)r× dl and the electric moment is given

by 1/jω
∫

∂lI(l)rdl where I(l) is the current at curvilinear abscissa
l. Close to the fundamental resonant frequency, only one degree of
freedom is available on the cell, the complex amplitude of the mode
or in other words the complex current intensity I. This observation
means that the electric and magnetic moments are proportional to I:

p =
dI

jω
ud and m ≡ SIum. (1)
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Constant S is the equivalent surface of the magnetic loop and um its
normal direction. As for d, it represents the equivalent length of the
dipole and up its direction.

Due to the resonant behavior of the cell, we assume that m and
p only weakly depend on the frequency and the position of the cell in
the structure. The electromotive force (emf) induced by cell #1 onto
cell #2 (see Fig. 6) is expressed as the sum of two terms

emf21 = −jω

∫∫
B1.dS2 +

∮
E1.dl2, (2)

where the first (respect. second) term is the emf induces by the
magnetic dipole (respect. the electric dipole) of cell #1 on cell
#2. Fields E1 and B1 stand for the electric and magnetic fields,
respectively, generated by cell #1 at the position of cell #2. Their
expressions are well-known [34] (see (A2) in the appendix). For sake
of simplicity, we assume these fields constant over the domains of
integration. Consequently, the emf induced by the magnetic induction
only depends on the distance between the cells, r. But in case of
emf induced by the electric dipole, it also depends on the angle θ (see
Fig. 6). This is due to the asymmetry of the cell.

Finally, from (A2) and (2), it comes

emf12(r, θ) =
Iηejk0r

4πr3k0

[
S2

(−jk4
0r

2 − k0r
3 + jk2

0

)

+ d2
(−jk2

0r
2 sin2(θ) + [rk0 − j]

[
3 cos2(θ)− 1

])]
(3)

Figure 6. Schematic representation used for the estimation of
the interaction between two 3-gap cells. The electric and magnetic
moments are shown. The value θ is the angle between the distance
vector r that links the two cells and the electric dipole moment.
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The upper and lower limits of the electromotive force are obtained for
θ = 0 and θ = π/2, respectively.

When d > Sω/c, the effect of the electric dipole dominates the
magnetic one. In such a case and because an electric dipole generate
close electric field lines, the sign of the emf goes from positive to
negative values when θ increases. In the next sections, we show that
this property is fundamental to explain the complex coupling behavior
observed in Section 2.2.

3.2. Equation System of Surface Waves

Close to the resonance frequency of one cell, we assume that each cell
acts as a simple resonant circuit. Then the self impedance of each cell
Zs is equal to the sum of an inductance jωLs, a capacitance 1/jωCs

and a resistance Rs.
On each resonator, the potential drop due to the resonator is equal

to the sum of the emf induced by the other cells (Kirchhoff’s voltage
law). It gives rise to a set of N equations where N is the number of
cells(
jωLs+

1
jωCs

+Rs

)
I(l, m)+

∑

l′ 6=l,m′ 6=m

Zm

(
l′−l, m′−m

)
I

(
l′,m′) = 0. (4)

The first term is the electric potential difference induced by the
resonator itself and the second one describes the mutual coupling
between the cells. Eq. (4) is the fundamental set of equations to
model the coupling between the cells. In the next sections, we deduce
from this relation the relation of dispersion of an infinite size array of
resonators and also the discrete spectrum for a finite size system.

3.3. Relation of Dispersion of an Infinite Size Array

In case of an infinite array, it can be shown that a plane wave is
solution of (4). Replacing I(l, m) by I(kx, ky) exp(−i[kxal+kyam]) and
considering only the near field interaction (i.e., the mutual impedance)
with the four closest neighbors leads to an explicit dispersion relation:

ω = ω0

√
1 + CsC

−1
m [−2 cos(kxa) + 4 cos(kya)]

1− LmL−1
s [2 cos(kxa) + 2 cos(kya)]

. (5)

When Cm is very large and Lm very small, there is no coupling
and the angular frequency is equal to ω0. When Cm À Cs, the
inductive coupling dominate and Eq. (5) is the dispersion relation of
the magneto-inductive waves [28, 29, 35]. Note that this expression can
be also worked out from the Lagrangian formalism [30, 36].
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For a square flat loop with dimensions given in Fig. 1, the
equivalent electric model elements are evaluated using [37] (p. 245).
The self impedance is about 2.4 nH when the current is assumed as
uniform†. This value is overestimate because in our case the current
is not uniform around the loop. An inductance of 0.5 nH (respect.
0.4 nH) is coherent with the simulation result for the 3-gap (respect.
4-gap) cells. A capacitance of about 1.6 pF (respect. about 0.8 pF) is
then deduced from the resonance frequency.

From dipole approximation, the mutual capacitance Cm and
inductance Lm are given by 4πε0a

3/d2 and µ0S
2/4πa3, respectively.

From the double integral Neumann formula, a more exact estimation
of Lm can be obtained. Both approaches give a mutual inductance of
roughly 0.1 pH. The dipole length d is approximately given by the size
of the gap for the 3-gap cell and it is equal to zero in case of the 4 gaps
because there is no electric moment.

From these values, the dispersion relations on 4 major directions
of the reciprocal lattice of the square lattice are plotted in Fig. 7(a)
and Fig. 7(b) for the 3 and 4 gap SRRs, respectively. In case of the 3-
gap SRR, the dispersion relation is not the same in the ΓXM and
ΓX ′M directions. From (5), we can easily find that the coupling
induce a frequency span between ω0(1− 6CsC

−1
m )/(1 + 4LmL−1

s ) and
ω0(1 + 6CsC

−1
m )/(1− 4LmL−1

s ). This two extrema are in accordance
with the frequency splitting observed in Fig. 4.

The slope of the dispersion relation of the array made of 4-gap cells
is negative (backward waves) because the magnetic coupling between
two parallel loops is negative. The slope sign of the 3-gap dispersion
relation is either positive or negative. Along the ΓX axis, the wave
is vector is parallel to the electrical dipoles. The dispersion curve is
therefore positive because the coupling of aligned dipoles is positive.
Along the ΓX ′ axis, the wave vector is perpendicular and the coupling
negative.

Nevertheless, the spectra observed in Figs. 4 and 5 can only be
explained by considering a finite size array.

3.4. Extraction of the Eigenmodes for a Finite Size Array

For finite size array, the sum in (4) is finite and there is no simple
analytical solution like for the infinite array. In such a case, it is helpful
to express the linear set of equations into a single matrix equation:

ZsI + ZmI = S, (6)
† Self impedance of a squared loop with sides a and wire radius b is given by
2µ0

a
π

[
ln

(
a
b

)− 0.774
]
.
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Figure 7. Dispersion relations for two arrays of (a) 3-gap cells and of
(b) 4-gap cells. The dispersion relation is plotted on 4 major axis of
the Brillouin zone (see inset). The continuous line follows the ΓXM
path and the dashed line follows the ΓX ′M . The dashed lines shows
the minimum and maximum values (see text).

where I and S are the current vector and the source vector with N
complex elements. This approach has been also applied in [28, 35].
The number of columns and raws of the self-impedance matrix Zs and
the mutual impedance matrix Zm is N by N. The i-th element of the
vector I is the complex amplitude of the current at i-th cell. The vector
S models the effect of the source term (the small loop) which generates
an electromotive force on the cells. Matrix Zs is the product of the
eye (unitary) matrix times (jωLs + 1/jωCs + Rs). Finally the (l, l′)
element of Zm is equal to the mutual impedance between the cell l
and l′. In case of a rectangular array of Mx rows and My columns
of resonators, the simpliest manner to index the resonator at position
ix and iy (ix and iy are expressed in the coordinate system Oxy) is
l = (ix − 1)My + iy. The inversion of Eq. (6) yields to estimate the
current I. In the next section, we diagonalize the mutual impedance
matrix to inverse Eq. (6).
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impedance, respectively. The dashed blue line is the module of the
current at one particular cell. (a) Plot is obtained for a 3-gap array
and (b) plot for a 4-gap array. Each array is composed of 4 by 4
elements.

3.4.1. Inversion from Eigendecomposition

Thanks to reciprocity, the matrix Zm is symmetrical, we can perform
its spectral decomposition which can be expressed as

Zm =
∑

UH
n λnUn, (7)

where λn are the complex eigenvalues and Un the associated complex
eigenvectors. Vectors Un which form an orthonormal basis are also the
eigenvectors of Zs because this last is proportional to the eye matrix.
Consequently, the current distribution vector can be deduced from

I =
∑ UH

n Un

λn + Zs
S. (8)

A resonance occurs at the poles of the previous equation, i.e., when
at least one denominator of the sum is null. Because the real part
of λn + Zs is always positive and almost constant, the minimum is
reached when its imaginary part is null. Thus, the n-th resonance
angular frequency ωn is worked out from the equation =λn = −=Zs

‡.
It may happen that there is no solution to the previous equation
which means that the nth mode cannot be excited. This approach is
numerically validated using the two arrays of 4 by 4 cells introduced in
Subsection 2.2. In this simulations, the real part of the self-impedance
is set to 0.07Ω that is the radiative resistance of a small circular loop of
‡ =X is the imaginary part of X.
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same radius than our multigap SRRs [34]. However, this value is very
approximate because the 3-gap and 4-gap geometries are more complex
than a simple small circular loop. This real part of the self impedance
has to be seen as the combined effect of the radiative and the ohmic
losses of a cell. At this stage, the effects of these two losses on the
intensity spectrum are identical. Fig. 8 plots the current amplitude
at one cell using Eq. (6). The same figure also plots the frequency
dependence of the 16 eigenvalues of the mutual impedance matrix and
−Zs. As expected, we observe that all resonances occur when the
imaginary part of λn and −Zs are crossing together. However we are
going to see in the last part of this article that when the ohmic loss are
small compared to the radiative losses, it is not sufficient to only take
into account the near field and the closest neighborhoods to estimate
the radiated power, i.e., the Q factor, of a finite size array.

3.4.2. Eigenmodes of a Finite Size Array

Because the mutual impedance only depends on the difference of
positions between two resonators, the complex intensity at column ix
and row iy of the (nx, ny) eigenvector is approximately given by

U
(nx,ny)
(ix−1)My+iy

∝ I0 sin(knx
x aix) sin(kny

y aiy) (9)

with knx
x = nxπ/a(Mx + 1) and ky = nyπ/a(My + 1) for

(nx, ny)ε[1,Mx− 1]× [1,My − 1]. Larger the array, the more exact the
approximation is. The quantified values of knx

x and k
ny
y are obtained

from the condition that the current is null outside the array [28].
Therefore, there are Mx ×My eigenmodes. Assuming only the effect
of the closest neighbors, there exists an analytical expression of the
eigenvalue of the (nx, ny) mode:

λ(nx,ny) = 2Zx cos
(

πnx

Mx − 1

)
+ 2Zy cos

(
πny

My − 1

)
, (10)

where Zx and Zy are the mutual impedance on x and y axis.
In Fig. 4, the coupling between 3-gap SRR generates about ten

resonances. The 16 resonances are not observed because some of
them are only weakly excited by the source. Moreover the resonance
frequencies of some of them are too close from each other to be resolved.
For the 4-gap SRR, Zx = Zy. In such case, when we switch nx and
ny, the same eigenvalue is obtained which means that for a square
array of cells, there are about half the number of resonant frequencies
compared to the non-degenerated case. Nevertheless, here we only
observe one resonance frequency because the magnetic coupling is
not strong enough to induce a significant splitting of the fundamental
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resonance. In that case, the normal magnetic field pattern presented
in Fig. 5 results from a superposition of all the modes.

4. RADIATED FIELD OF A FINITE SIZE ARRAY OF
RESONATORS

With the same approach, the radiation pattern can be easily deduced
from the currents distribution. Fig. 9 shows four calculated radiation
patterns for different eigenmodes of the 3-gap SRR array. Each pattern
results from complex interferences between the wave radiated by each
magnetoelectric dipole. Each radiation pattern is characterized by a
Q factor.

Theoretical evaluation of the radiated field by a finite size array
of resonators is a tedious problem. Indeed, in case of a large array of
cells, when we assume that there is no ohmic loss, eigen-modes are not

b
a
rra

y
s

o
f

(a) (b)

(d)(c)

Figure 9. Radiation patterns for the 4 by 4 array of 3-gap SRR at
frequencies: (a) 4.47 GHz, (b) 5.37 GHz, (c) 5.49GHz, (d) 5.62 GHz.
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attenuated because the period of the field is smaller than λ0 and there
is no way for the wave to be converted into propagative one. However,
in case of a finite size array, the extension of the cosine function is
now bounded by a rectangular function. The Fourier transform of this
eigen-mode contains now some components with spatial periods that
are equal or larger than the wavelength. Hence, a ‘subwavelength’
eigenmode can radiate because of these components.

To quantify this effect, we compute the quality factor of each
individual resonance. As stated, a resonance at ωn occurs when
=λn + =Zs ≈ 0. Around this resonance frequency, we assume that
λn + Zs can be linearized. Then (Eq. (8)) can be approximated by

I =
∑ UH

n Un

<(λ′n)
(
1 + j ω−ωn

<(λ′n)
∂=λ′n
∂ω

)S, (11)

where λ′n = λn+Zs. The λ′n are the eigenvalues of a mutual impedance
matrix plus the self impedance matrix. From the previous expression,
we immediately deduce the Qn factor of nth resonance

Qn =
∂=λ′n
∂ω

ωn

<λ′n
. (12)

Hence, Qn factor is driven by λ′n. For a linear (1D) array of resonators,
the n-th eigen-values can be deduced from the nth eigen-vectors by

λ′nx
=

Mx∑

lx,mx=1

Z(a[lx −mx])U∗
nx

(lx)Unx(mx), (13)

where Z(x) is the mutual impedance function matrix between two
resonators that are away from a distance x and a the period of the
array. By definition, Z(0) is the self impedance matrix. Replacing, the
mutual impedance function Z and Unx by their Fourier transform Z̃

and Ũnx respectively, the previous expression becomes

λ′nx
=

1
2π

∫ ∞

kx=−∞
Z̃(kx)

∣∣∣Ũnx(kxa)
∣∣∣
2
dkx. (14)

This expression can be straightforwardly generalized to 2D arrays

λ′nx,ny
=

1
2π

∫ ∞

kx,ky=−∞

[
Z̃(kx, ky)

]∣∣∣Ũnx,ny(kxa, kya)
∣∣∣
2
dkxdky. (15)



192 Jouvaud, Ourir, and Rosny

The Q factor is the ratio between ∂=λ′nx
/∂ω and <λ′nx

. Assuming
a sufficiently large array, one can deduce from (14) or (15) that =λ′nx

does not depend strongly on the array size. The resonances of the array
occur when the frequency obeys to the relation of dispersion given by
Eq. (5) with knx

x = nxπ/a(Mx +1). At these frequencies =λ′nx
is equal

to zero. In the same way, ∂=λ′n/∂ω only weakly depends on the array
size. But it is not anymore the case for the real part of λ′nx

.
Indeed, Fig. 10 plots the Fourier transform of the mutual

impedance matrix between two dipoles. We clearly observe that the
real part of the Fourier transform of the impedance does not include
evanescent components. In other words, for an infinite array without
losses, the wave on the array does not radiate. Indeed, in such a case
the eigenvectors are sine functions of wavenumber kx and its Fourier
transform is a Dirac centered on kx. When kx is larger than ω/c,
the eigen-value is purely imaginary. For kx > ω/c, the only way
to dump the wave is to add ohmic loss. However, for a finite size
system, we observe that the Fourier transform of the eigenmodes is
not a Dirac, but a sinc-like function. From (15), we note that the
finite size effect does not drastically modify the value of the imaginary
part of the eigenvalue which is approximately the value of the Fourier
transform of the imaginary part of the mutual impedance at kx. But
now, instead being zero between −k0 and k0, the Fourier transform of
the eigen-modes shows some ripples. Consequently the real part of the
eigenmode is weak but larger than 0. In that case, the high Qn factor
is due to the wave radiation.
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Figure 10. Real (–) and imaginary part (-.) of the Fourier
transform of the mutual impedance between two electrical dipoles. The
continuous line is the Fourier transform of one eigen-mode.
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Figure 11. Intensity level on one resonator for an array of 4 by
4 resonators without ohmic loss. The continuous line is obtained
when only the reactive near field of the closest neighbors is taken into
account. The dashed line results from the effect of the closest neighbors
including all interaction terms in Eq. (A5). Finally, the dotted line is
obtained when the neighbors and the interaction terms contribute all
together.

5. DISCUSSION

A question that constantly arises is the number of cells that should
be taken into account to correctly estimate coupling effects on an
array of resonant cells. If it is sufficient to take into account the
closest neighbors to predict the basic properties of an array of cells,
it is not anymore the case when we are interested in the losses due
to radiation for a finite size system. Indeed, in the previous part,
we have shown that the radiation can be deduced from the Fourier
transform of the mutual impedance between cells. This last is given by
a continuous integral of dyadic Green’s functions times the imaginary
unit. Because, it is well-known that the Fourier Transform of the
imaginary part of the Dyadic Green’s is zero for a wavevector that
is larger than k0, it is also the case of the real part of the Fourier
transform of the mutual impedance. Hence, the radiation is due to
a global effect on the array that involves all cells. Contrary to ohmic
loss, this effect is not local and cannot be correctly described by taking
into account only the near field effect and the radiation resistance of
the self impedance. This is confirmed in Fig. 11 where the array does
not show resonances when only the closest neighbors are considered in
the mutual impedance. This intensity enhancement at the resonance
frequency of poorly radiating modes is very similar to the Purcell’s
effect [38] as explained in [24, 39].
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6. CONCLUSION

We developed a model for infinite and finite size arrays of electric
and magnetic resonators that are separated by less than a wavelength.
Based on this approach, on one side, it is explained why the resonance
frequency for a finite size system is essentially governed by the
dispersion relation of an infinite size array. But on the other side, it is
shown that the finite size of the array induces the mode splitting and
radiation efficiency. With the proposed model, we have estimated the
Q factor associated with the radiation losses and we have shown that
all the resonators contribute to the radiated power. This conclusion is
fundamental to understand the radiation efficiency of ‘metalenses’.
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APPENDIX A. COMPLETE EXPRESSION OF THE
MUTUAL COUPLING

The complete expression of the electric and magnetic field generated
by an electric and a magnetic dipole are given by

E =
ejk0r

4πrε0

[(
jk0 +

1
r

)[
3(ur · p)ur − p

r

]

+k2
0ur × (p× ur) + j

k0

c0

(
jk0 +

1
r

)
(ur ×m)

]
, (A1)

B =
µ0e

jk0r

4πr

[(
jk0 +

1
r

)[
3(ur ·m)ur −m

r

]

+k2
0ur × (m× ur) + jω

(
jk0 − 1

r

)
(p× ur)

]
. (A2)

With the geometrical configuration defined in Fig. 6, the previous
expressions become

E =
Iηejk0r

4πr

[
d

(
1− j

k0r

)[
3 cos(θ)ur − ud

r

]

− jdk0 (ud − cos(θ)ur)− k0S

(
−k0 +

j

r

)
(uθ)

]
, (A3)
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B =
Iejk0rµ0

4πr

[
−S

(
jk0 +

1
r

)
um

r
+ Sk2

0um

+
(

jk0 +
1
r

)
d sin(θ)um

]
. (A4)

The mutual impedance is deduced from Eq. (2)

Zm(r) =
−Iηejk0r

4πr3k0

[
S2

(−jk4
0r

2 − k0r
3 + jk2

0

)

+ d2
(−jk2

0r
2 sin2(θ) + [rk0 − j]

[
3 cos2(θ)− 1

])]
. (A5)

It is assumed that the fields E1 and B1 are constant over the
integration domain.
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