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Abstract—This paper presents comparative studies on different types
of basis and testing functions used in Method of Moments (MoM)
in terms of analytical complexity, convergence and condition number
of the co-efficient matrix when applied to electrostatic problem of
evaluating capacitance and charge distribution of conducting bodies.
A thin conducting cylinder of finite length has been taken as a
representative case study to evaluate the capacitance and charge
distribution. The basis and testing functions which have been
studied for this problem are pulse-delta, pulse-pulse, triangular-
delta, triangular-pulse and triangular-triangular functions respectively.
Numerical data on capacitance and charge distribution has been
presented for each set of basis and testing functions in terms of
condition number and convergence.

1. INTRODUCTION

Method of Moments has been widely used for the solution of a large
class of electromagnetic problems including electrostatic problems
during the last few decades. Harrington [1] presented the computation
of capacitance and charge distribution of a conducting square plate
and a cylinder using the method of moments based on pulse function
as basis function and delta functions as testing functions. In view of
the importance of electrostatic modeling of space-craft bodies for the
studies of electrostatic discharges (ESD) problems, the capacitance and
charge distribution of metallic structures in the form of a conducting
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cylinder of finite axial length, truncated cone, rectangular plates,
paraboloidal, spherical reflectors etc. were analyzed using MoM [2–
8]. Electrostatic modeling of dielectric coated metallic bodies based on
MoM has also been reported [9–11]. In all the works, pulse function
as basis function and delta function as testing function were used as
suggested by Harrington [1] for solving the integral equations relating
to unknown charge to a known potential. The choice of basis and
testing functions mainly depend on the accuracy of desired solution, the
ease of evaluation of the matrix elements, size of the set of simultaneous
equations that can be solved by matrix method and the formation of
a well-conditioned matrix [12, 13]. There may be a number of sets
of basis and testing functions that may be selected for a particular
type of problem, some sets may give faster convergence than others,
or give easier evaluation of matrix, or give acceptable results with
smaller matrix size etc.. The choice of pulse function as basis function
and delta function as testing functions as reported by Harrington [1]
and subsequently by others [2–8] makes easier evaluation of matrix
elements, however, the convergence is very slow and in order to achieve
higher accuracy, the numbers of sections have to be increased and
sometimes the matrix becomes ill-conditioned. The other limitation
of this set of basis and testing functions is that when the observation
and source points are the same representing the diagonal elements, the
integrand becomes singular and thus the diagonal elements have to be
treated separately. Thus, it is worthwhile to carry out analysis using
different sets of basis and testing functions to evolve more efficient
computation of electrostatic problems and to the best of authors’
knowledge, this has not been reported in open literature.

In this article, studies on different basis functions as well as
testing functions have been carried out in terms of matrix size
for faster convergence. The geometrical configuration which has
been considered is a charged conducting cylinder. This paper is
organized as follows: Section 2 presents the analysis of a charged
conducting cylinder of finite length using different basis and testing
functions like pulse/delta, pulse/pulse, triangle/delta, triangle/pulse,
triangle/triangle etc.. Section 3 presents illustrative numerical results
and Section 4 presents the summary and discussion.

2. ANALYSIS

Figure 1 shows a circular cylindrical conductor of finite length ‘L’
and radius ‘a’. The potential at position vector r due to any charge
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Figure 1. Charged conducting cylinder.

distribution on the cylinder at position vector r′ is given by

Φ(x) =
∫

Ω

qe(x′)
4πε |r− r′| dΩ (1)

where Ω represents the source region.
In order to find the capacitance of conducting cylinder as shown

in Fig. 1, the knowledge of total unknown charge distribution on the
metallic surface and the value of potential should be known. Assuming
a known potential V , the unknown charge distributions appearing in
Eq. (1) expressed in terms of known basis functions [1] as

qe(x′) =
N∑

n=1

αnfn (2)

where fn’s are the known basis functions αn’s are unknown coefficients
to be determined. Substitution of Eq. (2) into (1), yields,

Φ(x) =
∫

Ω

N∑

n=1

αnfn∗ B (x′ − x)
4πε |r− r′| dΩ (3)

Considering, the source points are on the cylinder axis and observation
points on the surface of the cylinder, the above problem is posed to one-
dimensional problem. The localized nature of basis functions B(x′−x)
restricts this integral to be over the nth segment. Local weighted
average is formed about each point xm = m∆ by using another local
weighting (or testing) function W (x−xm), which is centred on xm and
(3) may be rewritten as,

4πε

m∆x∫

(m−1)∆x

W
(
x−x′

)
V (x)dx

=
N∑

n=1

αn

n∆x∫

(n−1)∆x

m∆x∫

(m−1)∆x

W (x−xn) ∗B(x′−x)√
(x−x′)2 + a2

dxdx′, m = 1, . . . N (4)
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Eq. (4) may be written in the N X N matrix form as follows:

[L] {α} = {V } {α} = [L]−1 {V }

qe =
N∑

n=1

αn∆x C =
qe

V
(5)

where,

Lmn =

n∆x∫

(n−1)∆x

m∆x∫

(m−1)∆x

W (x−x′) ∗B(x′−x)√
(x−x′)2+a2

dxdx′, m = 1, . . . , N

Vm = 4πε

m∆x∫

(m−1)∆x

W (x− x′)V (x)dx, m = 1, . . . , N

W (x− x′) = ∂(x− x′), Point Matching
W (x− x′) = B(x− x′), Galerkin Method

(6)

In succeeding sections, the steps followed above will be considered using
the following sets of basis and testing functions:

• Pulse-function as basis function and delta function as weighting
function (point matching).

• Pulse-function as basis function as well as weighting function
(Galerkin weighting).

• Triangular function as basis function with point matching.
• Triangular function as basis function and pulse function as

weighting function.
• Triangular basis function with Galerkin weighting.

2.1. Pulse Function as Basis and Delta Function as Testing
Function

The conducting cylinder of Fig. 1 is divided into N points with N − 1
sub-sections as shown in Fig. 2. The pulse basis function is defined as

Bn(x) = 1, xn ≤ x ≤ xn+1

Bn(x) = 0, elsewhere
(7)

In the case of pulse basis functions and delta testing functions, the
matrix elements Lmn, given by Eq. (6) is of the form as:

Lmn =

n∆x∫

(n−1)∆x

1√
(xm − x′)2 + a2

dx′ (8)
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Figure 2. Charged conducting cylinder segmentation with pulse basis
& delta weighting function.

After carrying out the integration as in Eq. (8), the following expression
is obtained:

Lmn = log


(xn+1 − xm) +

√
(xn+1 − xm)2 − a2

(xn−1 − xm) +
√

(xn−1 − xm)2 − a2


 ,

where xn+1 = xn +
∆
2

, xn−1 = xn − ∆
2

Potential, Vm = 4πε

m∆x∫

(m−1)∆x

δ
(
x′ − x

)
V (x)dx = 4πεV (9)

From Eq. (5), the matrix equation is of the form as given below

[Lmn] {αn} = {Vm} {αn} = [Lmn]−1 {Vm} (10)

The total charge and capacitance of cylinder

qe =
N∑

n=1

αn∆x C =
qe

V
(11)

2.2. Pulse Function as Basis Function with Galerkin
Weighting

Using Galerkin’s method, with the choice of basis and testing functions
both as a pulse function, Eq. (6) may be used to evaluate matrix
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elements Lmn, as given by

Lmn =

n∆x∫

(n−1)∆x

m∆x∫

(m−1)∆x

B (x′ − x) ∗B (x′ − x)√
(x− x′)2 + a2

dxdx′

Vm = 4πε ∗
∆x∫

(m−1)∆x

B
(
x′ − x

)
V (x)dx (12)

After performing the integration of Eq. (12), the expression for the
matrix element is obtained as follows

Lmn =
√

(xm+1−xn+1)2−a2+(xm+1−xn+1)

∗ log
(√

(xm+1 − xn+1)2 − a2 − xm+1 + xn+1

)

−
√

(xm − xn+1)2 − a2 − (xm − xn+1)

∗ log
(√

(xm − xn+1)2 − a2 − xm + xn+1

)

−
√

(xm+1 − xn−1)2 − a2 − (xm+1 − xn−1)

∗ log
(√

(xm+1 − xn−1)2 − a2 − xm+1 + xn−1

)

+
√

(xm−1 − xn−1)2 − a2 + (xm−1 − xn−1)

∗ log
(√

(xm−1 − xn−1)2 − a2 − xm−1 + xn−1

)
,

where xn+1 = xn +
∆
2

, xn−1 = xn − ∆
2

& xm+1 = xm +
∆
2

, xm−1 = xm − ∆
2

(13)

Also from Eq. (12), the elements of the column matrix are found as
follows:

Vm = 4πε ∗∆ ∗ V (14)

Substituting Eqs. (13) & (14) into Eq. (10) and performing the matrix
operation, the unknown charge on each segments are found. Finally
using Eq. (11), the total charge on the cylinder and capacitance of the
cylinder are computed.

2.3. Triangular Function as Basis Function and Point
Matching

A triangle function spans over two segments and varies from zero at
the corner points of the segment to unity at the centre point of the
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segment. Here, the functions overlap by one segment, hence triangles
provide a piecewise linear variation of the solution between segments.
A triangle function is defined as

Bn(x) =
x− xn−1

xn − xn−1
, xn−1 ≤ x ≤ xn

Bn(x) =
xn+1 − x

xn+1 − xn
, xn ≤ x ≤ xn+1

(15)

For the triangular basis, the charge density expansion (Eq. (2)), reads

qe(x′) =
MN∑

n=1

αnB(x′ − xm),

B(x′ − xm) — Basis Function defined in Eq. (15) (16)

The charge distribution along the conducting cylinder for triangular
basis functions, depicted in Fig. 3, have span of 2∆, that is twice as
long as the pulse case.

The charged conducting cylinder is divided into N segments of
width ∆ = L/N and N + 1 points xm = m∆, lie at the end points of
these segments as shown in Fig. 3. In order to satisfy the condition
that the charge density shoots up at the edges, the basis function at
the first and last segments has to be a half triangle as illustrated in
Fig. 3.
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Figure 3. Charged conducting cylinder segmentation with triangular
basis & delta weighting function.
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For point matching, the equation of matrix elements (6) is of the
form:

Lmn =

xn∫

xn−1

(
x′−xn−1

∆

)
∗ 1√

(xm−x′)2+a2

dx′

+

xn+1∫

xn

(
xn+1−x′

∆

)
∗ 1√

(xm−x′)2+a2

dx′ (17)

After performing the integrations of Eq. (17), the expression for the
matrix element is as follows

Lmn =
xn+1

∆
∗


log

(√
a2 + (xn+1 − xm)2 + xn+1 − xm

)
(√

a2 + (xn − xm)2 + xn − xm

)



−xn−1

∆
∗


log

(√
a2 + (xn − xm)2 + xn − xm

)
(√

a2 + (xn−1 − xm)2 + xn−1 − xm

)



− 1
∆
∗




xm

√
a2+(xn+1−xm)2 log

(
2

(√
a2+(xn+1−xm)2

+xn+1−xm))+a2+(xn+1−xm)2√
a2 + (xn+1−xm)2




− 1
∆
∗




xm

√
a2+(xn−1−xm)2 log

(
2

(√
a2+(xn−1−xm)2

+xn−1−xm))+a2+(xn−1−xm)2√
a2+(xn−1−xm)2




+
2
∆
∗




xm

√
a2+(xn−xm)2 log

(
2
(√

a2+(xn−xm)2

+xn−xm))+a2+(xn−xm)2√
a2 + (xn−xm)2




(18)

Vm = 4πε ∗ V (19)

The capacitance of cylinder is evaluated using Eq. (10) and Eq. (11).
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2.4. Triangular Function as Basis and Pulse Function as
Testing Functions

For this set of basis and testing functions, the expression as given
by Eq. (19) is integrated considering the pulse testing function and
replacing xm of Eq. (19) by variable x over which the integration
is carried out and the expression for the matrix element is given as
follows:

Lmn =
xn+1

∆
(A1mn −A2mn)− xn−1

∆
(A2mn −A3mn)

− 1
∆

A4mn − 1
∆

A5mn +
2
∆

A6mn (20)

where the expression for A1mn, A2mn, A3mn, A4mn, A5mn and A6mn

are given as below:

A1mn =
√

a2+(xm+1−xn+1)2−
√

a2+(xm−1−xn+1)2

+log

[
(
√

a2+(xm+1−xn+1)2−xm+1+xn+1)(xm+1−xn+1)

(
√

a2+(xm−1−xn+1)2−xm−1+xn+1)(xm−1−xn+1)

]
(21)

A2mn =
√

a2 + (xm+1 − xn)2 −
√

a2 + (xm−1 − xn)2

+ log

[
(
√

a2 + (xm+1 − xn)2 − xm+1 + xn)(xm+1−xn)

(
√

a2 + (xm−1 − xn)2 − xm−1 + xn)(xm−1−xn)

]
(22)

A3mn =
√

a2+(xm+1−xn−1)2−
√

a2+(xm−1−xn−1)2

+log

[
(
√

a2+(xm+1−xn−1)2−xm+1+xn−1)(xm+1−xn−1)

(
√

a2+(xm−1−xn−1)2−xm−1+xn−1)(xm−1−xn−1)

]
(23)

A4mn =
1
2

log




(√
a2 + (xm+1 − xn+1)2 − xm+1 + xn+1

)(x2
m+1−x2

n+1)

(√
a2 + (xm−1 − xn+1)2 − xm−1 + xn+1

)(x2
m−1−x2

n+1)




+
1
4

(3xm+1 + xn+1)
(√

a2 + (xm+1 − xn+1)2
)

−1
4

(3xm−1 + xn+1)
(√

a2 + (xm−1 − xn+1)2
)

+
a2

4
log

[
(
√

a2 + (xm+1 − xn+1)2 + xm+1 − xn+1)
(
√

a2 + (xm−1 − xn+1)2 + xm−1 − xn+1)

]
(24)

A5mn =
1
2

log




(√
a2 + (xm+1 − xn−1)2 − xm+1 + xn−1

)(x2
m+1−x2

n−1)

(√
a2 + (xm−1 − xn−1)2 − xm−1 + xn−1

)(x2
m−1−x2

n−1)



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+
1
4
(3xm+1 + xn−1)

(√
a2 + (xm+1 − xn−1)2

)

−1
4
(3xm−1 + xn−1)(

√
a2 + (xm−1 − xn−1)2)

+
a2

4
log

[
(
√

a2 + (xm+1 − xn−1)2 + xm+1 − xn−1)
(
√

a2 + (xm−1 − xn−1)2 + xm−1 − xn−1)

]
(25)

A6mn =
1
2

log




(√
a2 + (xm+1 − xn)2 − xm+1 + xn

)(x2
m+1−x2

n)

(√
a2 + (xm−1 − xn)2 − xm−1 + xn

)(x2
m−1−x2

n)




+
1
4
(3xm+1 + xn)

(√
a2 + (xm+1 − xn)2

)

−1
4
(3xm−1 + xn)

(√
a2 + (xm−1 − xn)2

)

+
a2

4
log




(√
a2 + (xm+1 − xn)2 + xm+1 − xn

)
(√

a2 + (xm−1 − xn)2 + xm−1 − xn

)

 (26)

In the Eqs. (22) to (27) values of xm+1 and xm−1,

xm+1 = xm +
∆
2

, xm−1 = xm − ∆
2

(27)

The expression for the elements of the excitation matrix is as follows

Vm = 4πε ∗∆ ∗ V
(28)

Using Eqs. (10) & (11), the capacitance and charge distribution are
found.

2.5. Triangular Function Basis with Galerkin Weighting

For this case, the matrix elements Lmn are given by Eq. (6):

Lmn =

xn∫

xn−1

xm∫

xm−1

(
x′−xn−1

∆

)(
x−xm−1

∆

)
dx′dx√

a2+(x−x′)2

+

xn+1∫

xn

xm+1∫

xm

(
xn+1−x′

∆

)(
xm+1−x

∆

)
dx′dx√

a2+(x−x′)2
(29)
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The integration result of Eq. (29) is as follows:
Lmn = Amn −Bmn − Cmn + Dmn (30)

where Amn, Bmn, Cmn, Dmn are given as follows,

Amn =
xn+1

∆2
(A1mn −A2mn)− xn−1

∆2
(A2mn −A3mn)

− 1
∆2

A4mn − 1
∆2

A5mn +
2

∆2
A6mn (31)

A1mn =
1
4

(xm + 3xn+1)
√

a2 + (xm − xn+1)
2

−1
4
a2 log




(√
a2+(xm−xn+1)

2+xm−xn+1

)

(√
a2+(xm−1−xn+1)

2+xm−1−xn+1

)




+
1
2

(
x2

m−x2
n+1

)
log

(√
a2+(xm−xn+1)

2−xm+xn+1

)

−1
4

(xm−1 + 3xn+1)
√

a2 + (xm−1 − xn+1)
2

−1
2
(
x2

m−1−x2
n+1

)
log

(√
a2+(xm−1−xn+1)

2−xm−1+xn+1

)
(32)

A2mn =
1
4

(xm + 3xn)
√

a2 + (xm − xn)2

−1
4
a2 log




(√
a2 + (xm − xn)2 + xm − xn

)

(√
a2 + (xm−1 − xn)2 + xm−1 − xn

)




+
1
2

(
x2

m − x2
n

)
log

(√
a2 + (xm − xn)2 − xm + xn

)

−1
4

(xm−1 + 3xn)
√

a2 + (xm−1 − xn)2

−1
2
(
x2

m−1−x2
n

)
log

(√
a2+(xm−1−xn)2−xm−1+xn

)
(33)

A3mn =
1
4

(xm + 3xn−1)
√

a2 + (xm − xn−1)
2

−1
4
a2 log




(√
a2 + (xm − xn−1)

2 + xm − xn−1

)

(√
a2 + (xm−1 − xn−1)

2 + xm−1 − xn−1

)






42 Alad and Chakrabarty

+
1
2

(
x2

m − x2
n−1

)
log

(√
a2 + (xm − xn−1)

2 − xm + xn−1

)

−1
4

(xm−1 + 3xn−1)
√

a2 + (xm−1 − xn−1)
2

−1
2
(
x2

m−1−x2
n−1

)
log

(√
a2+(xm−1−xn−1)

2−xm−1+xn−1

)
(34)

A4mn =
1
3

log




(√
a2+(xm−xn+1)

2−xm+xn+1

)(x3
m−x3

n+1)

(√
a2+(xm−1−xn+1)

2−xm−1+xn+1

)(x3
m−1−x3

n+1)




+
1
9

√
a2 + (xm − xn+1)

2 (
a2 + 4x2

m + xmxn+1 + 4x2
n+1

)

−1
9

√
a2+(xm−1−xn+1)

2(a2+4x2
m−1+xm−1xn+1+4x2

n+1

)
(35)

A5mn =
1
3
log




(√
a2+(xm−xn−1)

2−xm+xn−1

)(x3
m−x3

n−1)

(√
a2+(xm−1−xn−1)

2−xm−1+xn−1

)(x3
m−1−x3

n−1)




+
1
9

√
a2 + (xm − xn−1)

2 (
a2 + 4x2

m + xmxn−1 + 4x2
n−1

)

−1
9

√
a2+(xm−1−xn−1)

2(a2+4x2
m+xm−1xn−1+4x2

n−1

)
(36)

A6mn =
1
3

log




(√
a2+(xm−xn)2−xm+xn

)(x3
m−x3

n)

(√
a2+(xm−1−xn)2−xm−1 + xn

)(x3
m−1−x3

n)




+
1
9

√
a2 + (xm − xn)2

(
a2 + 4x2

m + xmxn + 4x2
n

)

−1
9

√
a2+(xm−1−xn)2

(
a2+4x2

m−1+xm−1xn+4x2
n

)
(37)

In order to find the expression for the second term Bmn in Eq. (30),
integration is carried out with limit is xm to xm+1 instead of xm−1

to xm as used for finding the terms for the first term that Amn. Let
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us consider these equations are B1mn to B6mn than final integration
results,

Bmn =
xn+1

∆2
(B1mn −B2mn)− xn−1

∆2
(B2mn −B3mn)

− 1
∆2

B4mn − 1
∆2

B5mn +
2

∆2
B6mn (38)

On carrying out the integration, the third term Cmn in Eq. (30) gives,

Cmn =
xm−1xn+1

∆2
(C1mn − C2mn)− xm−1xn−1

∆2
(C2mn − C3mn)

−xm−1

∆2
C4mn − xm−1

∆2
C5mn +

2xm−1

∆2
C6mn (39)

C1mn =
√

a2 + (xm − xn+1)2 −
√

a2 + (xm−1 − xn+1)2

+log




(√
a2+(xm−xn+1)2−xm + xn+1

)(xm−xn+1)

(√
a2+(xm−1−xn+1)2−xm−1+xn+1

)(xm−1−xn+1)


(40)

C2mn =
√

a2 + (xm − xn)2 −
√

a2 + (xm−1 − xn)2

+ log

[
(
√

a2 + (xm − xn)2 − xm + xn)(xm−xn)

(
√

a2 + (xm−1 − xn)2 − xm−1 + xn)(xm−1−xn)

]
(41)

C3mn =
√

a2 + (xm − xn−1)2 −
√

a2 + (xm−1 − xn−1)2

+log




(√
a2+(xm−xn−1)2−xm+xn−1

)(xm−xn−1)

(√
a2+(xm−1−xn−1)2−xm−1+xn−1

)(xm−1−xn−1)


(42)

C4mn =
1
2
log




(√
a2+(xm−xn+1)2−xm+xn+1

)(x2
m−x2

n+1)

(√
a2+(xm−1−xn+1)2−xm−1+xn+1

)(x2
m−1−x2

n+1)




+
1
4
(3xm + xn+1)

√
a2 + (xm − xn+1)2

−1
4
(3xm−1 + xn+1)

√
a2 + (xm−1 − xn+1)2

+
a2

4
log




(√
a2 + (xm − xn+1)2 + xm − xn+1

)
(√

a2 + (xm−1 − xn+1)2 + xm−1 − xn+1

)

 (43)
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C5mn =
1
2
log




(√
a2+(xm−xn−1)2−xm+xn−1

)(x2
m−x2

n−1)

(√
a2+(xm−1−xn−1)2−xm−1+xn−1

)(x2
m−1−x2

n−1)




+
1
4
(3xm + xn−1)

√
a2 + (xm − xn−1)2

−1
4
(3xm−1 + xn−1)

√
a2 + (xm−1 − xn−1)2

+
a2

4
log




(√
a2 + (xm − xn−1)2 + xm − xn−1

)
(√

a2 + (xm−1 − xn−1)2 + xm−1 − xn−1

)

 (44)

C6mn =
1
2

log

[
(
√

a2 + (xm − xn)2 − xm + xn)(x
2
m−x2

n)

(
√

a2 + (xm−1 − xn)2 − xm−1 + xn)(x
2
m−1−x2

n)

]

+
1
4
(3xm + xn)

√
a2 + (xm − xn)2

−1
4
(3xm−1 + xn)

√
a2 + (xm−1 − xn)2

+
a2

4
log




(√
a2 + (xm − xn)2 + xm − xn

)
(√

a2 + (xm−1 − xn)2 + xm−1 − xn

)

 (45)

In order to find out the last term of Eq. (30), similar expressions are
obtained as in Eqs. (38)–(44) by replacing integration limit by xm to
xm+1 instead of xm−1 to xm. The expression of the term Dmn is as
follows:

Dmn =
xm−1xn+1

∆2
(D1mn−D2mn)−xm−1xn−1

∆2
(D2mn−D3mn)

−xm+1

∆2
D4mn−xm+1

∆2
D5mn+

2xm+1

∆2
D6mn (46)

The expression for the elements of the excitation matrix is given by

Vm = 4πε∗V ∗




xm∫

xm−1

(
x− xm−1

∆

)
dx+

xm+1∫

xm

(
xm+1−x

∆

)
dx



 (47)

Vm =
4πε

∆
∗ V ∗

{
x2

m − x2
m−1

2
− x2

m+1

2
− xm−1(xm − xm−1)

+xm+1(xm+1 − xm)} (48)
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Using Eqs. (10) & (11), capacitance and charge density of metallic
cylinder for this set basis and testing functions are evaluated.

Table 1. Comparison for capacitance of charged conducting cylinder.

Length(L)/ 

Diameter(d) 

Capacitance/Unit Length (pF/m) 

Analytical method
Pulse Delta 

Harrington
Pulse Pulse riangular Delta

6 22.33 25.9 25.47 21.7 

10 18.55 18.31 20.87 18.65 

15 16.35 18.65 18.37 16.61 

20 15.08 16.7 16.86 15.4 

25 14.22 15.56 15.79 14.52 

30 13.59 14.77 15.00 13.89 

60 11.62 12.4 12.58 11.90 
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Figure 4. Variation of capacitance of hollow cylinder with height by
diameter ratio using present method and analytical method.
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Figure 5. Charge distribution of conducting cylinder for different
basis and testing function with number of subsections N = 10.
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Figure 6. Capacitance per unit length of charged conducting cylinder
as a function of number of subsections with simulation parameter
length/diameter = 500.
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Figure 7. Capacitance per unit length of charged conducting cylinder
as a function of number of subsections with simulation parameter
cylinder length/diameter = 60.
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Figure 8. Matrix condition number as a function of number of
subsections with simulation parameter cylinder length/diameter = 60.
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Figure 9. Capacitance per unit length of charged conducting cylinder
as a function of number of subsections for triangular basis function and
different testing function with L/d = 60.
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Figure 10. Matrix condition number as a function of number of
subsections for triangular basis function and different testing function
with L/d = 60.
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3. NUMERICAL RESULTS

The matrix elements are computed using the expressions of
Lmn for different basis and testing functions sets as given by
Eqs. (9), (14), (18), (20)–(27), (29)–(46) for pulse/delta, pulse/pulse,
triangle/delta, triangle/pulse, triangle/triangle basis/testing function
sets respectively. After the matrix is formed, it is inverted and the
inverted matrix is multiplied by the excitation voltage matrix to find
the unknown charge distribution on each subsections. Substituting
the value of charge density from Eq. (10) and the basis function from
Eq. (7) or Eq. (15) into Eq. (11), the total charge and the capacitance
of the charged conducting cylinder is obtained.

The data on capacitance computed using different basis and
a testing function set are compared with that of the methods of
Harrington [1] & analytical method [5], and is presented in Table 1.
The values of the capacitance are also computed for different value of
radius and are presented in Fig. 4.

Using expressions for matrix elements, the capacitance per unit
length of the conducting cylinder for different basis and testing
functions is evaluated with different value of cylinder radius. The
convergence of the numerical data on the capacitance per unit length
is checked for different basis and testing functions. Fig. 5 shows the
charge density on a charged conducting cylinder of length to diameter
ration 500. In order to illustrate the convergence properties, the charge
density was computed using pulse and triangular basis functions with
the same number of subsection, N = 10.

The convergence of the numerical data on the capacitance per
unit length is checked for each different case. The convergence data
is presented in Fig. 6. The convergence data on capacitance for the
length/diameter ratio 60 has been depicted in Fig. 7.

Figure 8 shows the effect in matrix condition number with
increasing the number of subsections for different basis and testing
function. The condition number of a matrix measures the sensitivity
of the solution of a system of linear equations to errors in the data. The
greater the condition numbers of a linear system, the more sensitive the
equations to slight perturbations and the more numerical error likely
to appear in the solution. If matrix Lmn is well conditioned, rcond
(Lmn) is near 1.0. If Lmn is badly conditioned, rcond (Lmn) is near
0.0.

For similar simulation parameters, the convergence data for
triangular basis function and different kinds of testing functions is
presented in Fig. 9 and the corresponding values of matrix condition
number is presented in Fig. 10.
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4. CONCLUSION

The results in Fig. 4 shows that the capacitance value computed using
triangular basis and delta testing function have faster convergence of
capacitance and match very well with analytical result which is exact.
For the lower value of h/d (ranging from 5 to 15), instability in the
numerical value of capacitance for the case of pulse basis and delta
testing function has also been observed. The free charge distribution
on a metallic surface shoots up at the edges and is relatively flat
at the middle portion of the conductor [2], which is the reason that
the slope of the charge distribution is steeper as the edge of the
conductor is approached, and thus the rate of increase of charge density
is more as one approaches the edges of the conductor as shown in
Fig. 5. For a smooth curve of charge density with axial distance of the
conducting cylinder, the number of sub-sections should be very large
to approximate the sharp rise in charge distribution. The jagged line
in Fig. 5 will be removed if the number of sections is increased beyond
this convergence criterion but in that case the matrix may become ill-
conditioned. The convergence data in Fig. 6 shows that the pulse basis
with Galerkin weighting converges faster than method of Harrington [1]
as the number of segments N increases for a small cylinder radius.

Figure 7 depicts the value of numerical capacitance as a function
of the number of segments for cylinder length to diameter ratio 60.
As the radius increases, instability in the value of capacitance for
pulse basis and delta testing method is observed. Fig. 8 shows the
dependence of the condition number of Lmn matrix on the number
of segments. It is noted that the co-efficient matrix is relatively
well conditioned when triangular basis function and delta function as
testing function is used in the method of moment. Similar studies were
carried out using triangular basis function for pulse as well as triangular
testing (Galerkin weighting). But in those cases the calculation of
matrix elements Lmn is relatively more complex and no significance
improvement is achieved in the convergence. Hence, the triangular
basis and delta testing method is considered optimum.
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