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Abstract—We consider the relativistic polarization of a rotating
magnetized medium in the framework of the approach suggested
earlier [8], which is based on the charge conservation law and
relativistic generalization of the first Kirchhoff law to a closed moving
circuit carrying steady current. We show that the polarization of a
magnet brought to a rotation differs, in general, from the relativistic
polarization of a translationary moving magnet, and on this way we
give one more explanation to the familiar Wilson & Wilson experiment,
with the explicit demonstration of the implementation of the charge
conservation law.

1. INTRODUCTION

In this paper we address to the classical electrodynamics of rotating
media, in particular, with regards to the Wilson & Wilson (W&W)
experiment carried out at the beginning of the past century [1]. As
known, the idea of this experiment had been suggested by Einstein
and Laub to verify the relativistic prediction on the development
of an electric dipole moment by a translationally moving magnetic
dipole. By technical reasons W&W substituted translational motion
of a medium by its rotation, and the result of their experiment
fully confirmed this relativistic prediction. During a long time this
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result was considered as a remarkable experimental verification of
special relativity. However, at the modern time Pellegrini and Swift
(P&S) questioned the correctness of relativistic analysis with respect
to W&W experiment [2], stating that the expression for “relativistic
polarization” of a moving magnetized medium (see, e.g., [3])

Prel =
v ×M

c
(1)

(where Prel is polarization, M is magnetization, and v is the
translational velocity of a medium), seemingly tested in W&W
experiment, comes into a contradiction with the charge conservation
law, when Eq. (1) is extended to the rotation case. Based on this
statement, P&S concluded that the theoretical analysis of W&W
experiment must be substantially modified and that one needs to
understand better the conditions, where the standard constitutive
equations in a rotating medium are valid [2].

In the subsequent discussion (see, e.g., [4–6]) the conclusion
of P&S was invalidated, and it was shown that the consistent
formal analysis of W&W experiment in the framework of classical
electrodynamics in rotating media does not reveal a discrepancy with
the W&W result, which was additionally confirmed at a modern
time [7]. Thus it was commonly adopted that the analysis of P&S [2] is
not fully correct; however, to the moment nobody explicitly disproved
the statement of P&S mentioned above that in a rotating medium
Eq. (1) contradicts the charge conservation law.

The essence of this contradiction can be seen with the following
simple example. Let us consider a homogeneously magnitized
electrically neutral cylindrical magnet, where its magnetization can
be presented by the effective current circulating over its rim. Then
we assume that the magnet rotates around its axis of symmetry, and
the tangential velocity v on its rim surface coincides with the direction
of circulating current I. We can attach the Lorentz frame K0 to any
point on cylinder’s rim and carry out the transformation of charge
density-current density four-vector (ρ, j) from K0 to the labframe K,
i.e.,

j = γ (j0 + ρ0v) , (2)

ρ = γ

(
ρ0 +

j0 · v
c2

)
, (3)

where γ =
(
1− v2/c2

)−1/2 is the Lorentz factor. Since for the
electrically neutral medium at rest ρ0 = 0, we obtain the non-vanishing
charge density

ρ = γjv/c2 (4)
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at the designated point on the surface of rotating cylinder, as viewed
in the labframe. Further, with the same success we can attach a
Lorentz frame to any other point on the surface of a rotating cylinder
and obtain the same charge density (4) at the given location. Hence
we conclude that all surface points of the rotating cylinder acquire
the non-zero charge density (4), and thus the entire surface occurs
homogeneously charged. One can show that this result fully agrees
with Eq. (1); however it directly contradicts the charge conservation
law, since we assumed that in the absence of rotation the cylinder is
electrically neutral.

In order to resolve this paradox, P&S pointed out the difference
between the cases of translational and rotational motions of a magnetic
medium and suggested to introduce into consideration the rotating
frame, whose origin of coordinates coincides with the origin of
coordinates of a labframe and is located on the rotational axis of the
medium. In this case the time coordinates are identical in both frames,
i.e., t′ = t, and hence ρ′ = ρ [2], so that no relativistic polarization of
a surface of a rotating magnet emerges.

Here we emphasize that such argumentation would be correct
only in the case, where the measuring instrument (a voltmeter in
W&W experiment, which measures the potential difference between
the external and internal surfaces of a rotating magnetic medium)
rigidly rotates with the medium. However, in the conditions of W&W
experiment, the voltmeter rests in a laboratory and is connected
with the rotating surfaces of slab via the sliding contacts. If so,
the electromagnetic fields, charges and currents should be directly
determined for the laboratory frame, where the measuring instrument
(voltmeter) is at rest. Therefore, the approach involving the analysis
of classical electrodynamics in rotating systems can be considered,
in the best case, as an auxiliary tool, since anyway the measured
e.m.f. must be referred to a laboratory observer. It means that
magnetization and polarization of a rotating slab must be determined
in a laboratory frame via the introduction of a set of Lorentz frames co-
moving with each rotating point, with further Lorentz transformation
to a laboratory frame. In what follows, this approach is directly applied
to the analysis of relativistic polarization of rotating magnetized media.

In the present contribution we intend to show that the resolution
of the paradox in question (a seeming contradiction of Eq. (1) to
the charge conservation law for the case of rotation) requires a closer
insight to the origin and physical interpretation of the transformation
rules (2), (3). In particular, as we mentioned earlier [8], the popular
approach suggested by Feynman et al. [9] consisting in associating
these transformations with the scale contraction effect in a moving
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straight wire is, in general, insufficient for a full understanding of
the relativistic polarization of moving magnetic media. Moreover,
when this approach is applied solely to closed circuits with steady
currents [10], it leads to physically senseless results [8]. The majority
of books on classical electrodynamics (see, e.g., [3, 11, 12]) directly
bridge the transformations (2), (3) to the relativity of simultaneity of
events in different inertial frames. This is a correct, but a too general
statement, which cannot be directly used for the analysis of relativistic
polarization of rotating magnetic media.

In our recent paper [8] we have shown that the transforma-
tions (2), (3) for a translational motion of a current carrying loop can
be understood via the continuity equation for conduction electrons
(named in Ref. [8] as the generalized first Kirchhoff law) combined
with the charge conservation law. In Section 2 we apply this approach
to a magnetic dipole brought to a rotational motion, using the known
result regarding the fact that the entire dipole can be presented as a
set of smaller (elementary) magnetic dipoles, filling its volume, where
the boundary currents in adjacent elementary dipoles mutually cancel
each other, giving rise to the resulting current, circulating over the
rim of the dipole. Thus, when the magnetic medium is brought to
a rotational motion at a constant angular frequency ω, each elemen-
tary magnetic dipole is characterized by its own tangential velocity
v(r) = ωr, where r is the radial coordinate. Next we apply the con-
tinuity equation to the carriers of current in each elementary dipole,
demanding the implementation of the charge conservation law. On this
way we determine the spatial distribution of charge density over the
rotating magnetic medium and show that its surface actually acquires
the charge density (4), as seen by a laboratory observer. At the same
time, we also show the relativistic polarization of the bulk of rotating
magnetic medium, so that the total bulk charge exactly counteracts
the surface charge for a laboratory observer. Consequently, we obtain
one more explanation to W&W experiment with the explicit demon-
stration of the implementation of the charge conservation law. Finally,
in Section 3 we present our conclusions.

2. GENERALIZED KIRCHHOFF LAW AND POLARIZA-
TION OF A ROTATING MAGNETIC MEDIUM

In this section we determine for the laboratory observer the relativistic
polarization of a homogeneously magnetized slab (hollow cylindrical
magnetic insulator), rotating at the constant angular frequency ω in
the counter clockwise direction around its axis of symmetry (z-axis,
see Fig. 1). We designate as Rin and Rex the internal and external
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Figure 1. Cross-section in the xy-plane of the rotating magnetized
slab. We mark inside the slab an elementary circuit (magnetic dipole),
whose upper and lower parts lay in the azimuthal direction, and the
side parts are directed along the radius.

radius of the slab, correspondingly, and suppose that its length along
the axis z is equal to h, and that the magnetic moment of the slab is
parallel to this axis.

Such a magnetization of the slab can be described via the effective
steady surface currents Ief , flowing counter clock-wise on its external
surface, and clock-wise on the internal surface (Fig. 1). We want to
determine the charge distribution in the slab due to its relativistic
polarization caused by the rotation.

As we have mentioned above, the total magnetic dipole moment
of the slab can be described via a set of elementary magnetic dipoles,
filling its entire volume. Using in a further analysis the cylindrical
coordinates r, ϕ, z, we choose the elementary magnetic dipole in such
a way that its upper and lower segments lie in the azimuthal direction
ϕ, while the side segments lie in the radial direction r (see Fig. 1,
where the direction of current in the circuit is also shown). The length
of such a dipole along the axis z coincides with the length of the slab
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and is equal to h.
Further, using the approach suggested in [8], we want to write the

continuity equation for carriers of current in the designated circuit.
The physical meaning of such continuity equation for a steady current
is straightforward [8]: For any cross-section area chosen at a given
point of the circuit and co-moving with it, the number of charges
passing across the mentioned area per unit period of time must be
a fixed quantity for any point located on the perimeter of the circut.
(We named this statement in Ref. [8] as the generalized first Kirchhoff
law). Thus respectively designating ρ0, u0 and S0 the proper charge
density of carriers of current, their flow velocity and the area of cross-
section, correspondingly, let us consider the cross-section in the lower
right corner of the circuit†. Then the value of charge passing during
a given unit period of time across the cross-sectional area in question,
being delivered from the lower segment of the circuit, is equal to

ρ′low

(
u′low + vlow

)
S0, (5)

as seen by a laboratory observer. Here u′low stands for the azimuthal
component of velocity of carriers of current in the labframe, and we
have taken into account that for the area S0 co-moving with the circuit,
the immovable charges of this circuit do not contribute to the net
current. On the other hand, the value of charge coming to the right
side segment of the circuit from this cross-sectional area during the
given period of time is defined by the product

ρ′su
′
s (S0/γs) , (6)

where we have taken into account the relativistic contraction of the
cross-sectional area of the circuit in its side segments. (Here u′s is the
radial component of velocity of carriers of current). Thus, due to the
continuity requirement, the quantities (5) and (6) are equal to each
other, i.e.,

ρ′low

(
u′low + vlow

)
S0 = ρ′su

′
s (S0/γs) . (7)

† Below we introduce further designations, referred to a laboratory observer:
ρ′low, ρ′up, ρ′s are the charge densities of carriers of current in the lower, upper and side

segments of the circuit, correspondingly;
ρ is the charge density of immovable charges of the circuit (e.g., positive ions for

conducting circuits);
u′low, u′up, u′s are the velocities of carriers of current in the lower, upper and side

segments, correspondingly;
vlow, vup, vs are the tangential velocities along azimuthal direction ϕ in the lower, upper

and side segments, correspondingly;
rlow, rup are the radial coordinates respectively of the lower and uper segments of the

circuit.
In addition, we designatellow, lup, ls the proper lengths of the lower, upper and side

segments of the circuit, correspondingly.
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Using the Einstein law of velocity composition, we find

u′low+vlow =
u0−vlow

1−u0vlow/c2
+vlow =

u0

γ2
low (1−u0vlow/c2)

, u′s =u0/γlow.

Substituting these equalities into Eq. (7), we obtain:

ρ′low = ρ′s
(
1− u0vlow

/
c2

)
. (8)

Applying a similar continuity equation to the right upper corner
of the circuit, we derive:

ρ′up = ρ′s
(
1 + u0vup

/
c2

)
. (9)

Here we remind that similar Eqs. (8) and (9) had been obtained
in Ref. [8] for a translationary moving rectangular circuit (where
by definition vlow = vup), which, after the explicit determination
of ρ′s, ρ′low and ρ′up via the charge conservation law, yield Eq. (1).
However, for the case of rotation we get vlow 6= vup, and the analysis
becomes more complicated. In addition, we point out that in the
side segments, the Lorentz factor γs = [1− v2

s(r)/c2]−1/2 becomes
to be the function of r. However, for simplicity of further analysis
we overlook the dependence of γs on r for the elementary circuit in
question, which implies the accuracy of further calculations of the order
(vs/c)2. Indeed, a polarization of a rotating magnetic media, which is
the subject of our further calculations, cannot contain the terms of the
order (vs/c)2, because it must vanish at u0 = 0. Hence, the lowest
order of the terms, containing the Lorentz factor, is v2

su0/c3, which
however lies beyond the adopted accuracy of calculations c−2.

Thus, having obtained Eqs. (8) and (9), we now in the position
to write the charge conservation law for the circuit in question, taking
into account that for the immovable elementary circuit the charge of
carriers of current is equal to ρ0S0P0, where P0 = llow + lup + 2ls is
the perimeter of the circuit in its rest frame. This charge remains
unchanged for the moving circuit, and hence we derive the equality:

ρ′lowS0 (llow/γ) + 2ρ′s (S0/γ) ls + ρ′upS0 (lup/γ) = ρ0S0P0. (10)

Further substitution of Eqs. (8), (9) into Eq. (10) yields:

ρ′s
(
1− u0vlow

/
c2

)
llow + 2ρ′sls + ρ′s

(
1 + u0vup

/
c2

)
lup = γρ0P0.

After some manipulations this equation can be presented in the form
of

ρ′sP0 + ρ′su0

/
c2 (vuplup − vlowllow) = γρ0P0.

Involving the obvious equalities llow = ϕrlow, lup = ϕrup, vlow = ωrlow,
vup = ωrup (where the angle ϕ is defined in Fig. 1), we obtain:

ρ′s = γρ0

[
1 +

2Sc

P0

u0ω

c2

]−1

, (11)
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where Sc = 1
2ϕ[r2

up − r2
low] is the area of the circuit.

Substituting Eq. (11) into Eqs. (8) and (9), we determine the
charge density of carriers of currents in the lower and upper segments,
too:

ρ′low = γρ0

(
1− u0vlow

/
c2

) [
1 +

2Sc

P0

ωu0

c2

]−1

, (12)

ρ′up = γρ0

(
1 + u0vup

/
c2

) [
1 +

2Sc

P0

ωu0

c2

]−1

. (13)

A net charge density ∆ρ in each segment of the circuit is defined
as the difference of charge density of carriers of current and charge
density ρ of immovable charges of the circuit. Taking into account
that ρ = γρ0 in each segment, we derive with the adopted accuracy of
calculations c−2:

∆ρs = ρ′s − γρ0 ≈ −ρ0
u0ω

c2

2Sc

P0
, (14)

∆ρlow = ρ′low − γρ0 ≈ −ρ0
u0ω

c2

(
rlow +

2Sc

P0

)
, (15)

∆ρup = ρ′up − γρ0 ≈ ρ0
u0ω

c2

[
rup − 2Sc

P0

]
. (16)

Equations (14)–(16) describe the charge distribution over the
perimeter of the designated small magnetic dipole depicted in Fig. 1.
We point out that in contrast to the case of translational motion of
closed rectangular circuit (see, e.g., [8]), in the side segments, where
the direction of current is orthogonal to tangentional (translational)
velocity, the charge density of relativistic polarization (14) is not equal
to zero and proportional to the ratio 2Sc/P0. Correspondingly, in the
low and upper segments of the circuit, where the direction of current
is collinear to the tangentional (translational) velocity, the charge
density of relativistic polarization also contains the terms proportional
to 2Sc/P0 (Eqs. (15), (16)). Further on, it is important to notice that
in the calculation of relativistic polarization Prel in a given spatial
point r of a rotating magnetic medium, we have to consider a point-
like magnetic dipole located in this point, and for such infinitely
small dipole the ratio 2Sc/P0 tends to zero. In addition, we have
ωrlow ≈ ωrup = ωv(r), so that

∆ρs→0, ∆ρlow→−ρ0
u0v(r)

c2
=−jv(r)

c2
, ∆ρup→ρ0

u0v(r)
c2

=
jv(r)

c2
, (17)

and in this limit further straightforward calculations indicate a perfect
fulfilment of Eq. (1). Hence for the case of W&W experiment, the
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radial electric polarization of an insolating magnetic medium with the
electric permittivity ε in the considered point r is equal to

Pr =
(ε− 1)

4π

(
Er +

ωrBz

c

)
+ (Pr)rel . (18)

Here Er is the radial electric field, Bz is the magnetic field caused by the
rotation of charged cylinder enclosing the magnetic medium, and we
have taken into account that v(r) = ωr. Then the radial displacement
takes the form

Dr = Er + 4πPr = εEr + (ε− 1)
ωrBz

c
+

(
1− 1

µ

)
ωrBz

c
, (19)

where µ is the relative magnetic permeability, and we have used Eq. (1)
in the form

(Pr)rel =
ωrMz

c
. (20)

Further taking into account that for a long magnetic insulator
cylinder the displacement is equal to zero, we derive from Eq. (19)

Er = −
(

1− 1
εµ

)
ωrBz

c
. (21)

This equation indicates that the potential difference measured
in W&W experiment between the internal and external surfaces of
a rotating magnetic slab should be proportional to the factor (1− 1

εµ),
which is actually the case.

Equations (18)–(21) had been proposed by Pellegrini [13] with the
purpose to demonstrate that the suggested interpretation of W&W
experiment, which involves the radial relativistic polarization (20),
issuing from Eq. (1), does contradict the charge conservation law and
thus cannot be recognized satisfactory.

However, based on Eq. (17) we already have shown that Eq. (1) is
well fulfilled for each point of a magnetic medium brought to a rotation.
Thus, the next principal problem is to demonstrate that this equation
could be well compatible with the charge conservation law, when we
derive with Eqs. (14)–(16) the macroscopic charge distribution inside
a rotating magnetic medium.

In order to determine this charge distribution, we have to sum
up the charge densities, defined by Eqs. (14)–(16), over a full set of
elementary magnetic dipoles, which finally give rise to the resultant
effective surface current Ief . And only after the implementation of
this operation we will obtain the macroscopic charge distribution in
the rotating magnetic medium shown in Fig. 1.

First we sum up the charge densities in the adjacent elementary
magnetic dipoles along the radial coordinate (i.e., at fixed ϕ) and get
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the subsequent sums of Eqs. (15) and (16), where in Eq. (15) the radial
coordinate rlow is every time replaced by rup. Then one can see that
any such summation yields the value 2∆ρs, i.e., it reproduces the radial
distribution of charge density, derived from Eq. (14). The fully non-
compensating contribution to the charge density (16) emerges only on
the external and internal surfaces of the sector of rotating magnetic
cylinder, defined by the angle ϕ, whose area is equal to

Sc = ϕ
(
R2

ex −R2
in

)/
2,

and perimeter

P0 = 2 (Rex −Rin) + ϕ (Rex + Rin) .

Substituting these equalities into Eqs. (14)–(16), we obtain for
this sector:

∆ρs = −ρ0
u0ω

c2

ϕ
(
R2

ex −R2
in

)

2 (Rex −Rin) + ϕ (Rex + Rin)

= −ρ0
u0ω

c2

ϕ∆R

2∆R/(Rex + Rin) + ϕ
, (22)

∆ρlow = −ρ0
u0ω

c2

(
Rin +

ϕ∆R

2∆R/(Rex + Rin) + ϕ

)
, (23)

∆ρup = ρ0
u0ω

c2

[
Rex − ϕ∆R

2∆R/(Rex + Rin) + ϕ

]
, (24)

where ∆R = Rex −Rin.
Here we emphasize that Eqs. (23), (24) are relevant only for a thin

surface layer δ, where the effective surface current Ief flows, and for
insulator magnetic materials δ can be a value of an atomic scale)‡. At
Rex+δ < r < Rex−δ (i.e., in the bulk of magnetic medium) the charge
density is determined by Eq. (22).

Further we notice that for any magnetic material there is always
the smallest value of ϕ = ϕ0 defined by its magnetic structure (e.g., for
a ferromagnetic material the limited value of ϕ0 depends on the ratio
of typical size of magnetic domain to typical size of a magnet). Thus,
the angle ϕ0 determines the minimal size of “elementary sector” for a
given composition of magnetic medium. For real magnetic materials
the value of ϕ0 is usually very small, so that the radial (bulk) charge
‡ Due to a purely relativistic origin of Eqs. (22)–(24), one can ask the question: Is it
legitimate to involve the material properties (e.g., the thickness of the surface layer δ, where
the effective current flows) to the analysis of these equations, given that, for example, in
the frame co-rotating to the medium, the charge densities (22)–(24) are all vanishing? We
give a positive answer to this question, following the assertion of Einstein: All relativistic
effects are real in the same extent, like any other physical phenomena, as soon as they
become a subject of measurement for a given inertial observer.
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density (22) is very small, too. At the same time, as we will see
below, its non-vanishing value is important for the implementation
of the charge conservation law in a rotating magnetic medium.

Next we determine the total charge on the surfaces of the
elementary segment:

Qlow =∆ρlowϕ0RinS0 =−ϕ0
Iefvin

c2

(
Rin+

ϕ0∆R

2∆R/(Rex+Rin)+ϕ0

)
, (25)

Qup=∆ρupϕ0RexS0 =ϕ0
Iefvex

c2

[
Rex− ϕ0∆R

2∆R/(Rex+Rin)+ϕ0

]
, (26)

as well as in the radial segments:

Qs = 2∆ρs∆RS0 = −2Ief (vex − vin)
c2

ϕ0∆R

2∆R/(Rex + Rin) + ϕ0
, (27)

where S0 = δh, Ief = ρ0u0S0, and vex = ωRex, vin = ωRin are
the tangential velocities on the external and internal surfaces of the
rotating sector, correspondingly.

Further on we notice that the magnet contains (2π/ϕ0) elementary
segments. Hence the multiplication of Eqs. (25), (26) and (27) by this
factor gives the total charge located on the internal surface, external
surface and in the bulk of rotating magnet, correspondingly. Taking
also into account that the angle ϕ0 is very small, and using the limit
ϕ0 →0, we derive the following:

Qinternal =
2π

ϕ0
Qlow = −2πIefvin

c2

(
Rin +

ϕ0∆R

2∆R/(Rex + Rin) + ϕ0

)

→ −Iefvin

c2
2πRin, (28)

Qinternal =
2π

ϕ0
Qup =

2πIefvex

c2

[
Rex − ϕ0∆R

2∆R/(Rex + Rin) + ϕ0

]

→ Iefvex

c2
2πRex, (29)

Qbulk =
2π

ϕ0
Qs = −2Ief (vex − vin)

c2

2π∆R

2∆R/(Rex + Rin) + ϕ0

→ −Ief (vex − vin)
c2

2π (Rex + Rin) . (30)

The obtained Eqs. (28)–(30) give the total charge of the rotating
magnetic medium due to relativistic polarization on its both surfaces
and in the bulk. First of all, one can see that the sum of the
charges (28)–(30) is equal to zero, i.e.,

Qinternal + Qinternal + Qbulk = 0,
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as it should be due to the charge conservation law. We can add that in
the particular case of a rotating cylinder (Rin = 0, Rex = R), Qin = 0,
while

Qinternal = −Qbulk =
Iefv

c2
2πR.

Further, let us present Eqs. (28)–(30) in the equivalent forms,
which establish the relationship between charge density and effective
current density. Taking first Eq. (28), we get

Qinternal = −jefvin

c2
2πRinS0 = −jefvin

c2
Vin,

or
ρinternal =

Qinternal

Vin
= −jefvin

c2
, (31)

where jef = Ief/S0 is the effective current density, Vin = 2πRinS0 the
volume of the internal surface layer, where the effective current flows,
and ρinternal is the charge density of polarization charges in the internal
surface layer.

In a similar way we derive for the external surface layer:

ρinternal =
jefvex

c2
, (32)

and we see that in the adopted accuracy of calculations c−2,
both Eqs. (31), (32) are in a full agreement with the relativistic
expression (4), resulting from the Lorentz transformations (2), (3).

Analogously, for the charge density in the bulk of rotating medium
we derive:

ρbulk =
Qbulk

π
(
R2

ex −R2
in

)
h

= −2Iefω

c2h
= −2jefωδ

c2
. (33)

We see that the bulk charge density (33) is much less than the surface
charge densities (31), (32), when δ ¿ Rex, Rin. Even so, the presence
of the non-vanishing charge density inside a rotating magnetic medium
has the principal importance for the implementation of the charge
conservation law, since the surface charges of relativistic polarization
of a rotating magnetic slab on its internal and external surfaces, in
general, differ from each other (compare Eqs. (28) and (29)).

Next we emphasize that the mentioned above compliance between
Eqs. (31), (32) and Eq. (4) represents, in general, a non-trivial fact,
because the Lorentz transformations (2), (3) are directly applicable
only to the case, where all points of a circuit with a steady current
move at the same translational velocity. When it is not the case (e.g.,
for a rotating magnetic medium), we can apply transformations (2), (3)
only to elementary circuits (where the approximation of constant
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translational velocity for all its points is fulfilled), and then to use
the continuity equation and the charge conservation law, in order to
derive a macroscopic polarization of such a medium. In this case the
obtained results should lose a direct relationship with the Lorentz
transformations (2), (3). In these conditions the compatibility of
Eqs. (4), (31) and (32) is actually amazing. At the same time, we
stress that in no way the bulk charge density (33) can be directly
derived from transformations (2) and (3); rather it follows from the
application of continuity equation to the current in each elementary
magnetic cirtuit with further summation of currents/charge densities
over a set of elementary magnetic dipoles, constituting a macroscopic
magnetic medium.

Finally, let us explicitly present the charge density of relativistic
polarization ρrel of a rotating magnetic slab as the function of radial
coordinate r, taking into account that in the macroscopic scale
the value of δ can be usually considered infinitely small, and the
surface charge density can be expressed via the δ-function. Using
Eqs. (28), (29) and (33), we obtain for the given value of effective
surface current:

ρrel (r) =
Iefvex

c2h

Rexδ (r −Rex)
r

− Iefvin

c2h

Rinδ (r −Rin)
r

− 2Iefω

c2h
, (34)

which is defined at Rin ≤ r ≤ Rex, and where we have taken into
account that the volume element is dV = 2πhrdr. We point out that
in the adopted accuracy of calculations c−2, the polarization charge
density in the bulk of rotating magnetic medium does not depend on
r. As example, in Fig. 2 we present a conditional graphic representation
of the function (34) for the magnetic slab depicted in Fig. 1.

Another point is the physical interpretation of a non-vanishing
charge density in the bulk of rotating magnetic medium. In this
connection one should notice that, in general, the straightforward
physical interpretation of trasformations (2), (3) can be given in the
cases, where we deal with a real transport of charges (conduction
current). However, it is not the case for non-conducting magnetic
materials, where, classically speaking, the effective current is composed
either by “spinning” or “orbiting” electrons in each elementary
magnetic dipole, and the details of such magnetism can be rigorously
described only at the quantum level. Nevertheless, the fact of the
appearance of non-vanishing charge density in the bulk of a dielectric
rotating magnet can be qualitatively understood in the semi-classical
approach, if we take into account that for two neighbour elementary
magnetic cells (e.g., for atomic dipoles), located respectively in the
points r and r + dr, there appears a difference in the time dilation
effect due to their different tangential velocities ωr and ω (r + dr).
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Figure 2. Charge density of relativistic polarization ρrel as the
function of radial coordinate r for the rotating magnetic slab shown in
Fig. 1. For the convenience of presentation, we show the value of ρbulk

much larger than its actual magnitude. The integration over the area
of ρ(r) distribution gives zero due to the charge conservation law.

Hence the “orbital frequencies” of electrons around a nucleus in atomic
dipoles located in the points r and r+dr, are not exactly equal to each
other for a laboratory observer. Therefore, the “currents” generated
by these electrons do not fully compensate each other in the adjacent
elementary dipoles. Hence the non-vanishing charge density emerges
on the boundary between such dipoles, leading finally to the non-
vanishing charge density in the bulk of rotating magnetic medium.

We can add that in the case, where the magnetism is created by the
aligned electron’s spins, the non-vanishing charge density in the bulk
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of rotating magnet can be explained by different Thomas rotation for
spin of electrons, having different radial coordinates. However, further
analysis of this problem requires more information on the origin of
magnetism in magnetic materials and falls outside the scope of the
present paper.

3. CONCLUSION

Thus, using the physical interpretation of the Lorentz transformations
for charge and current densities (2), (3), which we suggested earlier,
and which is based on the continuity equation for the carriers of current
in a closed moving circuit, we reanalysed the effect of relativistic
polarization of rotating magnetic media. The consistency of such
analysis is provided by the evaluation of the electromagnetic fields,
charges and currents in the laboratory frame, where the measuring
instrument (voltmeter) is at rest. We demonstrated the validity of
application of Eq. (1) to any point of a rotating medium, which one
more confirms the correctness of the result of W&W experiment. In
addition, we have found that the relativistic polarization of the internal
and external surfaces of a rotating magnetic slab (the first and second
terms in the rhs of Eq. (34) is accompanied by the appearance of
non-vanishing charge density in the bulk of the slab (the third term
in rhs of Eq. (34), so that the net charge of the slab remains to be
equal to zero. This result finally proves that the effect of relativistic
polarization of moving magnetic dipoles (1) is fully compatible with
the charge conservation law, both in the cases of translational and
rotational motion of the dipoles.
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