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Abstract—In this paper, we present the chaotic verification for
angular glint of complex radar target. Angular glint is a key factor
in the generation loss probability in radar detections, and the intrinsic
physical characteristic and suppression techniques of glint have been
a hot topic in radar signal analysis. In this paper, the radar angular
glint samples of a typical complex target are calculated by the Greco
method based on Phase Gradient method. The simulated glint series
fit the prerequisites of chaos for deterministic, nonlinear generation
and no regularities in time domain, therefore the analysis the chaotic
traits is required. We propose the design of chaotic verification flow,
which is proved to be efficient and effective by the experiment of
Lorenz Attractor signal model, and the details have been explained.
The algorithm flow begins with the determination of optimum time
lag and minimum embedding dimension, and is followed by the time-
delay reconstruction in phase space. The results are presented with
three qualitative verification results of attractor geometry, Poincare
section and principal component analysis and two quantitative results
of correlation dimension and largest Lyapunov exponent for the glint
series. With comparison with results obtained by Lorenz attractor, the
chaotic traits of angular glint data are verified. Therefore, the paper
has proposed new possible reduction and prediction ideas to refrain
angular glint in the digital processing unit of radar receiver in the
future.
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1. INTRODUCTION

Since 1959, when the concept of glint was firstly proposed, the radar
angular glint has attracted great attention among electro-magnetic
diffraction and stealth researchers [1–3]. The angular glint is a key
signal in the generation of target loss probability in radars, for strong
glint can give rise to tracking loss and misjudgment. The concept of
glint is interrelated with the concept of extended radar target. Any
target that has dimensions compared with wavelength and is comprised
of more than two scattering centers is regarded as an extended target,
and any extended radar target can generate angular glint.

The angular glint and radar cross section (RCS) are two significant
signals of target characteristics. Researchers have gained an insight
into the relationship between RCS and angular glint. Some drew the
conclusion that: (1) the two are negatively correlative; (2) they are
neither correlative nor independent [4–6].

The primary cause of angular glint is the interactions among
each reflection unit inside the extended target. When the radar is
scanning, angular glint could cause the antenna to jitter, the result
of which is the increase of target tracking loss probability. When the
target travels nearer to the radar, this phenomenon is more evident.
There have been a lot of published research results with the purpose of
suppression of glint, and methods such as widening the angular range
and space diversity have been applied in radar designs, but few have
done researches of glint when regarded as a time series, which is the
main topic of this paper.

In this paper, angular glint data of three typical trajectories
of a typical extended target are calculated by the Greco method,
which is accepted with sufficient accuracy compared with measurement
results [7, 8]. The generation of angular glint is deduced from phase
perturbation theories and has analytical expressions, therefore glint is
not stochastic but deterministic. Moreover, there are no quasi-periodic
or other regularities in glint data, both of which further propose the
question of whether glint is chaotic. Therefore, an effective workflow
of chaotic verification has been designed by the author. With the
comparison of the results obtained by this workflow of Lorenz attractor,
which is a typical model of chaos, the chaotic characteristics of angular
glint are verified. The merit of these verifications is that if a time
series is chaotic, it is predictable in a short future time range and
the fluctuations can be decreased by related chaotic signal reduction
methods. These algorithms can be integrated into the DSP unit of the
radar receiver in the future to calibrate target position inaccuracies
generated by angular glint effects.
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2. GLINT CALCULATION BY GRECO

2.1. Greco Algorithm Explanation

As glint is not easily detected in radar operations, theoretical
simulation methods are widely applied. Two types of glint generation
theories of glint are accepted by the majority: the tilt of electro-
magnetic energy flow [8] and phase perturbation [2] theory. The first
one is realized by the calculation of energy flow of the scattering field;
the second is applied in the phase simulations of angular glint and
is accurate compared with measurement results. It has been verified
that in isotropic media and under geometrical optics approximations,
the two techniques are identical [8]. The Greco method which
is Graphical Electro-magnetic Computation was first developed by
Spanish researchers for RCS real time calculation in 1993. It belongs
to the phase perturbation method group. Several simulation results of
glint of a typical targets are given [9].

We have developed a similar Greco software with a newly
verified package for glint calculation, which is one novelty in
electromagnetic scattering simulations [10, 11]. Compared with
publicized measurement results, angular glint calculations by our
package are accurate [11]. Each pixel on the computer screen is
regarded as a scattering center and all the pixels of a target are
calculated. All the equivalent scattering centers are classified in edge
and surface types. The angular scintillation is computed for the target
on a trajectory [10]. The target selected is the same as in reference [9].

The simulation setup and target is shown in Fig. 1. In the optical
range, the scattering field of the target can be modeled as the vectorial
sum of the echo fields of each scattering center. Let dN be the distance
between each scattering center, R and rN are distances between the

Figure 1. Target for GRECO simulation [9].
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centers and the radar (R ≈ rN ), and R À dN , R À λ, the total
scattering field received can be derived as:

Es =
∑n

i=0
Es

n exp[−j(2krN − δN )] (1)

in which Es
n and δN are the amplitude and phase of the scattering

field. The relation between the incident and the scattering field is
shown by (2), where subscript 1 or 2 denotes vertical or horizontal
polarization of the incident or scattering field, and [Q] is the equivalent
scattering matrix:

[
Es

1

Es
2

]
=

[
Q11 Q12

Q21 Q22

] [
Ei

1

Ei
2

]
(2)

[Q] = eiϕ11

[ √
σ11

√
σ12e

i(ϕ12−ϕ11)

√
σ21e

i(ϕ21−ϕ11) √
σ22e

i(ϕ22−ϕ11)

]
(3)

where √σ1,2 and ϕ11 are the amplitude and phase of the scattering
field for different polarizations. It can be seen from (2) that when
the incident wave is spherical, the wave front of the scattering field is
astigmatic, whose curvature is shown in [Q]. The curvature radius of
the scattering fields for two polarizations is given by:

1
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1
2
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22
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(4)

With the target DXF model (perfect conductor) and Greco
method, the back-scattering fields are simulated by (5), Where the
scattering field of the nth surface and the nth edge are represented by
Es

n and Ed
n, and the total scattering field is their vectorial sum by (6):
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Above all, under the irradiation of uniform plane or spherical
wave, the beam front of the target is astigmatic with the phase front
by (7), in which [b]T = [Rθ + Rϕ], [r, θ, ϕ] is the unit vector in
spherical coordinate, Q(R) is the curvature matrix of the scattering
wave. The angular glint of a complicated target can be deducted
using the phase gradient method by (8) [11]. It can be observed from
formula (7) and (8) that angular glint is related not only to R, but also
the astigmatic beam front [b], This relationship is a quadric surface
expression. The edge and surface scattering centers are all included in
these simulations.
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Figure 2. Target trajectory for straight line movement.

These expressions show that the azimuth and elevation plane
angular glint series are all generated by nonlinear calculations of phase
perturbations, which are prerequisite for further chaotic discussions.

φ =
2π

λ

{
R +

1
2
[b]T Q(r)[b]

}
(7)





eθ =
r(∇φ)θ
(∇φ)R

eϕ =
r(∇φ)ϕ
(∇φ)R

(8)

2.2. Glint Calculations Using Greco

In this paper, three types of target trajectory are selected, they
are the straight line, spiral and rotary trajectories, respectively.
These trajectories are chosen to cover most frequent target movement
styles [12, 13]. The target dimension (compared with wavelength) and
radar detection distance meet the requirement of far field.

The first simulation of straight line motion (glint 1) is calculated,
which is the simplest type of trajectory for a target. The target
movement is shown in Fig. 2.

The second simulation setup is the rotary motion (glint 2), which
yields much larger fluctuations in glint values than glint 1. The target
moves in the orthogonal plane to the vector around the origin. The
target movement is shown in Fig. 3. The third simulation is done by
the spiral motion of the target, in which the target moves in a circle
around a fixed point (glint 3). The target movement is shown in Fig. 4.

The simulation parameters are summarized in Table 1.
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Table 1. Glint calculation parameters using GRECO.

Motion Straight Line Rotary Spiral
Frequency 10 GHz 20 GHz 10 GHz

Polarization V V V V V V

Incident Electric
Field Intensity

1V/m 1 V/m 1 V/m

radar position (0, 0, 1000) (0, 0, 1000) (0, 2000, 0)
Model In

Simulation
surface & edge surface & edge surface & edge

Calculation
Plane

Azimuth Azimuth Azimuth

Glint Unit m m m
Calculation Pts 3600 18000 3600

3. THE DESIGN OF THE CHAOTIC VERIFICATION
FLOW AND USABILITY CHECK BY THE LORENZ
MODEL

Nonlinear science and chaotic theories have been hot topics in
the researches of signal processing, from which many previously
insolvable problems have found new solutions. In economical,
geographical and meteorological signal analysis, nonlinear and chaotic
algorithms have been widely applied and accepted. Previous
chaos verifications are done by independent methods such as
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attractor geometry formation, primary component analysis and largest
Lyapunov exponent calculations, but few papers have discussed an
intact and efficacious verification workflow which combines most of
the independent methods. Based on chaotic principles, this workflow
is designed and the performance is verified by Lorenz model (publicly
known chaos model), and the verification criteria are summarized. This
section focuses on the algorithm development and performance check.
Then, the flow is applied to verify that the three angular glint series
are chaotic.

3.1. Chaotic Verification Workflow Design and Descriptions

The work flow is shown in Fig. 5.
Verification criteria are divided to qualitative and quantitative
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Figure 5. Chaotic verification flow designed by the author.
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Figure 6. Workflow step illustration of lorenz model.

ones. The three typical qualitative chaotic criteria include chaotic
attractor geometry, Poincare section, and PCA (Principal Component
Analysis), and they are depicted by figures. Two most frequently used
quantitative chaotic criteria are: correlative dimension and largest
Lyapunov exponent, and they are shown by values. These chaotic
criteria are all contained in the work flow, which has been verified to
be effective in distinguishing chaotic or not by Lorenz Attractor model.
To help understanding, each important step is accompanied by a figure.

The work flow is applied from top down. The input time series
could be Lorenz Model, or angular glint series. The verification steps
are illustrated below:

1. Check the chaos prerequisite: whether the data is generated by
deterministic and nonlinear relations. Moreover, no regularities could
be found in time and frequency domains.

2. Obtaining the optimum time lag. The first step is to determine
the optimum time lag for phase space reconstruction by the auto
mutual information function. A large number of time lags are
used to calculate average auto mutual information values, and the
corresponding reconstruction of the original time series is given. The
time delay of the first minimum value of the reconstructed time series is
selected as the estimation of optimum time lag [14, 15]. This procedure
can be observed from the upper-left of Fig. 6. The setup of Lorenz
model will be explained in the next section.

3. Minimum embedding dimension determination by Cao
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method [16]. Firstly, using the optimum time lag τ and d + 1
(embedding dimension to be determined) and the fake nearest neighbor
algorithm, the norm division parameter E1(d) is obtained, and after
weighting sum and normalization operations, the figure of E1(d) is
drawn. Secondly, the minimum embedding dimension (min-ed) is set
as the first obvious inflection point of E1(d). Thirdly, the chaotic
attractor is reconstructed using τ and min-ed, and its movement
characteristics are shown in the figure. Generally speaking, min-ed
the should be 2 or 3 to successfully reconstruct the dynamic traits of
attractors. Once this minimum embedding dimension is obtained, then
phase space reconstruction can be done. This procedure is shown in
the lower-left of Fig. 6, and an apparent inflection point appears in
embedding dimension of 3.

The first chaotic qualitative criterion obtained by this procedure is
summarized as: If the attractor moves with large dimensions and folds
often in the limited space, and the movement is neither intersected
nor in a periodic version, the time series is regarded to possess
chaotic traits. Often, the “cloud” or “star” shape attractors are
more convincing than other shapes in diagnosing chaos by attractor
geometry [17, 18].

4. Phase space reconstruction and the generation of Poincare
section of 2 or 3 dimensions [18]. Firstly, the phase space reconstruction
is done based on the minimum embedding dimension. Secondly,
one typical cross section plane should be selected to facilitate the
observation of phase space movement. This selection is the Poincare
section, and should be made with no overlapping with the trajectory
planes or the planes that are orthogonal to them. The movement of the
phase-space reconstruction is then intersected with the Poincare plane,
and hundreds of cross section points form the Poincare points sequence
(B0, B1, . . . , Bn). Mappings are needed to decrease the movement
dimension of these points, and this mapping is called the Poincare
mapping T:

Bn+1 = TBn

After mapping, the Poincare point figures can be shown. The
second chaotic qualitative criterion is summarized as [19]: (1) If there
are only a small number of stationary points in the Poincare point
figure, the time series is periodic; (2) If the points form a closed
curve, the time series is quasi-periodic; (3) If the points form structures
that possess fractal structures or the geometry is in structures other
than (1) and (2), the time series is chaotic. Also, the boundaries of
dense and sparse distributions of intersection points should be clear.
For practical observation convenience, two dimension Poincare Section
figure is sufficient to obtain the dynamic traits of the time series [19].
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5. The calculation of correlation dimension by the correlation
integration G-P algorithm [18, 19]. Firstly, using the minimum
embedding dimension obtained in step 3 to reconstruct phase space
and calculate the correlation integration curve; Secondly, increase the
embedding dimension one by one to observe the correlative dimension
curves. The selection of the correlation dimension is to eliminate the
curves that have zero or infinite slopes and find the curve that is nearest
to a straight line. The slope of this curve is set as the correlation
dimension D. Finally, inspect the convergence of these correlation
dimension curves. If the curves that have larger embedding dimensions
approximately converge to a fixed point, then the slope of this curve
(D) is the optimum embedding dimension opt-ed. This procedure
is shown in the lower-right of Fig. 6, from which it is seen that the
distances between each correlation sum curve is closer (the upper-left
is the starting curve), and the curve that is most similar to a straight
line appears in the mid-range of the curve group. The correlation
dimension result is shown in Table 2.

The first chaotic quantitative criterion can be expressed as [17–
19]: (1) If D is an integer, then the time series is quasi-periodic or
stochastic; (2) If D is a fraction, then the time series is chaotic.

6. The phase-space reconstruction using opt-ed and the Principal
Component Analysis [14, 19, 20]. Firstly, use the optimum time lag and
embedding dimension to reconstruct the phase-space, and calculate the
trajectory matrix; then deduce the covariance matrix of this trajectory
matrix, and obtain the eigen-values and eigenvectors; Secondly,
rearrange the eigen-values from the minimum to the maximum, then
the eigen-values and their corresponding eigenvectors are regarded
as the principal components of the time series. Finally, sum up all
the eigen-values for each embedding dimension (from 1 to opt-ed) to
obtain a figure with eigen-value sum γ as Y coordinate and embedding
dimension as X coordinate.

The third chaotic qualitative criterion (Principal Component
Analysis, PCA) is summarized as [19, 20]: (1) If the PCA values are
depicted as a straight line which has nearly zero slope, the time series
is stochastic or periodic; (2) If the PCA values are decreasing with a
negative slope, and with steep decline in low embedding dimensions,
then the time series is chaotic.

7. The calculation of Largest Lyapunov Exponent by the Wolf
method [21]. The fundamentals of the Wolf method derive from the
nearest neighbor algorithm. Firstly, define an initial threshold distance
value and set a starting point from the time series after the phase-
space reconstruction, then determine the nearest point. Secondly, track
the time domain development of these two points until the distance
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between the two points are larger than a threshold value. Thirdly,
keep the information of the two points then repeat the previous step
to find the third nearest point. The angular distance (distance between
the first two points measured as an angle from the third point) should
be minimum in choosing this point. Fourthly, repeat the previous steps
for all the points in the phase-space reconstructed time series until the
end of series, and use the weighting average of the logarithm distance
quotients of these distances to deduce the curve of Lyapunov exponent.

The largest value of this curve is the second quantitative chaotic
criterion: (1) this value is larger than zero; (2) the order of magnitude
of this value for a test time series is the same as the order quantity of a
typical chaotic time series model, then the time series in test is chaotic
rather than periodic or stochastic.

3.2. The Setup of the Lorenz Model and Workflow Usability
Check

The typical Lorenz Model is established for verification of the
effectiveness of this work flow. Lorenz model is one of the accepted
chaotic model whose iterative differential equations are shown in (9).
The time step is chosen as 0.025, and the constants σ, r, b are set
as 0.1, −0.1 and 0.02, data length is 18000 and the x axis series is
simulated. In this simulation, the trace of time series is in normalized
length, therefore no dimension is shown in the upper-left of Fig. 7.





dx

dt
= −σ(y − x)

dy

dt
= −xz + rx− y

dz

dt
= xy − bz

(9)

The prerequisite check for Lorenz model is not required, for it is a
standard chaotic system. The qualitative verification for Lorenz model
is shown in Fig. 7. From the upper-right figure, the Lorenz model
attractors extend and fold in the limited space with no intersections or
periodic movements, and the structure is cloud-like. From the lower-
left figure, the Poincare Sections possesses fractal structures, and is
not formed by stationary points or closed curves, and the boundaries
are clear. From the lower-right figure of PCA, the PCAs of Lorenz
model are decreasing with a negative slope, and declines are steeper in
lower dimensions, especially from 1 to 3. The quantitative results of
Lorenz model is shown in Table 2. It is observed that the correlation
dimension is not integer, and the largest Lyapunov exponent is larger
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Figure 7. Workflow usability check by Lorenz model (qualitative
results).

Table 2. Quantitative chaotic verification results.

Time Series Correlation Dimension
Largest Lyapunov

Exponent
Lorenz Model 1.9841 0.0768

than zero, both of which prove that this verification workflow is able
to detect chaos effectively.

4. THE CHAOTIC VERIFICATION RESULTS FOR
ANGULAR GLINT AND ANALYSIS

4.1. Qualitative Chaotic Verification Results and Analysis

Based on the chaotic verification flow, the qualitative verification
results of Attractor Geometry, Poincare Section (2 Dim), and PCA
are shown below from Fig. 8 to Fig. 10.

Firstly, the prerequisite should be checked. In our case of glint
data, they are all generated by nonlinear mathematic expressions, and
no clear regularities (quasi-periodic or others) can be found.

From the upper-right four figures of attractor geometries, the
Lorenz model and the other three glint attractors all extend and fold
in the limited space with no intersections or periodic movements. The
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Figure 8. Qualitative chaotic verification for straight line glint.
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Figure 9. Qualitative chaotic verification for rotary motion glint.

geometry structures of the three angular glints are clear and are all
star-like.

From the lower-left three figures of Poincare Sections, the three
glint Poincare sections all possess fractal structures, and these sections
are neither formed by stationary points nor closed curves. The
boundaries of the dense and sparse distributions of Poincare Sections
of glint series are clear.
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Figure 10. Qualitative chaotic verification for spiral motion glint.

Table 3. Quantitative chaotic verification results.

Time Series
Correlation
Dimension

Largest
Lyapunov
Exponent

Angular Glint 1 (Straight Line) 1.7709 0.0171
Angular Glint 2 (Rotary Motion) 2.0733 0.0723
Angular Glint 3 (Spiral Motion) 1.8842 0.0159

From the lower-right three figures of Principal Component
Analysis, the three glint series PCA all decrease in negative slopes,
and the declines are steeper in lower embedding dimensions, such as
from 1 to 5.

Therefore, on the basis of the above qualitative chaotic verification
results and with comparison of results obtained from Lorenz model, the
three angular glint series all possess clear chaotic traits.

4.2. Quantitative Chaotic Verification Results and Analysis

Based on the chaotic verification flow, the quantitative verification
results of largest Lyapunov exponent and correlation dimension are
shown in Table 3.

It can be observed that the correlation dimensions of the time
series are all fractal; the largest Lyapunov exponents are all larger than
zero. More importantly, the correlation dimensions and the largest



Progress In Electromagnetics Research B, Vol. 43, 2012 309

Lyapunov exponents of angular glint series are all in the same order
of magnitude as Lorenz model. Therefore, on the basis of the two
quantitative chaotic verification criteria, the three angular glint series
are all chaotic.

5. CONCLUSION

The chaotic verification flow designed by the author is presented in this
paper and the verification of chaotic traits for angular glint series of a
typical target is verified. Firstly, as angular glint is not easily captured
by radars, one typical extended radar target is selected, and the
glint series applied in this paper are calculated by a newly developed
package, which is the first novelty of this paper. Secondly, when treated
as time series, glint is deterministic (from its generation calculations)
but no clear regularities are found, which fits the prerequisite for chaos,
therefore the question to verify chaos is raised. A clear and effective
chaotic verification flow which is illustrated in detail is designed by
the author (the second novelty of this paper), and its effectiveness
is verified by the Lorenz Attractor model, which is a typical chaotic
model. Then, the three glint series are verified by the same flow
with chaotic prerequisites checked. Compared with the results of
Lorenz Attractor and the chaotic verification criteria, the chaotic
characteristics of angular glint are demonstrated with qualitative and
quantitative results, which form the third novelty of this paper.

Once the chaotic characteristics are proved, the research of
angular glint can make one step further. Chaos and related topics
in nonlinear science have been widely applied in the data analysis
of economics, meteorology and geo-science. Chaotic signals can be
effectively suppressed by related algorithms and predicted in a small
future time period, both traits are very significant in angular glint
analysis. Therefore, there is no reason to refuse the application of
chaotic theories in radar angular glint analysis, based on the research
results in this paper.
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