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Abstract—Conventional Far-field decomposition of the scattered
electromagnetic (EM) field in the [EH] plane in terms of the horizontal
and vertical components (i.e., h, v), introduces ambiguity for multi-
static, multi-platform and/or scene-centric polarimetric synthetic
aperture radar (SAR) image exploitation. This is due to the fact that
a 2-dimensional (2D) vector field can not constitute a complete space
capable of modeling 3-dimensional (3D) field transformations. To
address this, analytic extension of the Stokes and scattering vectors to
3D is explored and presented. In particular, coherent 3D polarimetric
decomposition in Gell-Mann basis is introduced and explored as 3D
generalization of standard Pauli decomposition. The results are
also applicable to compact polarimetry (CP) where mathematically
consistent 3D Stokes parameters can be defined.

1. INTRODUCTION

Synthetic aperture radar (SAR) and radar polarimetry literature
contain a wide variety of target classification and decomposition
techniques based on electromagnetic (EM) scattering theory using
incoherent and coherent methods and products [1–10]. Scattering
functions (e.g., scattering matrix, EM field vectors) provide a
reasonable measure and data set for single platform SAR exploitation,
i.e., single line of sight (LOS) backscattering. 2-dimensional
(2D) backscattering observations and scattering matrix derivations
provide complete information (Poynting’s theorem under far-field
assumption) for target or image exploitation in such cases that
can apply observation-centric coordinate systems, i.e., unique h, v
transmission/reception. For scene-centric (coordinate system defined
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at the scene center) and multi-platform (multi-LOS) SAR image
exploitation, however, 2D formalism based on h, v transmission and
reception would not be straightforward. Furthermore, SAR operation
and related image exploitation is not always guaranteed to be within
targets’ far field zone (e.g., near field SARs) that would make the
field polarization more complicated. Such near field treatments and
corrections has been applied for image processing [11], e.g., noise
radar [20, 21] and some airborne scenarios [22]. Although radiometric
aspects and corrections have been considered for similar problems, field
polarization implications need to be investigated.

To remove the ambiguity that arises from the difference in 2D
slicing of scattering (i.e., scattering planes) and harmonize scattering
analysis to address the aforementioned limitations, it would be
reasonable to formalize the analysis within a 3D framework. The end
products can then be projected to or re-gauged for the desired 2D
scattering plane without loss of consistency. The 3D framework is
established here. It is shown that the formalism is consistent (e.g.,
unitary transformation, energy conservation) and can model a general
partially polarized field in 3D when needed. A 2D picture that may
be sufficient for majority of cases (though not practical for multi-
LOS back/multistatic-scattering) can be found by proper reduction
or re-gauging of the 3D picture. Application to compact polarimetry
(CP) is also explored within the described 3D framework that allows
introduction of mathematically consistent and universal scattering field
observables (e.g., 3D Stokes parameters).

2. IMPORTANCE OF A 3D FIELD FORMALISM

For a scattering scenario that the EM field is assumed to be three
dimensional (e.g., near field SAR) and/or measurable as such, the
need for a 3D formalism is evident. Although this capability may
currently exist for some ad-hoc applications (e.g., near field imaging)
or be developed in future, the present discussion is mainly tailored
and based on far field assumptions and current operational SARs.
One should also note that present discussion is based on the 3D
characteristics of the actual EM field and not what is conventionally
measured, e.g., far-field power measurement. For a number of
operational examples involving multistatic (multiple source/multi-
LOS) scenarios, distributed targets, propagation media effects, and
near-field scattering, the 2D EM field plane (or LOS) becomes
ambiguous and/or incomplete. This shortcoming, in turn, introduces
difficulty in inverse scattering solution, polarimetric SAR imaging and
ensued exploitations. It will be shown that the 3D formalism of EM
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field is invariant under transformation in a 3D space where the 2D
gauging of the same EM field is not. More particular scenarios are
explored as following.

2.1. Near-field Considerations

The far field zone of a target with mean reflective extent (source
equivalent) of L can be estimated by rfar ≈ 2L2

λ [19] where λ is
the operating wavelength. For a target length of L = 100m and X-
band SAR imaging, the far field zone is defined at rfar ≈ 800 km.
This limit is beyond operating range of airborne and some spaceborne
SARs, even with conservative measures. Airborne SARs (e.g., Canada
Convair-580) operate at a maximum altitude of 30,000 to 35000 ft
(9.15 to 10.67 km). One of few and prominent fully polarimetric X-
band SARs is DLR TerraSAR-X that circles earth in a polar orbit at
514 km altitude.

2.2. Multistatic Reception

Reception from multiple LOSs, e.g., multiple-transmit/multiple-
receive, (in near or far field) underscores the non-uniqueness of a
2D [EH] plane defined at an observation point. Proper association
or combination of multi-platform SAR polarimetric products can be
made possible within a 3D framework. Analytic description of such 3D
framework that can provide computational convenience and framework
consistency is provided here. Polarimetric scattering products (e.g.,
matrices, vectors) from different platforms need to be expressed in
a 3D format, transformed (using the introduced 3D transformations)
to a reference/unique frame, and then be combined. If needed, the
resulting final products can then be re-gauged to 2D for conventional
or standard polarimetric analyses. Future spaceborne satellite missions
such as RADARSAT Constellation Mission (RCM) combined with
RADARSAT-2 (RS2) provide opportunities for multistatic target
exploitation. A 3D approach can benefit the associated polarimetric
data exploitation.

2.3. Compact Polarimetry

Compact polarimetry deals with imaging modes that transmit one
polarization and coherently receive two orthogonal polarizations,
neither of which matches the transmitted polarization. As such, Stokes
vector and parameters that can characterize the partially-polarized
scattered or receive EM field are suitable for required scattering
analysis. The 2D Stokes 4-vector definition is specific to the assumed
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LOS and respective [EH] plane. As will be shown analytically, any
tilt of the assumed [EH] plane results in a different Stokes vector
and associated parameters. While the corresponding transformation
of 2D Stokes vector does not conserve energy, transformation of a 3D
equivalent-to-Stokes vector (to be introduced) is unitary. Therefore,
unique definition of the partially-polarized EM field Stokes observables
can be provided using the 3D formalism.

3. ANALYTICAL FORMULATION

Consider a general 3D vector field:

E(r) = Exx + Eyy + Ezz (1)

The associated field covariance matrix J can be defined as:

J(3D) =
〈
EE†

〉
=




〈
|Ex|2

〉 〈
ExE∗

y

〉 〈ExE∗
z 〉

〈EyE
∗
x〉

〈
|Ey|2

〉
〈EyE

∗
z 〉

〈EzE
∗
x〉

〈
EzE

∗
y

〉 〈
|Ez|2

〉


 (2)

where 〈. . .〉 denotes temporal or local spatial averaging, and “†”
represents the Hermitian conjugate. For remote sensing applications,
scattering of the 3D field structure described by (1) and (2) need to
be mathematically modelled by an equivalent 3D scattering matrix
connecting the scattered to incident field, i.e., 3× 3 scattering matrix
instead of conventional 2× 2 scattering matrix as:

S(3D) =

[
Sxx Sxy Sxz

Syx Syy Syz

Szx Szy Szz

]
(3)

where Es(r) = S(3D)Ei(r). Vectorization of the 3D scattering matrix
V (3)(S(3D)) is performed in a similar manner as 2D scattering matrix
vectorization V (2)(S) [1]; the result is a 9-vector. The orthonormal
eigenvector sets have covariance and coherency matrices, [C]9×9 and
[T ]9×9, that share the same eigenvalues and form suitable basis sets
for the vectorization of interest. The 3D scattering vector can then be
expressed as:

S̄(3D) = (Sxx Sxy Sxz Syx Syy Syz Szx Szy Szz)
t (4)

where “t” denotes the transpose. The described commonality between
Hermitian positive semi-definite covariance and coherency matrices
(again, having the same set of eigenvalues) is provided through a
unitary similarity transformation. For a 2D case, this transformation
is established by four Pauli spin matrices (or vectors) in the form of:
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A =
1√
2




1 0 0 1
1 0 0 −1
0 1 1 0
0 −j j 0


 (5)

Pauli decomposition (5) and respective mechanisms (e.g., single/double-
bounce, volume) provide a complete description of scattering for 2D
field (h, v basis) scenario, i.e., modeled by a 2 × 2 matrix. Mathe-
matically speaking, any 2 × 2 scattering matrix can be expressed in
Pauli basis. The 2D field scattering assumption is valid when far-field
approximation that depends on target physics, distribution and obser-
vation specifications is satisfied (Poynting’s theorem). However, if the
scattered EM field is not completely represent-able within the EH plane
at the observation point due to target and/or observation characteris-
tics (e.g., target structure, near field operation), the 2 × 2 scattering
matrix representation cannot be complete. Hence, Pauli basis become
incomplete and an extension to 3×3 matrix basis set would be required.
Such basis set capable of constructing a complete 3× 3 scattering ma-
trix space can characterize any type of scattering including near-field
due to the basis components’ 3D nature, i.e., non-zero radial element.
For a 3D scenario, the challenge is to seek a set of 9 orthogonal matri-
ces or vectors constituting a 9-vector space. Considering the origins of
Pauli spin matrices in quantum mechanics and their applications, use
of the Gell-Mann matrices [12] to introduce the required transforma-
tion (similar to (5) for a 3D case) is proposed. There is, however, a
difficulty associated with this: the Gell-Mann matrices [12] constitute
eight matrices. Here, a ninth matrix (or vector) orthogonal to the set
of eight Gell-Mann matrices is derived and added to the set of eight to
derive the unitary transformation that is sought.

The orthonormal eight Gell-Mann matrices are:

β1 =
1√
2

[ 0 1 0
1 0 0
0 0 0

]
(6)

β2 =
1√
2

[ 0 −j 0
j 0 0
0 0 0

]
(7)

β3 =
1√
2

[ 1 0 0
0 −1 0
0 0 0

]
(8)

β4 =
1√
2

[ 0 0 1
0 0 0
1 0 0

]
(9)
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β5 =
1√
2

[ 0 0 −j
0 0 0
j 0 0

]
(10)

β6 =
1√
2

[ 0 0 0
0 0 1
0 1 0

]
(11)

β7 =
1√
2

[ 0 0 0
0 0 −j
0 j 0

]
(12)

β8 =
1√
6

[ 1 0 0
0 1 0
0 0 −2

]
(13)

The complementary matrix is:

β
(c)
9 =

1√
3

[ 1 0 0
0 1 0
0 0 1

]
(14)

Thus, the equivalent unitary similarity transformation (9× 9) can be
expressed as:

A(3D) =
1√
2




√
6

3 1
√

3
3 0 0 0 0 0 0

0 0 0 1 0 0 −j 0 0
0 0 0 0 1 0 0 −j 0
0 0 0 1 0 0 j 0 0√
6

3 −1
√

3
3 0 0 0 0 0 0

0 0 0 0 0 1 0 0 −j
0 0 0 0 1 0 0 j 0
0 0 0 0 0 1 0 0 j√
6

3 0 −2
√

3
3 0 0 0 0 0 0




t

(15)

Using (15), one can define the 3D target or scattering 9-vector in the
Gell-Mann basis as:

kGM =
1√
2




√
6

3 (Sxx + Syy + Szz)
Sxx − Syy√

3
3 (Sxx + Syy − 2Szz)

Sxy + Syx

Sxz + Szx

Syz + Szy

−j(Sxy − Syx)
−j(Sxz − Szx)
−j(Syz − Szy)




(16)
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As will be discussed, the coherent decomposition (16) can be viewed
as 3D generalization of the conventional Pauli target decomposition.
Similar to Pauli basis, the Gell-Mann basis matrices assume scattering
by a perfect conductor. Considering the completeness of the Gell-
Mann basis set that enables coherent decomposition of any complex
3 × 3 scattering matrix, however, any scattering mechanisms can
be mathematically modelled (similar to coherent decomposition of
a general 2 × 2 complex scattering matrix using Pauli basis). One
can derive the 3D (9-vector) coherent EM field representation, i.e.,
equivalent-to-Stokes for 3D, as:

G(3D) =
1√
2




√
6

3
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〉
+
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〉
+
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〉)
〈
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〉
−

〈
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〉
√

3
3
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〉
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〉
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〈
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y

〉
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∗
x〉

〈ExE∗
z 〉+ 〈EzE

∗
x〉
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∗
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〈
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〉
−j

(〈
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y
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∗
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)
−j (〈ExE∗

z 〉 − 〈EzE
∗
x〉)

−j
(〈EyE

∗
z 〉 −

〈
EzE

∗
y

〉)




=




W0

W1

W2

W3

W4

W5

W6

W7

W8




(17)

It can be shown that for a completely depolarized wave, i.e., Ex, Ey,
Ez mutually incoherent and |Ex| = |Ey| = |Ez| = E:

W1 = W2 = W3 = W4 = W5 = W6 = W7 = W8 = 0 (18)

and,
W0 =

√
3E2 (19)

For a completely polarized wave that field components are mutually
coherent, i.e., 〈EpE

∗
q 〉 = EpE

∗
q , ∀{p, q} ∈ {x, y, z}:

W 2
1 + W 2

2 + W 2
3 + W 2

4 + W 2
5 + W 2

6 + W 2
7 + W 2

8 = 2W 2
0 (20)

The above suggests that the equivalent 3D degree of polarization can
be defined as:

m(3D) =

√
W 2

1 + W 2
2 + W 2

3 + W 2
4 + W 2

5 + W 2
6 + W 2

7 + W 2
8√

2W0

(21)

As can be seen, the current formalism provides the capability of a
3D transformation of EM field observables (e.g., vectors (16)–(17))
that is the appropriate way for translating or expressing a 3D EM
field scattering phenomenon into various frames of reference (e.g.,
coordinate system). Upon performing the desired transformation, the
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above field vectors can be re-gauged to radiation gauge, i.e., zero
longitudinal return [13]. This gauge is the basis for the conventional
polarimetric remote sensing h, v formalism. One should note that the
dimension of these field vectors must be conserved, even if the elements
are zero.

For a 3D unitary transformation “U”, the scattering matrix is
defined by:

S(3D)
U = US(3D)UT (22)

The required transformation for the scattering target vector (16) is
given by:

kUGM = UkGM (23)
and for the Stokes vector (17) by:

G
U

(3D) = U G(3D) (24)

The equivalent 3D transformation in (23)–(24) is defined by:

U = A(3D)U⊗UA(3D)† (25)

In (25), U is a (9 × 9) matrix transformation, and ⊗ denotes the
Kronecker product. Similarly, one can express the transformation for
the scattering vector in (4) as:

S̄
(3D)
U = T S̄(3D) (26)

where
T = U⊗U (27)

An example for transformation U is a 3D rotation that can be described
by using Dupin convention and coordinate system [14] as:

U = R(ϕ, θ) =

[ cos(ϕ) − sin(ϕ) 0
cos(θ) sin(ϕ) cos(θ) cos(ϕ) − sin(θ)
sin(θ) sin(ϕ) sin(θ) cos(ϕ) cos(θ)

]
(28)

where ϕ and θ represent the aspect and elevation rotation angles.
The coordinate transformation or rotation in (26), i.e., (x̂, ŷ, ẑ →
x̂′, ŷ′, ẑ′) is depicted in Figure 1. One should note that, according
to Dupin convention, choice of transversal components (surface unit
vectors) is not unique, i.e., the normal vector rotation (ẑ → ẑ′) can be
uniquely defined but choice of (x̂′, ŷ′) is not unique.

Consider the conventional Stokes vector in 2D defined by:

G =




〈
|Ex|2

〉
+

〈
|Ey|2

〉
〈
|Ex|2

〉
−

〈
|Ey|2

〉
〈
ExE∗

y

〉
+ 〈EyE

∗
x〉

−j
(〈

ExE∗
y

〉− 〈EyE
∗
x〉

)




=




G0

G1

G2

G3


 (29)
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Figure 1. A 3-dimensional coordinate rotation example (ẑ′ =
RT (ϕ, θ)ẑ).

with degree of polarization:

m =

√
G2

1 + G2
2 + G2

3

G0
(30)

Assuming a transversal polarization, i.e., Ez = 0, the 3D Stokes vector
reads as:

G(3D) =
1√
2

[ √
6

3 G0 G1

√
3

3 G0 G2 0 0 G3 0 0
]t

(31)

Hence, the relation between the 2D and 3D degrees of polarization ((21)
and (30)) can be written as:

(
m(3D)

)2
=

3
4

(
m2 +

1
3

)
(32)

Equation (32) shows that a fully-polarized EM wave in 2D is fully
polarized in 3D. For a completely depolarized waveform in 2D, however,
a degree of polarization of 0.5 is obtained in 3D. This non-zero
degree of polarization in 3D can be attributed to the fact that
although transversal components of the EM waveform are depolarized,
the transversally polarized assumption introduces a constraint, and
therefore, a certain degree of polarization in a 3D context.
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4. IMPLICATIONS FOR COMPACT POLARIMETRY

Compact polarimetry (CP) offers effective exploitation of SAR partial
polarimetry (e.g., dual-pol) through scattered EM field analysis [15–
18]. Although all the advantageous features of full polarimetry
(full-quadrature) are not available, CP introduces performance
improvement compared to conventional dual-pol applications.

Stokes vector and parameters are convenient for multiplatform
applications as knowledge of the coherent source or illumination is
not needed for their definitions. The described parameters, however,
are reference-frame dependent. The latter implies that comparison
or association of 2D Stokes parameters defined in different reference
field planes (i.e., [EH] plane) becomes ambiguous. The required
mechanism for a proper transformation and association of the Stokes
vector components is provided by the current Stokes formalism due
to its 3D nature. The procedure for properly transforming the Stokes
vector components between platforms can be detailed as following:

1- Calculate 2D Stokes vector G from (29) (x → h, y → v),

2- Calculate 3D Stokes vector G(3D) from (31),
3- Calculate the transformed (to an assumed unique reference base)

3D Stokes vector G
U

(3D) using (24)–(25),

4- Calculate the transformed/re-gauged 2D Stokes vector using:

G
U

2D =
√

2




3√
6
G

U

3D(1)

G
U

3D(2)

G
U

3D(4)

G
U

3D(7)




(33)

Step 3 is important for unifying the Stokes vector definitions from
multiple platforms. As will be discussed, accurate multi-platform
polarimetric SAR data and product association within a unified
reference frame results in enhanced target exploitation. It is shown
(see Appendix) that Stokes and scattering vector transformation (25)
is unitary for unitary 3D base transformations. Examples for these 3D
base transformations (3D rotations) are given by (28). Such unitary
nature results in norm-invariance of the 3D Stokes and scattering
vectors. This is, however, not true for 2D vectors undergoing a 3D
transformation.
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5. BISTATIC CONSIDERATIONS

In a backscattering (monostatic) scenario, transmit and receive
directions are aligned, i.e., transmit and receive wave fields are in the
same [EH] plane constructed by unit vectors (ĥ, v̂). LOS unit vector is
defined by the cross product l̂ = ĥ×v̂. In 2D, the scattering matrix (see
Appendix) elements represent co-pol and cross-pol reflections. The 3D
extension of this backscattering case was presented in the last section.

For a bistatic scenario, transmit and receive directions are not
aligned. This highlights other aspects of target scattering and nature
for exploitations, albeit with the cost of more analytic complexity. In
this case, the incident or transmit wave field is in a plane identified
by unit vectors (ĥi, v̂i) and normal (i.e., LOS or alignment) vector
l̂i = ĥi × v̂i. The scattered or observation wave field is in a plane
identified by unit vectors (ĥs, v̂s) and normal vector l̂s = ĥs × v̂s.
The angle between l̂i and l̂s determine the bistatic baseline. For a
2D bistatic scenario, the scattering matrix elements represent the co-
pol and cross-pol reflections in a bistatic context, i.e., the diagonal
elements represent Shshi , Svsvi and the cross terms represent Shsvi ,
Svshi . Although different in scattering nature from physics point of
view, any 2D bistatic scattering matrix (2×2 complex matrix) can still
be mathematically decomposed into complete set of Pauli spin base
matrices. Decomposition, however, would have bistatic significance
rather the conventional backscattering interpretation (e.g., trihedral
associated with σ0 projection). For instance, the term associated with
σ0 (i.e., Shshi +Svsvi) would present co-pol reflection in a bistatic sense,
that is along the (̂li, l̂s) baseline. According to the above, exploitation
and transformations must be tailored for bistatic scattering. The
current 3D extension for bistatic scattering can be formulated as
following.

For a bistatic case S(3D)
lsli

=

[
Shshi Shsvi Shsli
Svshi Svsvi Svsli
Slshi Slsvi Slsli

]
, the 3D

scattering vector can be written as:

S̄
(3D)
lsli

= (Shshi Shsvi Shsli Svshi Svsvi Svsli Slshi Slsvi Slsli)
t (34)

As discussed earlier, 3D bistatic scattering matrix (3 × 3 complex
matrix) can be mathematically decomposed into complete set of Gell-
Mann base matrices (6)–(14).
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In Gell-Mann basis, the scattering 9-vector becomes:

kbi
GM =

1√
2




√
6

3 (Shshi
+ Svsvi + Slsli)

Shshi
− Svsvi√

3
3 (Shshi + Svsvi − 2Slsli)

Shsvi + Svshi

Shsli + Slshi

Svsli + Slsvi−j(Shsvi − Svshi)−j(Shsli − Slshi)−j(Svsli − Slsvi)




(35)

3D transformation of bistatic scattering 9-vector (34)–(35) is more
complicated due to both incident and scattered or transmit and receive
transformation requirement, i.e., right and left operators. The 3D-
transformed bistatic matrix can be defined by:

S(3D)
W lsli

= WsS
(3D)
lsli

WT
i (36)

where Wi and Ws represent the transmit and receive 3D base
transformations, respectively. For backscattering, Wi = Ws = U,
as described in (22).

The required transformation for bistatic scattering vector (35) is:

kWbi
GM = Wkbi

GM (37)

with
W = A(3D)Ws ⊗WiA

(3D)† (38)

For the scattered wave Stokes vector, one gets:

G
Wbi

(3D) = Ws G
bi

(3D) (39)

Ws = A(3D)Ws ⊗WsA
(3D)† (40)

The formalism detailed in this and previous sections provide the tool
for 3D transformation of general scattering, i.e., back and bistatic
scattering.

6. PRACTICAL APPLICATIONS

6.1. Multi-platform Unambiguous Polarimetric SAR
Exploitations

Accurate association or combination of multi-platform SAR polari-
metric products can be made possible within a 3D framework. The
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transformed 3D scattering vectors from each platform to the reference
frame are:

S̄
(3D)
io = TioS̄

(3D)
i (41)

where S̄
(3D)
i is the 3D scattering vector observed at platform i and

Tio represents 3D transformation between platform i and reference
frame, as given by (27). The same description applies for scattering

vectors in the Gell-Mann basis kGMi and Stokes vector G
i

(3D) where

the appropriate platform to reference frame transformations U io given
by (25) are used:

kGMio = U iokGMi (42)

G
io

(3D) = U ioG
i

(3D) (43)

The set of reference frame 3D observables S̄
(3D)
io , kGMio and G

io

(3D) (with
or without 2D re-gauging) can be used for consistent multi-platform
SAR target analysis. The reference frame expression of 3D polarimetric
products also offers possibility of superposing such products for multi-
platform collaborative target exploitations. This fusion is especially
suitable for permanent scatterer analysis. Introduce:

S̄(3D)
o =

∑

i

S̄
(3D)
io (44)

kGMo =
∑

i

kGMio (45)

G
o

(3D) =
∑

i

G
io

(3D) (46)

3D polarimetric scattering products in (44)–(46) can be used for
target characterization upon developing 3D characterization schemes.
However, as mentioned, one can also re-gauge S̄

(3D)
o , kGMo and

G
o

(3D) products to 2D for conventional polarimetric target analysis
and classification. The 2D re-gauging is essentially maintaining the
upper 2 × 2 sub-matrix of the 3D scattering matrix (3 × 3) upon 3D
transformations. For the 9-vector, this is equivalent to keep S̄

(3D)
1 ,

S̄
(3D)
2 , S̄

(3D)
4 , S̄

(3D)
5 and set the rest to zero. It is also straightforward

to transform the above superposed products to an arbitrary reference
frame (using the associated 3D transformations (25) or (27)) for
target analysis. The reason for the latter is the possibility of better
manifestation of target characteristics in a certain reference frame LOS
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(for 2D re-gauging, in particular). The described procedure can be
summarized as follows:
1) Define 3D polarimetric products for each SAR platform i, i.e.,

apply (4), (16)–(17) when the longitudinal (z) component set to
zero.

2) Use 3D transformations in (25) and (27) for transformation to

reference frame and derive S̄
(3D)
io , kGMio or G

io

(3D). Since the same
reference is used by all platforms, the required transformation (28)
can be directly defined by SAR product look and incident angels.
These derived vectors are in general 3D and have non-zero
longitudinal (z) components.

3) If required, derive the superposed products given by (44)–(46).
Following example can illustrate an application of the described

procedure for multi-platform polarimetric SAR data/product harmo-
nization and unification. Two fully polarimetric RADARSAT-2 (C-
band, fine quad-pol FQ6/15) complex images are selected for analysis.
Figure 2 depicts the quad-pol images acquired over Shirley’s Bay (west
of Ottawa, Canada) on September 23 and November 24, 2008. The im-
ages are chosen not to be a so-called coherent pair for the purpose of
emulating multi-platform image acquisition, i.e., different look and in-
cident angles. Coherent pair is typically referred to images acquired
at the same SAR sensor location (i.e., temporally multiples of SAR
orbit cycle, 24 days for RADARSAT-2) for coherent exploitations, e.g.,
change detection/monitoring. This, however, does not mean pairs col-
lected otherwise may not be exploited coherently (e.g., interferometry,
coherent stereos). In the RGB map depicted in Figure 2, red, green
and blue represent HH (Shh), V V (Svv), and HV (Shv) channels, re-
spectively. Figure 3 shows Pauli decompositions of a common chip (ap-
proximate) extracted from the two images and processed in Matlab.
In these RGB images, red, green and blue represent double-bounce,
volumetric, and single-bounce/surface backscattering mechanisms, re-
spectively. As indicated in Figures 2 and 3, polarimetric channels
and decomposition components are defined in the associated reference
frames that have different basis vector sets, i.e., different h, v defini-
tions. Target decomposition components (Pauli) for the two images
are transformed to the same reference frame based on steps 1 and 2
detailed above, re-gauged to 2D and included in Figure 4. The two
decomposition maps are now defined within the same reference frame
and can be accurately associated for enhanced target characterization,
e.g., fusion. As can be seen from Figures 3 and 4, there is certain
change of scattering mechanism distribution associated with transfor-
mation to another frame. Also, degree of this change (Figure 5) is
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Figure 2. September 23 and November 24, 2008 quad-polarimetric
images of Shirley’s Bay with nominal range and azimuth resolutions
of 5.4 and 8.0 meters (RGB: R = HH, G = V V , B = HV );
September 23: Look Angle = 102.2◦ (W.R.TN), IncidentAngle =
24.6◦–26.5◦ (Near-Far); November 24: Look Angle = 100.7◦
(W.R.TN), IncidentAngle = 34.5◦–36.1◦ (Near-Far).

different for the two scenarios considering the difference between their
original imaging geometry (i.e., look and incident angles). Important
outcome is that target decomposition components are now character-
izing the same target backscattering property. Since scattering charac-
teristics change during the temporal baseline (a month for this case),
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Figure 3. Original (prior to transformation) Pauli decomposition
maps of September 23 and November 24, 2008 quad-pol imagery;
RGB: R = ‖HH − V V ‖ (double-bounce), G = ‖HV ‖ (volume),
B = ‖HH + V V ‖ (single-bounce/surface). Decomposition maps have
different basis.

backscattering specifications of a target observed in Figure 4 maps do
not necessarily match, even when perfectly co-registered. For perma-
nent scatterers, however, a better match should be expected.

One should note the following in regards to the introduced
example and Figures 3–4. An effort has been made to extract
a common chip from the two images for manipulation in Matlab.
However, although images are georeferenced, accurate pixel-based co-
registration of processed images is not possible due to difference in
respective original slant plane (different incident and look angles) data
processing. Visual inspection of the images (Figure 2) supports this
by indicating the difference in range-azimuth alignments that results
in different rectangular pixel formation. As hinted, the rectangular
(as opposed to square) pixel formation of RADARSAT-2 imagery
(i.e., different range and azimuth resolutions) adds to difficulty.
Accordingly, the extracted complex Matlab images cannot exactly
correspond on pixel basis. Nonetheless, the example provides an
intuitive understanding of the process and value gained. Furthermore,
as addressed, future multi-platform SAR data acquisition capabilities,
tailored data processing and registration can address such issues.
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Figure 4. Transformed (to the reference frame) Pauli decomposition
maps of September 23 and November 24, 2008 quad-pol imagery;
RGB: R = ‖HH − V V ‖ (double-bounce), G = ‖HV ‖ (volume),
B = ‖HH + V V ‖ (single-bounce/surface). Both decomposition maps
have the same basis.

6.2. 3-Dimensional Feature Extraction

The 3D target scattering products (i.e., 9-vector) described by (4),
(16)–(17) provide means for 3D target scattering analysis. This
3D analysis is needed when 3D EM modeling is required, e.g., 3D
scattering, multi-platform/multi-LOS SAR scattering analysis. As
hinted earlier, however, 3D characterization schemes need to be
developed that are not currently available in the literature. One also
notes that, similar to 2D feature extraction (e.g., Pauli decomposition),
3D feature extraction of complex SAR image and association with
a well-defined scattering mechanism for target or object may not be
straightforward at the pixel level. Here, the objective is not to develop
these schemes which represents a considerable challenge. Nevertheless,
it is required and this work intends to initiate such endeavours.
Considering the advances in EM computations and theory applications,
the required modeling in 3D should not be insurmountable.

The 3D scattering decomposition is the extension of 2D
decomposition. Although analogy to 2D is not always easy to draw,
there should be 3D scattering significance to associated 3D components
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Figure 5. Pauli decomposition difference maps (Original-Reference
Frame) for September 23 and November 24, 2008 quad-pol imagery;
RGB: R = ‖∆(HH − V V )‖ (double-bounce), G = ‖∆HV ‖ (volume),
B = ‖∆(HH + V V )‖ (single-bounce/surface), ∆ ≡ original −
transformed.

if the mathematical framework is consistent. For example, the first
Pauli spin matrix σ0 represents odd bounce or trihedral scattering
that is typically viewed as a point source for calibration. The first
component of the scattering vector in the Gell-Mann basis kGM that
associates with β

(c)
9 given by (14) can be viewed as a 3D point source

representing scattering isometry. This can be used for calibration
or scattering interpretation of 3D objects. Similarly, the second
component that associates with β3 given by (8), models a dihedral
lying in the transversal plane. Similar interpretations can be found for
all 9kGM components. Thus, one can view the scattering vector in the
Gell-Mann basis kGM as a more comprehensive or generalized 3D Pauli
decomposition that is standard for conventional polarimetric analysis.
Procedure for this 3D (i.e., 9-vector) decomposition and transformation
to different reference frames, has been detailed here.

7. SUMMARY AND CONCLUSIONS

A 3D formalism is in general important when the 3D field
characterization is required. The introduced 3D framework for
manipulation of multi-platform radar observables offers a leverage
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to avoid ambiguities caused by observation-based h, v definitions
(coordinates and polarization). Upcoming multi-sensor multistatic
missions (e.g., RCM, RS2) will require more systematic and universal
handling of SAR polarimetric data. A 3D polarimetric data structure
is beneficial to target data decomposition and exploitation.

The 3D Stokes formalism is mathematically convenient and
robust for CP applications and analysis. This is due to the self-
consistent nature of the 3D formalism, which allows unambiguous
and/or universal definition of field observables defined in multiplatform
reference frames, i.e., lines of sight. The 3D equivalent-to-Stokes vector
is invariant under a unitary 3D transformation that is the proper
coordinate transformation for any realistic scattering scenario.

Applicability of present formalism is discussed and theoretically
explored based on the current and future multi-polarimetric SAR data
exploitation requirements and objectives. The introduced coherent
scattering vector definition in the Gell-Mann basis (i.e., generalization
of the well-known Pauli target decomposition) provides a robust 3D
base decomposition for comprehensive target scattering modeling. It
is discussed that the 9-vector Gell-Mann components represent 3D
scattering mechanisms analogous to those of Pauli 2D mechanisms.

Meaningful experimental validation and simulation of the
proposed technique using polarimetric SAR imagery require certain
3D capability and multi-platform/multi-SAR coherent data (e.g.,
synchronization, co-registration) that is not currently available. The
objective is to initiate such data acquisition in the community for
enhanced exploitations. Some recent and developing missions, e.g.,
TanDEM-X (TerraSAR-X twin satellites), RCM, are very promising
to provide accurate data and imagery for intended validations and real
scenario applications.

APPENDIX A. WAVE ENERGY CONSERVATION

In order to validate the 3D wave energy conservation, one needs to

show the transformation U in (25) is unitary, i.e., U U
†

= I9, where I9

is a (9×9) identity matrix. According to Equation (25) and taking into
account the unitary similarity nature of A(3D), i.e., A(3D)A(3D)† = I9:

U U
†

=
(
A(3D)U⊗UA(3D)†

)(
A(3D)U⊗UA(3D)†

)†

=
(
A(3D)

)
(U⊗U)

(
A(3D)†A(3D)

)
(U⊗U)†

(
A(3D)†

)

=
(
A(3D)

)
(U⊗U) (U⊗U)†

(
A(3D)†

)
(A1)
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Taking advantage of the following operator identities:

(X⊗Y)† = X† ⊗Y† (A2)
(V ⊗W) (X⊗Y) = (VX)⊗ (WY) (A3)

one obtains:

(U⊗U) (U⊗U)† =
(
UU†

)
⊗

(
UU†

)
= I3 ⊗ I3 = I9 (A4)

Thus, (A1) becomes:

U U
†

= A(3D)I9A
(3D)† = I9 (A5)

that verifies the energy conservation.
Identity (A3) can be proven by considering the core general

operator relation for the n× n matrix vectorization:

V (n) (An×n Yn×n Bn×n) =
(
An×n ⊗BT

n×n

)
V (n) (Yn×n) (A6)

Consider (dropping the matrix/vector indices) the n2 — vector
V (A B Y C D).

Using (A6):

V (A B Y C D) = V ((A B)Y (C D)) =
(
(A B)⊗ (C D)T

)
V (Y)

=
(
(A B)⊗ (

DTCT
))

V (Y) (A7)

On the other hand, applying (A6) gives:

V (A B Y C D) = V (A (B Y C) D) =
(
A⊗DT

)
V (B Y C)

=
(
A⊗DT

) (
B⊗CT

)
V (Y) (A8)

Applying (A7) and (A8) for every Y, one can obtain (A3).
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