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Abstract—Traditional synthetic aperture radar (SAR) utilizes
Shannon-Nyquist theorem for high bandwidth signal sampling, which
induces a complicated SAR system, and it is difficult to transmit and
process a huge amount of data caused by high A/D rate. Compressive
sensing (CS) indicates that the compressible signal using a few
measurements can be reconstructed by solving a convex optimization
problem. A novel SAR based on CS theory, named as parallel
frequencies SAR (PFSAR), is proposed in this paper. PFSAR
transmits a set of narrow bandwidth signals which compose the large
total bandwidth. Therefore, PFSAR only uses much less data to obtain
a superiority image compared with a traditional SAR system. The data
acquisition mode of PFSAR is developed and an algorithm of target
scene reconstruction based on compressive sensing applied to PFSAR
is proposed. The azimuth imaging of PFSAR is carried out based on
the Doppler Effect, and then, the range imaging is performed by using
compressive sensing of parallel frequencies signal. Several simulations
demonstrate the feasibility and superiority of PFSAR via compressive
sensing.

1. INTRODUCTION

Synthetic aperture radar (SAR) [1] is an active detector with all-day
and all-weather capability. Recently, ultra swath and high resolution
are major requirements for SAR system. The traditional SAR system
emits high bandwidth chirp signal to obtain high range resolution,
which demands high sampling rate according to the Shannon-Nyquist
theorem. Transmitting and processing the huge data generated by

Received 6 July 2012, Accepted 7 October 2012, Scheduled 1 November 2012
* Corresponding author: Hua Ping Xu (xuhuaping@buaa.edu.cn).



200 You et al.

high sampling is one of the main challenges of radar system design.
Compressive sensing (CS) in [2] and [3] provides a novel method for
sampling and recovering signals. It shows that a K-sparse signal
(length of N) can be reconstructed using O (K log N) measurements
with high probability. The dimension of measurements is obviously
reduced compared with Nyquist sampling. The radar receiver based
on CS is firstly presented in [4]. The CS radar receiver discards
the pulse compression matched filter to simplify the radar system
and absolutely decreases the A/D rate. In [5], high-resolution radar
based on CS is proposed, and the CS radar employs a sufficiently
“incoherent” pulse to reconstruct the observation scene. Pulse Doppler
radar with compressive sampling [6] presents an approach to reduce the
A/D sampling rate through importing complete sparse dictionaries and
basis pursuit reconstruction algorithm. Radar signal processing based
on CS efficiently overcomes the huge data in terms of the Shannon-
Nyquist sampling. Then the complexity of system can be reduced
with compressive sampling.

There are some researches about the application of CS to SAR.
CS applied to compress SAR raw data is firstly proposed in [7]. It
uses the dual tree complex wavelet transform for sparse decomposing
of SAR image and the SAR raw signal is randomly sampled in two-
dimensional (2D) fast Fourier transform (FFT) domain to achieve
signal compression. [8] analyzes properties of SAR data and image
and indicates that only the brightest objects of the SAR image are
compressible. In [9, 10], Tello Alonso et al. propose a novel method
for the focusing of raw data in radar imaging. Signal sampling and
reconstruction based on CS is introduced as an alternative option to
traditional matched filtering. In [11], white Gaussian matrix is used as
a measurement matrix to detect the targets with one-dimensional (1D)
signal and obtain 2D SAR images based on CS. Anitori et al. [12] use
a stepped sequence of frequencies CS radar to illuminate the corner
reflectors, and CS is applied with random selection of frequencies and
angles. In [13], Dantzig selector via compressive sensing has been used
to obtain a better radar imaging result than that of the conventional l1-
norm based on compressive sensing. The paper [14] overviews the use
of sparse reconstruction and random projection approaches in radar
imaging. The joint reconstruction method [15, 16] is introduced to
obtain better phase information. In [17], based on the reflectivity
kernel analysis of SAR original echoes, singular value decomposition-
QR (SVD-QR) is used to select the subset of SAR echoes in both
slow-time domain and fast-time domain. Xu et al. [18] discuss a
new imaging modality based on Bayesian compressive sensing, and
clutter is taken into consideration in this novel CS radar. In [19], the
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proper sparse dictionary is used to represent the SAR complex echoes,
and thus SAR imaging processing is a joint optimization problem
for the magnitude and phase of the complex signals. [20] applies
CS to linear array SAR and CS is used after the range matched
filtering. [21] proposes a novel SAR imaging algorithm based on CS
with multiple transmitters and multiple azimuth beams. [22] presents
a 4-D SAR imaging scheme based on CS. In [23], Li et al. present some
applications of compressed sensing for multiple transmitters multiple
azimuth beams SAR imaging. [24] provides an algorithm of sparse
reconstruction for SAR imaging based on compressed sensing. Linear
array imaging method of traditional SAR by using compressive sensing
is shown in [25].

Though the researches on compressive sensing applied to SAR
system have certain achievements, there is no SAR system based on
compressive sensing. The concept of parallel frequencies signal is firstly
presented in [26] to explore the application of CS in pulse compression.
The author assumes that some distinct frequencies are simultaneously
transmitted and presents how to use these frequencies in parallel to
achieve the pulse compression without the Doppler effect. We import
the theory of parallel frequencies into SAR and propose a novel SAR
imaging mechanism, i.e., Parallel Frequencies SAR (PFSAR). The
PFSAR transmits parallel frequencies signal instead of chirp signal
for 2D imaging. The azimuth imaging of PFSAR is carried out based
on the Doppler effect and then the range imaging is performed by using
compressive sensing. The data acquisition mode is developed in our
research, in addition, an approach of signal processing via compressive
sensing applied to PFSAR is discussed in this paper.

Section 2 reviews compressive sensing method. The structure of
parallel frequency radar can be found in Section 3. Data acquisition
and signal processing via compressive sensing are shown in Section 4.
Targets are reconstructed by using priori phase information. In
Section 5, compared with the conventional SAR images, the feasibility
and the superiority of PFSAR via compressive sensing are confirmed
by some simulations.

2. COMPRESSIVE SENSING METHOD

Assume that target scene S (S ∈ RN ) is sparse on a basis matrix
ΨN×N (ΨN×N = (ψ1, ψ2, . . . , ψN )). S is represented as

S = Ψx, (1)

where x is a length of N sparse coefficient vector with K nonzero
elements and K a measure of the sparsity of x. In compressive sensing
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method. S is measured through a linear projection onto a measurement
matrix ΦM×N (where M ¿ N), the projection is presented in matrix
notation as

y = ΦS = ΦΨx, (2)

where y is a measurement vector of length M .
The sparseness is the number of nonzero coefficients with a proper

sparse basis. In practice, the compressed signal and sparse scene can
be represented by a few large coefficients. It is very vital for the choice
of sparse basis. For the first, in space domain, i.e., warship targets
located on the sea background, thus it satisfies the conditions of sparse
space. Secondly, for the complicated scene, it is not sparse in space
domain, however, the echoes of the specific scene are sparse on a proper
basis, for instance, chirplet basis, wavelet basis and so on. Therefore
compressive sensing can achieve the applications of SAR with a proper
sparse basis.

The dimension M of measurement y is much less than the
dimension N of sparse coefficient vector x. Therefore the Eq. (2) is
an ill-posed problem. In other words, the problem is undetermined.
By reason that vector x is compressible, the recovery of the sparse
coefficient vector x from the measurement vector y is translated
into solving a minimization of l0 norm problem. In [3] and [27],
several significant results concerning compressive sensing show that
for the purpose of the convergent of reconstruction algorithm,
namely, one K-sparse vector x can be exactly reconstructed by
M measurements, recovery matrix A = ΦΨ is required to satisfy
Restricted Isometry Property (RIP). It is a significant consequence to
ensure the convergence of the reconstruction algorithm and a detailed
expression is given for it as follows,

1− δ ≤ ‖Ax‖2

‖x‖2

≤ 1 + δ (δ > 0), (3)

where δ is a minimal constant, ‖ · ‖2 the l2 norm, and x the sparse
coefficient vector. The minimization of the l0 problem shown is
equivalent to the l1 norm convex problem under the RIP condition.
The convex problem is expressed as

x̂ = arg min{‖x‖1 : x ∈ RN , y = ΦΨx}. (4)

Convex problem is simplified to linear programming. Basis
Pursuit (BP) and greedy algorithms in [28–30] such as Matching
Pursuit (MP) and Orthogonal Matching Pursuit (OMP) [31] can
effectively solve this problem, thus allowing reconstruction of sparse
scene S.
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Figure 1. Observation mode of PFSAR.

3. PARALLEL FREQUENCY SAR

3.1. Observation Mode

The observation mode of PFSAR via compressive sensing is shown in
Fig. 1. The radar platform moves along track (azimuth) direction with
constant velocity, two-dimension observation scene is limited with the
along track (azimuth) direction and the cross track (range) direction.
The antenna pointing is vertical with azimuth direction, i.e., the beam
direction is under zero squint case. PFSAR synchronously transmits
M single frequency pulses with the constant step ∆f in each azimuth,
and then received the phase shift echoes. The total bandwidth can
satisfy the requirements of high range resolution.

The beam footprint is divided into some equal observation cells,
as shown in Fig. 2. The sparse targets will be located on the
corresponding grid nodes. Location coordinate is Target (r, τ), r is
range cell, τ is azimuth slow time, for instance, the location coordinate
of the center point in Fig. 2(b) can be written as Target (rc, τc). Na

and Nr respectively represents the sampling number of azimuth and
range directions. The targets location information obviously depends
on the observation grid.

Considering the movement of the radar platform along azimuth



204 You et al.

Na

c

1

Range

rNrrcr1

A
z
im

u
th

(a) (b)

τ

τ

τ

Figure 2. Observation grids of PFSAR via compressive sensing.

direction, the raw echo signal is written as

r(t, τ) = Arect

(
t− 2R(τ)

c

)
Aa(τ − τc)e

−j2πfset

(
t− 2R(τ)

c

)
, (5)

where A is backscatter coefficient, rect the rectangle window, Aa the
azimuth envelope, and c the light velocity. fset is a set of transmitted
frequencies, namely, fset = {f1, f2, . . . , fM}. R (τ) is the instantaneous
distance between the target and radar platform. According to the
beam direction, we set the approximate representation R(τ) = R +
V 2

a τ2/2R and R is the closest distance between the target and the
radar platform.

3.2. Data Acquisition

PFSAR synchronously receives the phase shift echoes. Fig. 3
demonstrates data acquisition process. Raw echoes are received by an
antenna array, then the raw data are filtered through the multi-channel
and the third step is quadrature demodulation. After demodulating,
the intermediate frequency signals are sampled by a low-rate A/D
converter, on condition that two-way I and Q mixing is employed
in each channel, the sampling rate of A/D converter is effectively
decreased into half.

Mixing and detecting phase is the most crucial processing stage,
and the detail is depicted in Fig. 4. In view of several single frequency
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Figure 3. Data acquisition of PFSAR.

pulses congregating the raw echo, multi-channel filter is used to
distinguish and extract the variously frequency pulses before mixing,
through filtering procedure, the outputs of M channels is

cos
(

2πf1

(
t− 2R(τ)

c

))
, cos

(
2πf2

(
t− 2R(τ)

c

))
, . . . ,

cos
(

2πfM

(
t− 2R(τ)

c

))
. (6)

The output of each channel mixes with corresponding reference
frequency, after mixing, the complex results composed with I and Q
component are written as

exp
(

j2πf1
2R(τ)

c

)
, exp

(
j2πf2

2R(τ)
c

)
, . . . ,

exp
(

j2πfM
2R(τ)

c

)
. (7)
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Figure 4. Mixing and detecting phases procedure.

The complex data as above are a set of phases containing
range information of targets. In a certain azimuth time τi (i =
1, 2, . . . , Na), the complex data are written into a memory device in
the channel sequence. Accordingly, memory space is three dimensional
in mathematical expression, the first dimension is range cell, the
second dimension is azimuth slow time, and the third dimension is
the number of channels. In fact, the complex data can be written
as one dimension data array, and each data cell needs to add the
information about the azimuth slow time and the channels number,
this additional information assists in resuming the raw complex data
for imaging processing.

4. DATA PROCESSING BASED ON COMPRESSIVE
SENSING

4.1. Azimuth Compressive

The processing of the backscattered signal is shown in Fig. 5. Through
demodulating and detecting the phase shift, the echo signal can be
written as

yset = Ae−j2πfset
2R(τ)

c = Ae−j2πfset
2R
c · e−j2πfset

V 2
a τ2

cR . (8)
Then we focus on the second exponent term in order to precisely

draw the range information in the first exponent term. Obviously,
the second exponent term is the result of the movement of the radar
platform along azimuth direction and it has the feature of linear FM.
Here, the FM rate is

Ka = 2V 2
a

/
λsetR. (9)

The significant steps are Ka estimation and Φ construction in
imaging. Because of the second exponent in Eq. (8) varying with
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Image

Figure 5. Two-dimensional signal imaging block diagram.

azimuth slow time, the targets will be focused on the respective zero
Doppler by Ka before extracting the range information. Ka should
be calculated precisely before compressing the azimuth phases. It also
varies with the range cells and the signal frequencies. We use the
autofocus to estimate the Doppler FM rate of the azimuth filter.

4.2. Range Processing via Compressive Sensing

Constructing the priori Φ is presented as follows. PFSAR transmits
M single frequency pulses in a certain azimuth. The echo of the kth
(k = 1, 2, . . . , M) single frequency pulse is

r(t) = Arect

(
t− 2R

c

)
e−j2πfk(t− 2R

c ), (10)

where c is the speed of light, A the backscatter coefficient of the target,
fk the frequency of the kth pulse, and fk = f0 + k∆f · f0 the carrier
frequency. If we just collect the phase shift part the result is,

yk = Ae−j2πfk
2R
c . (11)
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Let partition the maximum observation distance RMAX into
N points, thus the range cell is ∆R = RMAX/N . The discrete
representation of Eq. (11) is written as

yk =
N−1∑

n=0

e−j2πfk
2n∆R

c ×An, (12)

where An is the backscatter coefficient of the targets in the Nth point.
Aiming at an appointed observation scene, the targets locations

are determined by the partition of observation grid. Supposing that
there is a target in the center of the observation grid, the location
coordinate is Target (rc, τc) and the phase shift parts generated by
target effecting under τc condition are

exp
(

j2πf1
2rc

c

)
, exp

(
j2πf2

2rc

c

)
, . . . , exp

(
j2πfM

2rc

c

)
. (13)

Apparently, the targets in the observation grid with different
locations still act on the transmitting signal that creates a set of fixed
phases containing target range information. Provided each node has
one target, we can utilize these fixed phases to construct the complete
measurement matrix.

We write the Eq. (12) in matrix notation as

y = ΦS = ΦΨx, (14)

where Φ is measurement matrix and

Φ = {φn}N−1
n=0 , (15)

where
φT

n =
{

e−j2πfk
2n∆R

c

}M

k=1
. (16)

Φ accordingly contains the priori phases. The echoes in each
azimuth slow time τi are linear combinations of random columns in the
measurement matrix Φ. For fulfilling sparse scene condition, targets
are much less than nodes in observation grid, then identity matrix
IN×N is selected as the basis matrix. In that case, the recovery matrix
A can be predigested as ΦΨ = ΦI = Φ, thus the reconstruction
algorithm merely uses Φ as its recovery matrix.

OMP is employed as reconstruction algorithm. The input
parameters of OMP are recovery matrix A and measurement set. In
imaging system of parallel frequency radar, recovery matrix is the
prior measurement matrix Φ and the measurement set is the phase
shift parts shown in Eq. (12). In addition, the output of OMP is the
backscatter of targets, namely, the reconstruction result of Eq. (14) is
the imaging of observation scene. The phase complex data are read as
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the input of OMP in azimuth slow time τi sequence. This means the
reconstruction result is the observation imaging of the corresponding
azimuth slow time τi and the whole observation scene is composed of
reconstruction results in each azimuth slow time.

In reconstruction algorithm, we also set some effective factors, for
instance iterative times, error threshold and noise signal. High error
threshold conduces more iterative times, and the imaging efficiency is
degraded by the large computation load generated by each iteration.
Noise signal also affects the success of reconstruction, so we compare
the reconstructed results of noise free and noisy data in Section 5.
In order to select the appropriate effecting factors in reconstruction
algorithm, both imaging quality and algorithm efficiency should be
taken into consideration.

5. SIMULATION RESULTS

5.1. Imaging with Noise-free Condition

Firstly, a single point is placed on the center observation node in
the simulation. The parameters are selected as follows: M = 30,
∆f = 5 MHz, RMAX = 20 km and N = 512. Avoiding the influence
of the different reconstruction algorithms, OMP is selected in the
following simulations. Fig. 6 shows two-dimensional cross sections of
a point target imaging.

As can be seen in Fig. 6, the side lobes of the range disappear via
compressive sensing. Additionally, azimuth side lobes still exist and it
has a significant impact on azimuth time information recovery if the

 

(a) (b)

Figure 6. Point target cross sections of CS-based PFSAR.
(a) Azimuth cross section. (b) Range cross section.
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azimuth phases are not accurately focused.
The ability of distinguishing targets in the adjacent range cells

visibly upgrades due to avoiding side lobes of the range. As shown in
Fig. 7, three point targets with different backscatters are placed on the
adjacent observation nodes along range direction. The inconspicuous
backscatter point is completely submerged by the conspicuous point
target in the imaging result of the traditional SAR. At the same
time, the inconspicuous backscatter point is distinctly detected in the
imaging result based on compressive sensing.

Figure 8 compares the several points two-dimensional imaging of
PFSAR via compressive sensing with that of traditional SAR. The
parameters represented in Table 1 are selected in the simulation.

(a) (b)

Figure 7. The ability of distinguishing the adjacent targets in the
range direction with 3 point targets. (a) SAR. (b) CS-based PFSAR.

(a) (b)

Figure 8. Imaging results of SAR and PFSAR via compressive sensing
with several point targets. (a) SAR. (b) CS-based PFSAR.
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Table 1. Simulation parameters in Fig. 8.

System bandwidth 30MHz
Carrier frequency 1.5GHz
Antenna length 10m
Swath width 20 km
Pulse number 30

Pulse frequency step 1 MHz

(a) (b)

Figure 9. SNR 30 dB and SNR 20 dB. (a) Azimuth cross section.
(b) Range cross section.

(a) (b)

Figure 10. SNR 30 dB and SNR 10 dB. (a) Azimuth cross section.
(b) Range cross section.
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(a) (b)

Figure 11. SNR 30 dB and SNR 5 dB. (a) Azimuth cross section.
(b) Range cross section.

Different data amounts are used in this simulation, the data
amount of PFSAR is 10% of the SAR data; however, PFSAR still
shows evident superiority in range direction because of restraining side
lobes of the range.

5.2. Imaging with Noise Interference

The noise in the received signal cannot be ignored in practice. More
research is required on the capability of resisting the noise interference
of the signal processing based on compressive sensing. The randomness
of the noise makes the reconstruction results uncertain. The cross
sections of the single point target with the different SNR are shown in
Figs. 9, 10 and 11. Azimuth side lobes stochastically disappear with
low SNR (20 dB, 10 dB and 5 dB). The backscatter of the single point
target begins to decline from 10 dB SNR.

The sparsity of noise signal cannot achieve the same level of
performance as the noise free signal with the constraint of l2 norm.
It is difficult to recover the accurate amplitude of the original signal,
which is generally a characteristic of reconstructing noise signal by
using compressive sensing, namely, amplitude loss.

6. CONCLUSION

This paper presents parallel frequency SAR and imaging approach
based on compressive sensing. The novel radar can reduce data
rate and maintain the large total bandwidth. The measurement
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matrix Φ is composed of the priori phases. The observation scene
is reconstructed by OMP, and indeed this imaging approach avoids
side lobes of the range. The recovery accuracy is improved according
to information sampling via compressive sensing. It is confirmed by
several simulations.

The noise interference is not ignored in the real radar system and
then the echo of single point target is interfused with Gaussian random
noise in correlative simulation. With the diminution of SNR, azimuth
side lobes and the amplitude of backscatter begin to decline in imaging
results. Amplitude loss appears in the reconstructed results.

Some of the ideas of further work are depicted finally. The
scene complexity and measurement dimension also have an impact
on reconstructed results. It is important to discuss if the range
resolution can be improved through importing the complete partition
of observation grid and prior range information of the targets.
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