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Abstract—Metasheet structures together with bulk composite
dielectric layers can be used for antenna radomes, absorbers, and
band gap structures. Transmission (T ) and reflection (Γ) coefficients
for a plane wave incident at any angle upon a metasheet embedded
in a dielectric layer are considered. These metasheets are either
patch-type or an aperture-type, and they can be either single-
layered or multi-layered. To calculate T and Γ for a patch-type
metasheet, a concise unified matrix approach is derived using the
Generalized Sheet Transition Conditions (GSTC). The Babinet duality
principle is utilized to get T and Γ for single-layered aperture-type
metasheets (as complementary to the patch-type ones) at an arbitrary
angle of incidence. The T-matrix approach is applied to calculate
characteristics of multilayered metasheet structures containing a
cascade of metasheets and dielectric slabs. In this paper, the minimum
distance for neglecting higher-order evanescent mode interactions
between the metasheets has been determined. Computed results based
on the proposed analytical approach are compared with the full-wave
numerical simulations. The analytical results are verified for satisfying
the energy balance condition.
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1. INTRODUCTION

The development, research, and applications of metamaterials (MM),
metafilms (MF), photonic bandgap (PBG) crystals, and artificial
dielectric or magnetodielectric composite materials with desirable
frequency responses are of an increased interest [1–5]. A metafilm,
or a metasheet (MS), is the two-dimensional case of a metamaterial,
and it can be either of a patch type (a dielectric film with identical
metallic patches on it), or of an aperture type (conducting film
with apertures, typically on a dielectric substrate). Thin planar
metasheets find application over a wide range of frequencies from
RF to the visual spectrum for designing antenna systems, filters,
shielding enclosures, screens, and absorbers. Such structures have
been studied, for example, for the development of frequency-selective
surfaces (FSS) [6, 7], and for perforated film absorbers, such as
CARAM (Circuit-Analog Radar Absorbing Materials) [8, 9]. FSS-
based structures are used in antenna radomes [10], patch antennas [11],
as well as controllable microwave absorbers [12].

Frequency characteristics of transmission (T ) and reflection
(Γ) coefficients of MS with simplest patterns have been analyzed
using full-wave numerical methods, especially at arbitrary angles of
electromagnetic incidence [13–15], as well as analytically (see, e.g., [16–
20], and references therein). The generalized sheet transition condition
(GSTC) for averaged macroscopic fields across a metafilm is proposed
in [16]. GSTC relates field discontinuities to the electric and magnetic
polarization densities of scatters on a metafilm. Based on the GSTC
approach, the analytical formulas for T and Γ have been derived in [21],
both for normal and oblique incidence. The GSTC approach is very
attractive for designing metafilm shielding and filtering structures,
since it substantially simplifies modeling and reduces computational
resources, provided the polarizability of a desired pattern is determined
in advance. A polarizability of interest may be retrieved comparatively
easily either analytically or numerically, as is done in [22–26].

The formulation presented in [16] and [21] allows for treating
polarizabilities only in the form of diagonal tensors, while the cross-
coupling between electric and magnetic polarizabilities of metafilm
elements is not taken into account. However, in many cases electric
and magnetic cross-coupling cannot be neglected in principle, and the
GSTC approach is not applicable to many pattern geometries. The
examples of such pattern geometries are an edge-coupled split-ring
resonator [27–29] and an Ω-particle used in chiral media [30]. Therefore
one of the objectives of the present paper is to modify the GSTC for
the case of cross-coupled electric and magnetic polarizabilities.
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Figure 1. General geometry and main vectors describing interaction
of a plane wave with a metasheet in cartesian coordinates.

Another objective is modeling multilayered metasheet structures,
which provide more degrees of freedom in engineering material
structures with desirable frequency responses. A problem is an
interaction of individual metasheets through higher-order evanescent
modes. However, when metasheets are placed far enough from each
other, these evanescent modes can be neglected. Finding a distance
between two neighboring metasheets, at which they can be considered
as non-interacting, is an important issue.

It was shown that the GTSC analytical approach agrees well with
numerical simulations for patch-type scatterers. However, analytical
expressions in [16] and [21] for aperture structures should be modified
to get better agreement. Herein, we generalize the formulation for
both patch- and aperture-type metasheets, any shape of scatterers on
a metasheet, an arbitrary number of layers, any frequency dispersion
of a dielectric and/or magnetic media, in which these metasheets are
embedded, and for all angles of a plane wave incidence.

2. GENERALIZED SHEET TRANSITION CONDITION
(GSTC) FOR METASHEET

A general geometry of a metasheet is shown in Figure 1 in cartesian
coordinates. For simplicity, assume that scatterers in the MS are small
compared to a wavelength in the medium, and the MS is buried in a
homogeneous host material with permittivity ε and permeability µ.

The electric and magnetic dipole moments associated with an
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individual scatterer are expressed as
[

~p
~m

]
= ¯̄a ·

[
~Eact

~Hact

]
=

[
¯̄aee ¯̄aem
¯̄ame ¯̄amm

]
·
[

~Eact

~Hact

]
, (1)

where [ ~Eact ~Hact] is the local acting electromagnetic field acting
on the scatter; ~p = q~l and ~m = π · r2I · n̂ are the induced
electric and magnetic dipoles, respectively; ¯̄aee, ¯̄aem, ¯̄ame, ¯̄amm

are the 3 × 3 tensors denoting the electric (ee), magnetic (mm),
and cross-coupling-electromagnetic (em) and magnetoelectric (me)
polarizabilities from the microscopic point of view. The GSTC relates
the discontinuity of the macroscopic field across the metasheet with
microscopic polarizabilities of the scatters. The macroscopic field
is defined as the superposition of an incident field and an induced
secondary field from the metasheet, averaged in such a way that rapid
variations of the field over a distance on the order of typical particle
separations in the sheet are eliminated,

[
~E
~H

]
=

[
~Emac

~Hmac

]
=

[
~Einc

~H inc

]
+

[
~Esheet

~Hsheet

]
. (2)

In [16], the GSTC have been derived for the case without cross-coupling
between electric and magnetic polarizations. Below, the GSTC are
generalized for non-zero ¯̄aem and ¯̄ame.

The complete process can be divided into two steps: (1) the
surface polarization and magnetization densities [~Ps

~Ms] are derived
from the dipole polarizability tensor ¯̄a; and (2) the discontinuity
of the macroscopic field is expressed in terms of the microscopic
polarizabilities by substituting the derived [~Ps

~Ms] into the boundary
conditions

ẑ × ~H
∣∣∣
0+

z=0−
= jω ~Pst − ẑ ×∇t

~Msz;

~E
∣∣∣
0+

z=0−
× ẑ= −jωµ ~Mst −∇t

~Psz

ε
× ẑ,

(3)

where the boundary is located at z = 0. In (3), index “t” stands
for transverse coordinates (x and y), and “z” corresponds to the z-
components.

According to the Lorentz static field theory, only the dipole terms
corresponding to the scatterers are considered for the induced field [31].
The induced field from the sheet is the superposition of the dipole
fields of all the scatters in the infinite array. The acting field on the
scatter under consideration (the jth scatterer) is the incident field,
plus the field from all the neighboring dipoles (excluding the one under



Progress In Electromagnetics Research B, Vol. 44, 2012 93

consideration). The GSTC can be applied if two conditions are fulfilled.
First, the scatters are densely packed, i.e., the distance between the
scatterers is small compared with any large-scale dimension of the
structure under consideration. This assures that the averaged field
varies slowly enough, so that its discontinuity across the surface can
be regarded as due to continuous surface distributions of ~Ps and ~Ms.
Second, the distribution of the scatterers over the surface is sparse
as measured in terms of the sizes of the scatters themselves, i.e.,
interactions of the field from all the other scatterers on the scatterer
under consideration can be replaced by a continuous distribution of
~Ps and ~Ms. This means that the jth scatterer can be replaced with
an equivalent small disk of radius R centered at the position of the
scatterer with uniformly distributed ~Ps and ~Ms, and the field from
the neighboring scatterers acting on the jth scatter is modeled as a
“punctured sheet” with the hole corresponding to the disk located at
the jth scatterer (see Figure 1). The radius R is determined in [16]
in the static limit k → 0, assuming that the field of the punctured
sheet is equal to the field caused by the dipole array constructed by
all the discrete scatters, except the one to be studied. For example,
R ≈ 0.6956D for a square array with the period D [32].

The acting field [ ~Eact ~Hact] is then defined as the sum of the
incident wave [ ~Einc ~H inc] and the field from the entire sheet of the
electric and magnetic polarization density [~Esheet ~Hsheet], excluding
the contribution of a small disk under consideration [~Edisk ~Hdisk].
Thus for the scatterer to be studied[

~Eact

~Hact

]
=

[
~E − ~Edisk

~H − ~Hdisk

]∣∣∣∣
z=0+

=
[

~E − ~Edisk

~H − ~Hdisk

]∣∣∣∣
z=0−

=
[

~E
~H

]

av

−
[

~Edisk

~Hdisk

]

av

, (4)

where
[

~E
~H

]

av

=
1
2

([
~E
~H

]∣∣∣∣
z=0+

+
[

~E
~H

]∣∣∣∣
z=0−

)
;

[
~Edisk

~Hdisk

]

av

=
1
2

([
~Edisk

~Hdisk

]∣∣∣∣
z=0+

+
[

~Edisk

~Hdisk

]∣∣∣∣
z=0−

)
,

(5)

and ~E and ~H are the total fields.
The average field generated from the equivalent disk for the jth
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scatter is [16]
[

~Edisk

~Hdisk

]

av

= ¯̄G ·
[

~Ps
~Ms

]
(6)

where ¯̄G is the diagonal matrix, derived in [16] assuming that near-field
interactions are ignored for small kR with an error of O{(kR)2}, where
k = ω

√
εµ,

¯̄G = Diag
[ − 1

4Rε − 1
4Rε

1
2Rε − 1

4R − 1
4R

1
2R

]
. (7)

Considering the relation between the electric and magnetic polarization
densities and the electric and magnetic dipole moments given by

[
~Ps
~Ms

]
= N

〈[
~p
~m

]〉
, (8)

where N is the number of scatters per unit area, and the symbol 〈〉
denotes averaging over the scatters in the vicinity of the points where
Ps and Ms are defined. Substituting (1), (4), (6) in (8), a relation
between polarization densities and macroscopic fields can be derived
as

[
~Ps
~Ms

]
= N

〈
¯̄α ·

[
~Eact

~Hact

]〉
=N

〈
¯̄α ·

([
~E
~H

]

av

− ¯̄G ·
[

~Ps
~Ms

])〉
(9)

For simplicity, assume that metasheet is a square array with the period
D (center-to-center), so that

[
~Ps
~Ms

]
=

1
D2

[
~p
~m

]
(10)

Then, [~Ps
~Ms] can be written through the macroscopic field as

[
~Ps
~Ms

]
=

[
D2¯̄I + ¯̄α · ¯̄G

]−1
· ¯̄α

[
~E
~H

]

av

= ¯̄αmac ·
[

~E
~H

]

av

, (11)

where

¯̄αmac =
[
D2¯̄I + ¯̄α · ¯̄G

]−1
· ¯̄α =

[
¯̄αEE ¯̄αEM
¯̄αME ¯̄αMM

]
(12)

is the macroscopic polarizabily tensor relating the polarization density
to the macroscopic field, and is a function of the periodicity of the
array and the polarizabilities of the inclusions. ¯̄I is the unity tensor.



Progress In Electromagnetics Research B, Vol. 44, 2012 95

Substituting (11) in (3) to replace the surface polarization and
magnetization with the macroscopic field terms, the GSTC that
includes macroscopic polarizabilities [33, 34] is

ẑ × ~H
∣∣∣
0+

z=0−
= jω [ ¯̄αEE, t ¯̄αEM, t ] ·

[
~E
~H

]

av

−ẑ ×∇t

(
[ ¯̄αME, z ¯̄αMM, z ] ·

[
~E
~H

]

av

)
;

~E
∣∣∣
0+

z=0−
× ẑ = −jωµ [ ¯̄αME, t ¯̄αMM, t ] ·

[
~E
~H

]

av

−1
ε
∇t

(
[ ¯̄αEE, z ¯̄αEM, z ] ·

[
~E
~H

]

av

)
× ẑ. (13)

The coordinate system is as in Figure 1. The left-hand sides of (13) are
the field discontinuities, while the right-hand side is the average field
across the sheet. The field relation across the sheet is solely governed
by the array period and the geometry parameters of the scatterer.
Further, using (13), the field discontinuity across the metasheet will be
expressed through the incident, reflected and transmitted components,
and T and Γ will be calculated. The reflection and transmission
coefficients also depend on the array period and geometry of scatterers.

3. T AND Γ FOR A SINGLE-LAYERED METASHEET

A case of an arbitrary angle of incidence θ of a plane wave upon
a single metasheet is considered herein. The transmission T and
reflection Γ coefficients are derived for both patch-type and aperture-
type metasheets. For a patch-type metasheet, a system of two linear

i

r
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r
t

i

θ
H
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k
k

k
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Figure 2. TE plane wave incident on a metasheet.
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equations for T and Γ is solved, and for an aperture-type metasheet,
the Babinet’s duality principle [35, 36] is used to map T and Γ from
the complementary patch-type problem. It is easy to verify that the
formulas obtained below for the GSTC, T and Γ converge to those
obtained in [16] and [21]. However, this is valid for the case, when
the cross-coupling terms in the polarizability tensor tend to zero.
It should be mentioned that the similar approach can be used in a
straightforward manner for the general case of non-zero cross-coupling
(non-diagonal polarizability tensor), and this is the subject for the
future paper.

3.1. TE Plane Wave Incident on a Patch-type Metasheet

Incident, reflected, and transmitted electric and magnetic fields are
shown in Figure 2 for a metasheet located in the plane z = 0. The
expressions for the corresponding fields are as in [37],

~Ei = ŷE0e
−jk̄i·r̄; ~Er = ŷΓTEE0e

−jk̄r·r̄; ~Et = ŷTTEE0e
−jk̄t·r̄;

H̄i =
E0

η
(−x̂ cos θ + ẑ sin θ) e−jk̄i·r̄;

H̄r =
E0

η
ΓTE (x̂ cos θ + ẑ sin θ) e−jk̄r·r̄;

H̄t =
E0

η
TTE (−x̂ cos θ + ẑ sin θ) e−jk̄t·r̄.

(14)

In (14), r̄ = x̂x+ŷy+ẑz is the radius-vector of the point of observation;

η =
√

µ
ε is the characteristic impedance of the host medium, and the

incident, transmitted, and reflected wave vectors are

k̄i = k̄t = (x̂ sin θ + ẑ cos θ)k;

k̄r = (x̂ sin θ − ẑ cos θ)k.
(15)

TTE and ΓTE are the transmission and reflection coefficients for an
incident TE plane wave. Defining the forward vector C̄+

TE and the
backward vector C̄−

TE ,

C̄+
TE =

[
0 1 0 −cos θ

η
0

sin θ

η

]T

;

C̄−
TE =

[
0 1 0

cos θ

η
0

sin θ

η

]T

,

(16)
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one can write the total field in regions 1 and 2 as
[

~E
~H

]

z<0

=
[

~Ei
~Hi

]
+

[
~Er
~Hr

]
= E0

(
C̄+

TE + ΓTEC̄−
TE

)
;

[
~E
~H

]

z>0

=
[

~Et
~Ht

]
= E0TTEC̄+

TE .

(17)

The average field is
[

~E
~H

]

av

= E0

[
C̄+

TE + ΓTEC̄−
TE + TTEC̄+

TE

2

]

z=0

, (18)

and the field jump at the boundary is
[

~E
~H

]∣∣∣∣
z=0+

z=0−
= E0

[
TTEC̄+

TE −
(
C̄+

TE + ΓTEC̄−
TE

)]
z=0

. (19)

For the TE wave ∂
∂x = −jk sin θ and ∂

∂y = 0, and the GSTC (13) can
be written as

[0 0 0 1 0 0] · (C+
TETTE −C−

TEΓTE −C+
TE

)

= [0 jω 0 0 0 jksinθ] · [ ¯̄αmac] · C+
TETTE+C−

TEΓTE+C+
TE

2
; (20a)

[0 1 0 0 0 0] · (C+
TETTE −C−

TEΓTE −C+
TE

)

= [0 0 0 jωµ 0 0] · [ ¯̄αmac] · C
+
TETTE+C−

TEΓTE + C+
TE

2
. (20b)

In a compact matrix form, the system of linear equations with respect
to the unknowns TTE and ΓTE is then[

A1, TE A2,TE

1 −1

]
·
[

TTE

ΓTE

]
=

[
A3,TE

1

]
, (21)

where

A1,TE =
(

[0 0 1 0 0]−
[
0

jk

2ε
0 0 0

jk sin θ

2

]
· [ ¯̄αmac]

)
· C̄+

TE ;

A2,TE = −
(

[0 0 0 1 0 0] +
[
0

jk

2ε
0 0 0

jk sin θ

2

]
· [ ¯̄αmac]

)
· C̄−

TE ;

A3,TE =
(

[0 0 0 1 0 0] +
[
0

jk

2ε
0 0 0

jk sin θ

2

]
· [ ¯̄αmac]

)
· C̄+

TE .

(22)
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Figure 3. TM plane wave incident on a metasheet.

3.2. TM Incident Plane Wave on a Metasheet

The TM plane wave incident on a metasheet is shown in Figure 3.
Using the same expression for the fields as in [37], and defining

the forward and backward vectors as

C̄+
TM =

[
cos θ 0 − sin θ 0 1

η 0
]T

;

C̄−
TM =

[
cos θ 0 sin θ 0 − 1

η 0
]T

,

(23)

respectively, a system of linear equations analogous to (21) can be
written as[

A1,TM A2,TM

1 −1

]
·
[

TTM

ΓTM

]
=

[
A3,TM

1

]
, (24)

where

A1,TM =
(

[0 0 0 0 1 0] +
[
jω

2
0 0 0 0 0

]
· [ ¯̄αmac]

)
· C̄+

TM ;

A2,TM =
(
− [0 0 0 0 1 0] +

[
jω

2
0 0 0 0 0

]
· [ ¯̄αmac]

)
· C̄−

TM ;

A3,TM =
(

[0 0 0 0 1 0]−
[
jω

2
0 0 0 0 0

]
· [ ¯̄αmac]

)
· C̄+

TM .

(25)

3.3. Transmission and Reflection Coefficients for an
Aperture-type Metasheet

The reflection and transmission coefficients T and Γ for aperture-
type metasheets cannot be calculated by directly applying the
corresponding polarizabilities to the GSTC. For example, if there is
a circular aperture array with a normally incident plane wave, the
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only non-zero components of the polarizability tensor are αzz
EE , αxx

MM
and αyy

MM . Then the expressions that coincide with (20), (24) in [21]
for θ = 0 are

TTE =
1

1− j
kαxx

MM
2

; ΓTE =
−j

kαxx
MM
2

1− j
kαxx

MM
2

;

TTM =
1

1− j
kαyy

MM
2

; ΓTM =
−j

kαyy
MM
2

1− j
kαyy

MM
2

. (26)

Then T corresponds to a low-pass frequency response, which
conflicts with the expected high-pass characteristics [18], as well as with
the full-wave simulations. As is indicated in [16], further treatment is
needed to generalize the GSTC for the aperture-type case.

The obstacles in applying the GSTC formulation directly to
aperture-type metasheets can be overcome by solving the problem
formulated for the corresponding patch-type complementary structure.
Then, using the Babinet principle [18, 35], it is easy to map the results
into Γ and T of the aperture-type metasheet. The relations between Γ
and T of complementary arrays under normal incidence are [18]

Tpatch = −Γaperture and Γpatch = −Taperture. (27)
Below, this complementary principle is generalized for an arbitrary
angle of incidence. In Figure 4(a), the surface

∑
a denotes an aperture,

and the surface
∑

ã denotes a perfect electric conductor (PEC). In the
complementary structure in Figure 4(b),

∑
a is a PEC, and

∑
ã is an

aperture.
If [TTE ΓTE ] corresponds to a metasheet, then [T̃TM Γ̃TM ]

corresponds to the complementary metasheet, where TE plane wave
polarization is complementary to the TM plane wave polarization.
Then the following relations between the reflection and transmission
coefficients for the aperture and the patch problems are

TTE = −Γ̃TM and ΓTE = −T̃TM . (28)
The detailed derivation of these relations is given in Appendix A.

Therefore, Γ and T of an aperture-type metasheet for both TE and TM
polarizations can be mapped from the results of the complementary
metasheet. It is important to note that for considering aperture-type
and patch-type metasheets as complementary, they must be embedded
in the same media.

4. MULTILAYERED METASHEETS

Metasheets may be stacked together with the dielectric or composite
slabs in some practical applications to get the desirable frequency
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response for Γ and T . The T-matrix (transfer-matrix) approach is
convenient to get Γ and T expressions for a plane wave incident
at an arbitrary angle upon the multilayered metasheets (cascade of
metasheet and dielectric slabs). The T-matrix cascading is helpful
not only for the reflected and transmitted wave analysis, but also for
the process of synthesis of a structure with the required frequency
characteristics. For simplicity, assume that a metasheet is buried inside
a homogeneous host material.

4.1. T-Matrix Approach

The T-matrix, illustrated by Figure 5, is a type of a chain matrix
convenient for modeling the wave-transmission system as a two-port
network that relates the forward and backward waves at the input and
output ports [38].[

a1

b1

]
=

[
t11 t12

t21 t22

]
·
[

b2

a2

]
, (29)

where a1 and b2 are the forward waves, and b1 and a2 are the backward
waves.

The reflection and transmission coefficients Γ and T can be derived
using the definitions

Γ = Γ11 =
b1

a1

∣∣∣∣
a2=0

and T = T21 =
b2

a1

∣∣∣∣
a2=0

. (30)

iE 2

iH2

ik2

iE1

iH1

ik1

a

a
~

a a
~

(b)(a)
Metasheet  M Complementary Metasheet M

~

I II IIIε, µ ε, µ
ε, µ ε, µ

θ θ

Σ Σ
Σ

Σ

Figure 4. Wave incidence upon a PEC screen with an (a) aperture,
and the (b) complementary problem.
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2

Figure 5. Definition of incoming and outgoing waves in the T-matrix.

,

(c)(a) (b)

En+1

+

1n+1E
-

E1

-
E1

+

Figure 6. Decomposition of multilayered metasheet. (a) Medium
slab. (b) Medium interface. (c) Metasheet.

The T-matrix of N cascaded 2-port networks T1, T2, . . . , TN is the
product of the corresponding T-matrices,

Ttot =
[

t11 t12

t21 t22

]
= T1 · T2 . . . TN . (31)

Then, Γ and T for the multilayered metasheet can be easily derived
with (30).

4.2. T-Matrix for a Multilayered Metasheet

Any individual metasheet embedded in a dielectric can be decomposed
into three basic elements: (a) a host medium slab, (b) a medium
interface, and, (c) a metasheet inside the homogeneous host medium,
as shown in Figure 6. The overall T-matrix is a product of the partial
T-matrices of these basic elements, and then Γ and T of the whole
structure can be easily obtained.

According to [31], the T-matrix for a slab of a homogeneous
medium of thickness l is defined as

TS =
[

ejkl cos θ 0
0 e−jkl cos θ

]
. (32)

The T-matrix for a medium interface is

TI =
1

τT1

[
1 ρT1

ρT1 1

]
, (33)
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where

τT1 =
ηT2 − ηT1

ηT2 + ηT1
, ρT1 =

2ηT2

ηT2 + ηT1
,

and ηT1,2 =





1
cos θ

√
µ1,2

ε1,2
for TE

√
µ1,2

ε1,2
cos θ for TM

. (34)

are the corresponding transmission and reflection coefficients, and the
characteristic impedance.

The T-matrix for a metasheet buried in the homogeneous host
material can be obtained through the S-parameter matrix for a
metasheet. Suppose that the transmission and reflection coefficients
for an individual metasheet ΓTE, TM and TTE, TM are known, then
the corresponding S-parameter matrix is related to the reflection and
transmission coefficients as (if the second port is matched),

sMTE, TM
=

[
ΓTE, TM TTE, TM

TTE, TM ΓTE, TM

]
, (35)

and the corresponding T-matrix is easily derived from (35),

TMTE, TM
=

1
TTE, TM

[
1 −ΓTE, TM

ΓTE, TM T 2
TE, TM − Γ2

TE, TM

]
. (36)

4.3. Distance Requirement Between the Neighboring
Metasheets

An incident wave scattering from an array of patches or apertures
results in the excitation of the evanescent modes in addition to
the propagating wave, when the array period is smaller than the
wavelength [18]. The distance d between metasheets should be kept
large enough to assure that the evanescent waves decay sufficiently
and do not couple to the adjacent sheet. Otherwise, the expressions
for Γ and T derived for propagating waves, will be not valid. The
requirement to the distance d between the neighboring metasheets can
be obtained assuming that the amplitudes of all the evanescent waves,
normalized to the propagating wave amplitude, are smaller than some
required value δ.

The total scattered field can be expressed in terms of the Floquet
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space harmonics as a double Fourier expansion [18],

~E(~r) =





ûT e−jkz + û
∑

p

∑
q

TpqQpq(x, y)e−jγpqz z > 0

ûΓejkz + û
∑

p

∑
q

ΓpqQpq(x, y)ejγpqz z < 0
, (37)

where Tpq and Γpq are transmission and reflection coefficients of the
high-order modes with indices p = q = 0, ±1, ±2, . . ., except for p =

q = 0, and the propagation constants are γpq =
√

k2 − (
2π
D

)2 (p2 + q2).
In (37), the transverse exponential factor is

Qpq = exp
[
−j

2π

D
(px + qy)

]
. (38)

The higher-order modes become evanescent, when D < λ. This means
that d should be large enough to satisfy the inequalities∣∣∣TpqQpq(x, y)e−jγpqd

∣∣∣ < δT and
∣∣∣ΓpqQpq(x, y)ejγpqd

∣∣∣ < δΓ (39)

The evanescent mode with p = 1, q = 0 (or p = 0, q = 1) is studied
here, since it has the largest amplitude for a parallel-plane geometry.
To get an accurate value of dmin, a numerical evaluation for Tpq and
Γpq can be used. However, herein, the first-order accuracy estimation
based on a very coarse presumption of Tpq/T = 1 and Γpq/Γ = 1 can
be obtained

d >
− ln δ

2π

√(
1
D

)2 +
(

1
λ

)2
. (40)

Numerous simulations indicate that the accuracy of the analytical
approach used herein for a multilayered metasheet is quite satisfactory
for δ < 0.1.

5. VERIFICATION

5.1. Verification of the Analytical Formulas with Energy
Conservation for a Lossless Metasheet

A polarizability tensor of any lossless patch-type metasheet, containing
PEC scatterers, has the following properties:

(a) Reciprocity is fulfilled [18]:

¯̄αee = ¯̄αT
ee, ¯̄αmm = ¯̄αT

mm, ¯̄αem = −µ ¯̄αT
me. (41)

(b) There is only the tangential current induced, so there is no
electric dipole in the normal direction, and no magnetic dipole in
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the tangential direction. At the same time, considering (41), the
polarizability tensor has the following format:




⊗ ⊗ 0 0 0 ⊗
⊗ ⊗ 0 0 0 ⊗
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
⊗ ⊗ 0 0 0 ⊗




. (42)

where ⊗ denotes non-zero elements.
(c) ¯̄αee, ¯̄αmm are the real matrices, while ¯̄αem and ¯̄αme are the

imaginary matrices.
(d) The macroscopic polarizability ¯̄αmac derived from (12) also

has the properties (a)–(c). Specifically, the reciprocity property can
be expressed as

¯̄αEE = ¯̄αT
EE , ¯̄αMM = ¯̄αT

MM , ¯̄αEM = −µ ¯̄αT
ME . (43)

The proof for (d) is cumbersome, but it can be done by processing (12)
with a symbolic software tool, e.g., Mathematica.

Based on these properties, one can get that for any metasheet
made of a PEC, the energy conservation relation always holds for TE
and TM modes and any angle of incidence, i.e.,

|T |2 + |Γ|2 = 1, TE or TM. (44)

This is detailed in Appendix B.

5.2. Verification for T and Γ of a Single-layered Metasheet

5.2.1. Disc Array

The geometry of a disc array is shown in Figure 7. The cell period
is D = 12 mm, disc radius is a = 5mm, and the host medium is

Figure 7. Geometry of the disc array.
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vacuum. The calculation based on the proposed analytical formulation
and the simulation results obtained using the commercial software
ANSYS HFSS and Ansoft Designer (MoM) are shown in Figure 8.

The results of computations agree well in a low-frequency range (or
D/λ < 0.4). However, with the increase of frequency (or D/λ > 0.4),
the discrepancy increases. This is because only the dipole moment
is considered in the quasi-static analytical solution. More accurate
result is expected, when the dynamic interaction and higher order
polarizations are taken into account [39, 40].

5.2.2. Edge-coupled Split-ring Resonator with Cross-coupling

Edge-coupled split-ring resonator (EC-SRR) shown in Figure 9 is a
typical scatter that has electric and magnetic cross-coupling. Its
polarizability components are

px = αee
xxEact

x ; py = (αee
yy + α

′ee
yy )Eact

y + jαem
yz Bact

z ;

mz = αmm
zz Bact

z − jαem
yz Eact

y (45)

The components of the tensor ¯̄α in (44) can be calculated using
the formulas in [27]. The parameters of the modeled EC-SRR are
the following: the cell period is D = 8 mm, the external radius is
rext = 2.6mm, the trace width is c = 0.5mm, the gap width is
d = 0.2mm, εr = 1, and thickness of the dielectric slab is t = 0.49mm.
As is seen from Figure 10, in the low-frequency range the agreement
is better than at higher frequencies. The higher accuracy at higher
frequencies may be achieved with more accurate modeling of the
polarizabilities of the EC-SRR.



106 Koledintseva et al.

Figure 9. Geometry of the EC-SRR [27].
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Figure 11. Geometry of aperture array and its complementary
structure.

5.2.3. Aperture Structure: Utilization of the Babinet’s Principle

The geometry of an aperture array and its complementary structure
are shown in Figure 11. The cell period is D = 12mm, the radius is
a = 5mm, and εr = 1. Figure 12 shows the results mapped from the
complementary disk array and those simulated using HFSS. Their good
agreement justifies the feasibility of the obtained analytical solution for
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aperture-type metasheets.

5.3. Multilayered Metasheet Structure

5.3.1. Lossless Medium

The geometry of the two-layered structure with a disc array metasheet
and an aperture array metasheet is shown in Figure 13. The array
periods of the metsheets are D1 = D2 = 12 mm, their radii are
r1 = r2 = 5 mm, and the distance between the metasheets is d = 6mm.
Analytical and numerical simulation results almost coincide in the
considered frequency range up to 15GHz.
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5.3.2. Requirement for a Separation Distance between Metasheets

According to the simulations, when d is so small that the corresponding
parameter δ > 10% in (40), the accuracy of calculating T and Γ
degrades greatly. Thus, for the same geometry as in Figure 13, when
d = 3 mm and δ = 28%, there is an apparent frequency shift observed,
as shown in Figure 14. At the same time, Figure 15 shows that when
d = 6 mm and δ reduces to 8%, there is a good agreement between the
analytical computations and numerical simulations.

2 4 6 8 10 2 4

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0 dist=6mm

 

 

Frequency (GHz)

Calculated

Simulation

T
an

d
 Γ

Calculated

SimulationT

Γ

T

Γ

1 1

Figure 14. Comparison of analytically calculated and numerically
simulated results for transmission (T ) and reflection (Γ) coefficients for
a multilayered metasheet, when the distance between the metasheets
is comparatively large (d = 6 mm).
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5.3.3. Lossy Structure

Consider the same structure as shown in Figure 13. The parameters
are the following: the slab is of the thickness d1 + d2 + d3 = 5 mm,
the cell period is D1 = D2 = 2 mm, the radius of the aperture is
r1 = 0.6mm, and the radius of the disc is r2 = 0.6mm. The host
dielectric has the Debye frequency response shown in Figure 16. This
frequency characteristic is of a composite material that has a Teflon
as a host matrix with εr = 2.2, and carbon inclusions with an aspect
ratio of 50, volume fraction 8%, and conductivity σ = 1000 S/m as a
filler. It has been modeled as in [41, 42].

The results of computations based on the presented analytical
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model for the normal incidence are shown in Figure 17. In the same
figure, the analytical results for a multilayer structure, containing two
metasheets, an aperture array and a disk array, are compared with the
numerically obtained (HFSS) results. The lowest curve in Figure 17
corresponding to two aperture arrays with distances d1 = 1 mm,
d2 = 3 mm, and d3 = 1mm, is the best solution, providing the
lowest transmission coefficient in the frequency range of interest. It
was also obtained using an optimization technique based on a genetic
algorithm [41]. Varying the dielectric thickness, the location of the
MS inside the dielectric slab, the cell periodicity, and the geometry
of scatterers, more design freedom can be obtained to synthesize a
desirable frequency response of a metasheet structure.

6. CONCLUSION

Analysis and synthesis of frequency characteristics of reflection and
transmission coefficients (T and Γ) for single- and multilayered
metasheets is critical for the design of frequency-selective structures.
Although full-wave numerical methods can provide fairly accurate
results, they lose the attraction due to the complexity, large memory
consumption, and long computation time. An analytical approach
discussed in this paper provides a powerful alternative to numerical
computations, since it gives more freedom (variables to be synthesized)
for the synthesis, substantially speeds up the synthesis process, and
reduces a design cost. With the known (available analytically or
numerically beforehand) electric and magnetic polarizabilities of an
individual scatter, T and Γ can be directly related to the array period
and the geometry parameters of the scatters.

In this paper, the GSTC of a metasheet are reformulated into
a concise and simple matrix form, then T and Γ are determined by
solving a system of two linear equations for a single-layered patch-type
metasheet. T and Γ of the aperture-type metasheet are derived from
the complementary structure based on the Babinet’s duality principle.
The formulas for T and Γ can handle arbitrary incidence angle. For
multilayered metasheets, the T-matrices approach is used to derive
T and Γ. The stack is decomposed into 3 types of basic structural
elements, and the T-matrix of the multilayered metasheet is then
derived by cascading, i.e., a product of the T-matrices of all the partial
elements. The resultant T and Γ can be readily derived using the
overall T-matrix. Comparison of the analytical results and numerical
simulations shows a good agreement, when the array period D is less
than 0.5λ (or the more stringent condition is 0.4λ), which also agrees
with [21]. The applicable frequency range is expected to be further
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extended to higher frequency rang (D ∼ λ), considering interaction
between scatters in inhomogeneous local fields, and taking into account
higher-order polarizabilities.

Further study will be carried out based on more general case
that the metasheet is located in the interface between two different
materials. Also, polarizabilities of the other types of scatterers will be
studied to enrich the “pattern library” for engineering metamaterial
structures.
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APPENDIX A. RELATION BETWEEN T AND Γ FOR
COMPLEMENTARY METASHEETS

Consider the metasheet in Figure 4(a) and its complementary structure
in Figure 4(b). They are excited by TE and TM incident sources in
region I, respectively. They are a pair of dual sources,

~Ei
2 = η ~H i

1; ~H i
2 = − ~Ei

1/η. (A1)

The total fields on the region II of (a) and (b) are [35]:
Region II (a):

∇× ~E1 = −jωµ ~H1; ∇× ~H1 = jωε ~E1;

boundaryconditions :
{

n̂× ~E1 = 0 on
∑

ã

n̂× ~H1 = n̂× ~H i
1 on

∑
a

(A2)

Region II (b):

∇× ~E2 = −jωµ ~H2; ∇× ~H2 = jωε ~E2;

boundaryconditions :
{

n̂× ~H2 = n̂× ~H i
2 on

∑
ã

n̂× ~E2 = 0 on
∑

a
(A3)

On the other hand, the forward scattered fields in region II ~Es+
1,2 =

~E1,2 − ~Ei
1,2 and ~Hs+

1,2 = ~H1,2 − ~H i
1,2 satisfy the following relations:

Region II (a):

∇× ~Es+
1 = −jωµ ~Hs+

1 ; ∇× ~Hs+
1 = jωε ~Es+

1 ;

boundaryconditions :
{

n̂×~Es+
1 =−n̂×~Ei

1=n̂×η ~H i
2 on

∑
ã

n̂×~Hs+
1 =0 on

∑
a

(A4)
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Region II (b):

∇× ~Es+
2 = −jωµ ~Hs+

2 ; ∇× ~Hs+
2 = jωε ~Es+

2 ;

boundaryconditions :
{

n̂×~Hs+
2 =0 on

∑
ã

n̂×~Es+
2 =−n̂× ~Ei

2=−n̂× η ~H i
1 on

∑
a

(A5)

Comparing (A2) and (A5), (A3) and (A4), one can get
~Es+

1 = η ~H2; ~Es+
2 = −η ~H1;

~Hs+
1 = −

~E2

η
; ~Hs+

2 =
~E1

η
.

(A6)

The reflected wave is the backward scattered field ~Es−
1,2 and ~Hs−

1,2 in
Region I. The forward and backward scattered fields are related as [36]

n̂× ~Es− = n̂× ~Es+; n̂ · ~Es− = −n̂ · ~Es+;

n̂× ~Hs− = −n̂× ~Hs+; n̂ · ~Hs− = n̂ · ~Hs+. (A7)
Then the reflection and transmission coefficients in (a) are

ΓTE =
Es−

1

Ei
1

=
Es+

1

Ei
1

=
ηH2

−ηH i
2

= −T̃TM ;

TTE =
E1

Ei
1

=
ηHs+

2

−ηH i
2

=
Hs−

2

H i
2

= −Γ̃TM . (A8)

Similarly, the following relations can be obtained by exchanging the
incident sources in Figures 4(a) and 4(b),

ΓTM = −T̃TE ; TTM = −Γ̃TE (A9)
Additionally, the following relations can be derived from (A7),
corresponding to the second equations in (21) and (24), respectively,{

~Et
1 = ~Ei

1+ ~Es+
1 = ~Ei

1+~Es−
1 = ~Ei

1+ ~Er
1

~Ht
2 = ~H i

2+ ~Hs−
2 = ~H i

2−~Hs−
2 = ~H i

2− ~Hr
2

⇒
{

TTE =1+ΓTE

TTM =1+ΓTM
(A10)

APPENDIX B. ENERGY CONSERVATION FOR
METASHEET MADE FROM PEC

The proof will be carried out based only on a patch-type metasheet.
The aperture-type metasheet is dual to the patch-type one, so the
energy conservation should fulfill automatically. For definiteness,
consider the TE case. The TM case can be proved by analogy.
According to (21),

[
TTE

ΓTE

]
=

[
A1,TE A2,TE

1 −1

]−1

·
[

A3,TE

1

]
(B1)
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Then

|TTE |2 + |ΓTE |2 = [T ∗TE Γ∗TE ] ·
[

TTE

ΓTE

]

=

{[
A1,TE A2,TE

1 −1

]−1

·
[
A3,TE

1

]}H[
A1,TE A2,TE

1 −1

]−1

·
[
A3,TE

1

]
, (B2)

where “H” means Hermitian operation.
For the PEC case, the coefficients of A1, TE , A2, TE and A3, TE

in (22) can be expressed according to (43) as
{

A1,TE = a− jb
A2,TE = a− jb
A3,TE = a + jb

, (B3)

where {
a = − cos θ

η

b = 1
2 ωαY Y

EE + k sin2 θ
2η αZZ

MM

. (B4)

Then, substituting (B3) and (B4) in (B2), the energy balance is proved,

|TTE |2+|ΓTE |2=[a−jb 1]·
[
a+jb 1
a+jb −1

]−1

·
[
a−jb a−jb

1 −1

]−1

·
[
a+jb

1

]
=1. (B5)
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