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Abstract—The adaptive linearly constrained minimum power
(LCMP) beamformer can improve the robustness of the Capon
beamformer. And quadratic constraints on the weighting vector of
the LCMP beamformer can improve the robustness to pointing errors
and to random perturbations in sensor parameters. But how to solve
it and how to select the constraint parameters are its key problems.
In this paper, the Lagrange multiplier method is proposed to solve the
LCMP beamformer under quadratic inequality constraint (QIC). The
problem of finding the optimal weight vector is solved, and the choice of
the quadratic constraint parameter is analyzed and the selected bound
is also given. Since the quadratic equality constraint (QEC) is stronger
than the quadratic inequality constraint (QIC), the performance of the
QECLCMP beamformer is more robust than that of the QICLCMP
beamformer. Therefore, the QECLCMP beamformer is proposed and
is solved effectively. Numerical examples attest the correctness and
the efficiency of the proposed algorithms. And the results show that
the QECLCMP beamformer has the advantage of overcoming the
steering vector mismatch, namely the optimal negative loading has
the preferable robustness.

1. INTRODUCTION

Beamforming is a ubiquitous task in array signal processing with
applications, among others, in radar, sonar, acoustics, astronomy,
seismology, communications, and medical imaging. Without loss
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of generality, herein we consider beamforming in array processing
applications.

The traditional approach to the design of adaptive beamformers
assumes that the desired signal components are not present in
training data, and the robustness of beamformer is known to depend
essentially on the availability of signal-free training data. However, in
many important applications such as mobile communications, passive
location, microphone array speech processing, medical imaging, and
radio astronomy, the signal-free training data cells are unavailable.
In such scenarios, the desired signal is always present in the
training snapshots, and the adaptive beamforming methods become
very sensitive to any violation of underlying assumptions on the
environment, sources, or sensor array. In fact, the performances of the
existing adaptive array algorithms are known to degrade substantially
in the presence of even slight mismatches between the actual and
presumed array responses to the desired signal [1–3]. Similar types of
degradation can take place when the array response is known precisely
but the training sample size is small, namely the mismatch between
the actual and the estimated covariance matrix [4–6]. Therefore,
robust approaches to adaptive beamforming appear to be of primary
importance in these cases [7–31].

Li et al. propose a Capon beamforming approach with the norm
inequality constraint (NICCB) to improve the robustness against array
steering vector errors and noise [19]. The exact solution is given, and
optimal loading level can be computed via the proposed method. But
its efficiency is not as good as expectation according to analysis and
simulation. Since the constraint parameter determines the approach’s
robustness, and how to select the constraint parameter is not discussed.

Quadratic inequality constraints (QIC) on the weight vector of
LCMP beamformer can improve robustness to pointing errors and
to random perturbations in sensor parameter [20]. The weights
that minimize the output power subject to linear constraints and an
inequality constraint on the norm of the weight vector have the same
form as the optimum LCMP beamformer, with diagonal loading of
the data covariance matrix. But the optimal loading level cannot be
directly expressed as a function of the constraint in a closed form, and
cannot be solved exactly. Hence, its application is restricted by finding
of optimal weight vector. So that some numerically algorithms are
proposed to implement the QICLCMP, such as Least Mean Squares
(LMS) or Recursive Least Squares (RLS) [20], but the application’s
effect isn’t good as expectation.

In this paper, we dedicate to the robust LCMP beamformer with
weight norm constraint.
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For the QICLCMP beamformer, the key problems are how to
solve the optimal weighting vector and how to select the quadratic
constraint parameter. Hence, the Lagrange multiplier method is
proposed to solve the QICLCMP beamformer, and the problem of
finding the optimal weight vector is solved. Furthermore, the choice of
the quadratic constraint parameter is analyzed and the selected bound
is given. Since the quadratic equality constraint (QEC) is stronger
than the quadratic inequality constraint (QIC), the LCMP beamformer
under quadratic equality constraint (QEC) has more ascendant
robust performance than the QICLCMP beamformer. Therefore,
the QECLCMP beamformer is proposed and is solved effectively.
Numerical examples attest the correctness and the validity of the
proposed algorithm, which show that the QECLCMP beamformer
has the best performance to overcome the signal direction mismatch,
namely the optimal negative loading has the preferable robustness.

This paper is organized as follows. First, the signal model and the
LCMP beamformer are introduced. Second, the Lagrange multiplier
method is proposed to solve the QICLCMP beamformer, particularly
the choice of the quadratic constraint parameter and the selecting
bound is discussed. Third, the QECLCMP beamformer is proposed
and is solved effectively. Finally, the simulation analyses and the
conclusion are given.

2. SIGNAL MODEL AND LCMP BEAMFORMER

Consider an array comprising N sensors. And let x(k) denote the N×1
vector of signals received by the array. The vector x(k) is given by:

x (k) =
D∑

i=1

visi (k) + n (k) (1)

where si (k) is the k-th signal sample transmitted by the i-th user,
vi the N × 1 complex array response vector of the i-th user, and
n (k) the complex vector of ambient noise samples. In narrow-band
beamforming, a complex weight is applied to the signal at each sensor
and summed to form the beamformer output:

y (k) = wHx (k) (2)

where (·)H denotes the conjugate transposition.
To account for the array steering vector errors, additional linear

constraints, including point and derivative constraints, can be imposed
to improve the robustness of the Capon beamformer [21–24]. And they
are used to widen and flatten the main beam to provide robustness to
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mismatch in the array response vector and null constraint that are
used to place explicit nulls, or zeros, in certain directions. Therefore,
the LCMP beamformer is the generalization of the standard Capon
beamformer, and the standard Capon beamformer is a special case of
the general LCMP beamformer.

The weights of an LCMP beamformer are chosen to minimize the
output power of the beamformer which subjects to a set of m linear
constraints of the form CHw = f , where C is the N × m constraint
matrix, and f is the m× 1 vector of constraint values.

The LCMP optimization problem can be formulated as:
{

min
w

wHRxw

s.t. CHw = f
(3)

where Rx = E
{
x (k)xH (k)

}
is the data covariance matrix, and E {·}

denotes the expectation operation. The final weight vector expression
for the LCMP beamformer is given by:

w = R−1
x C

(
CHR−1

x C
)−1

f (4)

Under the ideal condition, namely there isn’t any error in the
steering vector or the covariance matrix, the weight vector (4) is
optimal, whereas, the performance will be degraded greatly, especially,
when the presumed steering vector differs from the actual steering
vector. For instance, when this case happens in practice, the
beamformer pattern will suffer severe distortion. Hence, the robustness
is the essential requirement for the beamformer in practice.

3. LCMP BEAMFORMER UNDER QUADRATIC
INEQUALITY CONSTRAINT

The LCMP beamformer can experience significant performance
degradation when there is a mismatch between the presumed and
actual characteristics of the source or array. The goal of the QICLCMP
beamformer is to impose an additional quadratic inequality constraint
on the Euclidean norm of w for which the purpose is to improve
the robustness to pointing errors and to random perturbations in
sensor parameters. This requires incorporating a quadratic inequality
constraint on w of the form:

‖w‖2 ≤ ε (5)

where ‖·‖ denotes the vector l2 norm.
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Consequently, the QICLCMP beamformer problem is formulated
as follows [20]: 




min
w

wHRxw

s.t. CHw = f
‖w‖2 ≤ ε

(6)

Since the beamformer is not solved efficiently, its application is
restricted so far. In this paper, the Lagrange multiplier methodology
is proposed to solve the QICLCMP beamformer as follows.

3.1. Solution to the QICLCMP Beamformer

Let S be the set defined by the constraints in the optimization
problem (6), namely:

S =
{

w|CHw = f , ‖w‖2 ≤ ε
}

(7)

Define the function:

f1(w, λ, µ)=wHRxw+λ
(
‖w‖2−ε

)
+µH

(
f−CHw

)
+
(
f−CHw

)H
µ (8)

where λ is the real-valued Lagrange multiplier, and λ ≥ 0 satisfies
Rx + λI > 0 so that f1 (w, λ, µ) can be minimized with respect to w,
and µ is the arbitrary Lagrange multiplier vector. Then:

f1 (w, λ, µ) ≤ wHRxw, w ∈ S (9)

with equality on the boundary of S.
Consider the condition:

[
R−1

x C
(
CHR−1

x C
)−1

f
]H [

R−1
x C

(
CHR−1

x C
)−1

f
]

= fH
(
CHR−1

x C
)−1

CHR−2
x C

(
CHR−1

x C
)−1

f ≤ ε. (10)

When the condition (10) is satisfied, the solution of LCMP
beamformer (6) becomes:

ŵ = R−1
x C

(
CHR−1

x C
)−1

f (11)

And (11) satisfies the norm constraint of the QICLCMP beamformer.
Therefore, it is also the solution to the QICLCMP beamformer. In this
case, λ = 0 and the norm constraint in the QICLCMP beamformer is
inactive.

Otherwise, we have the condition:

ε < fH
(
CHR−1

x C
)−1

CHR−2
x C

(
CHR−1

x C
)−1

f
∆= ε0 (12)
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which is an upper bound on ε so the QICLCMP beamformer is different
from the LCMP beamformer. To deal with this case, we can rewrite
f1 (w, λ,µ) as follows:

f1 (w, λ, µ) =
[
w−(Rx+λI)−1 Cµ

]H
(Rx+λI)

[
w−(Rx + λI)−1 Cµ

]

−µHCH (Rx + λI)−1 Cµ− λε + µHf + fHµ (13)

Hence, the unconstrained minimizer of f1 (w, λ, µ), for fixed λ and µ,
is given by:

ŵλ,µ = (Rx + λI)−1 Cµ (14)

Clearly, we have:

f2 (λ,µ)
∆= f1 (ŵλ,µ, λ,µ)

=−µHCH (Rx + λI)−1 Cµ−λε+µHf+fHµ≤wHRxw, w ∈ S (15)

The maximization of f2 (λ,µ) with respect to µ, is given by:

∂f2 (λ,µ)
∂µ

= −2CH (Rx + λI)−1 C · µ + 2f (16)

Hence, µ is given by:

µ̂ =
[
CH (Rx + λI)−1 C

]−1
f (17)

Insert µ̂ into f2 (λ,µ), and let:

f3 (λ)
∆= f2 (λ, µ̂) = −λε + fH

[
CH (Rx + λI)−1 C

]−1
f (18)

For any matrix function F of λ, we have:

d
(
F−1

)

dλ
= −F−1 · d (F)

dλ
· F−1 (19)

The maximization of the function f3 (λ) in (18) with respect to λ gives:

ε = fH
[
CH (Rx + λI)−1 C

]−1 [
CH (Rx + λI)−2 C

]

[
CH (Rx + λI)−1 C

]−1
f (20)

Hence, the optimal Lagrange multiplier λ̂ can be obtained
efficiently via, for example, the Newton’s method from the
Equation (20) of λ.

Note that using µ̂ in ŵλ,µ yields:

ŵ = (Rx + λI)−1 C
[
CH (Rx + λI)−1 C

]−1
f (21)
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which satisfies the constraints of the QICLCMP beamformer, namely:

CHŵ = f (22)

And
‖ŵ‖2 = ε (23)

Hence, ŵ belongs to the boundary of S. Therefore, ŵ is our
sought solution to the LCMP optimization problem with a quadratic
inequality constraint, which has the same form as the LCMP
beamformer with a diagonal loading term λI added to Rx, namely, the
QICLCMP beamformer also belongs to the class of diagonal loading
approaches.

Based on the analysis above, we can see that if the Lagrange
multiplier λ is obtained, the optimal weight vector for the QICLCMP
beamformer will be solved. In order to obtain the Lagrange multiplier
λ, we must solve the following equation via Newton’s method, and let:

f (λ)
∆= ε− fH

[
CH (Rx + λI)−1 C

]−1

[
CH (Rx + λI)−2 C

] [
CH (Rx + λI)−1 C

]−1
f = 0 (24)

Hence, the key problem of the QICLCMP beamformer is to find
the optimal Lagrange multiplier by above Equation (24).

3.2. Solution to the Optimal Lagrange Multiplier

In order to solve Equation (24), we perform the eigenvalue
decomposition (EVD) of the sample covariance matrix as follows:

Rx = U ·Λ ·UH =
N∑

i=1

λiuiuH
i (25)

where Λ = diag (λ1, λ2, . . . , λN ) is a diagonal matrix; U =
(u1,u2, . . . ,uN ) is Hermitian; λi (i = 1, 2, . . . , N) and ui (i =
1, 2, . . . , N) are the eigenvalues and eigenvectors of Rx; N is the
total number of degrees-of-freedom. For the convenience of analysis,
we assume that the eigenvalues/eigenvectors of Rx are sorted in
descending order, i.e.,

λ1 ≥ λ2 ≥ . . . ≥ λN (26)

Therefore, we can have:

(Rx + λI)−1 = U · (Λ + λI)−1 ·UH =
N∑

i=1

uiuH
i

λi + λ
(27)
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Then:

CH (Rx + λI)−1 C =
(
CHU

) · (Λ + λI)−1 · (CHU
)H

=
N∑

i=1

(
CHui

) (
CHui

)H

λi + λ
(28)

CH (Rx + λI)−2 C =
(
CHU

) · (Λ + λI)−2 · (CHU
)H

=
N∑

i=1

(
CHui

) (
CHui

)H

(λi + λ)2
(29)

And let:

γ = fH ·CHUUHC · f = fH ·
[

N∑

i=1

(
CHui

) (
CHui

)H

]−1

· f (30)

Therefore, f (λ) can be rewritten as follows:

f (λ) = ε− fH ·
[

N∑

i=1

(
CHui

) (
CHui

)H

λi + λ

]−1

·
[

N∑

i=1

(
CHui

) (
CHui

)H

(λi + λ)2

]

·
[

N∑

i=1

(
CHui

) (
CHui

)H

λi + λ

]−1

· f (31)

And, we have:

ε ≤ fH

[
N∑

i=1

(
CHui

) (
CHui

)H

λ1 + λ

]−1 [
N∑

i=1

(
CHui

) (
CHui

)H

(λN + λ)2

]

[
N∑

i=1

(
CHui

) (
CHui

)H

λ1 + λ

]−1

f =
(λ1 + λ)2

(λN + λ)2
· γ (32)

ε ≥ fH

[
N∑

i=1

(
CHui

) (
CHui

)H

λN + λ

]−1 [
N∑

i=1

(
CHui

) (
CHui

)H

(λ1 + λ)2

]

[
N∑

i=1

(
CHui

) (
CHui

)H

λN + λ

]−1

f =
(λN + λ)2

(λ1 + λ)2
· γ (33)

Under the condition of ε < fH
(
CHR−1

x C
)−1 CHR−2

x C
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(
CHR−1

x C
)−1 f , we have:

ε < fH ·
[

N∑

i=1

(
CHui

) (
CHui

)H

λi

]−1

·
[

N∑

i=1

(
CHui

) (
CHui

)H

λ2
i

]

·
[

N∑

i=1

(
CHui

) (
CHui

)H

λi

]−1

· f

≤ λ2
1

λ2
N

· fH ·
[

N∑

i=1

(
CHui

) (
CHui

)H

]−1

· f =
λ2

1

λ2
N

· γ (34)

Alternately, the inequality relationship above can be expressed as:√
ε

γ
≤ λ1 + λ

λN + λ
(35)

√
ε

γ
≥ λN + λ

λ1 + λ
(36)

√
ε

γ
<

λ1

λN
(37)

Let a
∆=

√
ε/γ. Then, we establish the bound of the Lagrange

multiplier λ and its existence.
(1) If a > 1, then from (35) and (36), we can have:

a≤ λ1+λ

λN+λ
⇒aλN+aλ ≤ λ1+λ⇒(a−1)λ≤λ1−aλN⇒λ≤ λ1−aλN

a−1
(38)

a≥ λN+λ

λ1+λ
⇒aλ1+aλ≥λN+λ⇒(a−1)λ≥λN−aλ1⇒λ≥ λN−aλ1

a−1
(39)

Since λ ≥ 0, but λN − aλ1 < 0, the bound of the Lagrange
multiplier λ under a > 1 is given as follows:

λ
(1)
min

∆=0 ≤ λ ≤ λ1 − aλN

a− 1
∆=λ(1)

max (40)

Then, we have:

f
(
λ

(1)
min

)
= f (0)=ε−fH

(
CHR−1

x C
)−1

CHR−2
x C

(
CHR−1

x C
)−1

f <0

(41)

f
(
λ(1)

max

)
= f (λ)

∣∣∣
λ=λ

(1)
max

≥ ε− (λ1 + λ)2

(λN + λ)2
· γ

∣∣∣∣∣
λ=λ

(1)
max

= ε−

(
λ1 + λ

(1)
max

)2

(
λN + λ

(1)
max

)2 · γ = 0 (42)
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Using the condition of a < λ1/λN , when 1 < a < λ1/λN , there is
a solution λ ∈

[
λ

(1)
min, λ

(1)
max

]
that satisfies f (λ) = 0.

(2) If a < 1, then from (35) and (36), we can have:

a≤ λ1+λ

λN+λ
⇒aλN+aλ≤λ1+λ⇒(1−a)λ≥aλN−λ1⇒λ≥ aλN−λ1

1−a
(43)

a≥ λN+λ

λ1+λ
⇒aλ1+aλ≥λN +λ⇒(1−a)λ≤aλ1−λN⇒λ≤ aλ1−λN

1−a
(44)

Since λ ≥ 0, but aλN − λ1 ≤ 0, if aλ1 − λN ≥ 0, then a ≥ λN/λ1.
Hence, when λN/λ1 ≤ a < 1, the bound of the Lagrange multiplier λ
is given as follows:

λ
(2)
min

∆=0 ≤ λ ≤ aλ1 − λN

1− a

∆=λ(2)
max (45)

Then, we have:

f
(
λ(2)

max

)
= f (λ)

∣∣∣
λ=λ

(2)
max

≤ ε− (λN + λ)2

(λ1 + λ)2
· γ

∣∣∣∣∣
λ=λ

(2)
max

= ε−

(
λN + λ

(2)
max

)2

(
λ1 + λ

(2)
max

)2 · γ = 0 (46)

Hence, when λN/λ1 ≤ a < 1, there isn’t a solution λ ∈[
λ

(2)
min, λ

(2)
max

]
which satisfies f (λ) = 0.

From the expressions of the QICLCMP beamformer and NICCB,
we know that NICCB is the specialism of the QICLCMP beamformer,
and the QICLCMP beamformer is the generalization of NICCB. For
the case of NICCB, f (λ) is monotonically increasing function of λ ≥
0 [17]. Hence, we can educe that f (λ) of the QICLCMP beamformer
is also a monotonically increasing function of λ ≥ 0. Namely, if the
Lagrange multiplier λ exists, it must be unique.

Based on the analysis above, we can conclude that when 1 <

a < λ1/λN , there is a unique solution λ ∈
[
λ

(1)
min, λ

(1)
max

]
that satisfies

f (λ) = 0.

4. QUADRATIC INEQUALITY CONSTRAINT
PARAMETER SELECTION

Based on the analysis above, we can see that it is important to select
the quadratic inequality constraint parameter ε for the QICLCMP
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beamformer. If the quadratic inequality constraint parameter ε is
large, it is inactive. On the contrary, if the quadratic inequality
constraint parameter ε is small, there isn’t a solution to satisfy the
QICLCMP beamformer.

We have analyzed that when 1 < a < λ1/λN , there is a unique
solution λ ∈ [λ(1)

min, λ
(1)
max] which satisfies f(λ) = 0. Hence, we can have

the selecting bound of the quadratic inequality constraint parameter ε
as follows:

1 <

√
ε

γ
<

λ1

λN
(47)

Namely:

γ < ε < γ ·
(

λ1

λN

)2

(48)

Under the condition of ε < ε0 = fH
(
CHR−1

x C
)−1 CHR−2

x C
(CHR−1

x C)−1f , we can obtain:

εmin
∆= γ < ε < min

{
γ ·

(
λ1
λN

)2
, ε0

}
∆= εmax (49)

If the quadratic inequality constraint parameter ε is out of the
above bound, there is no solution to the QICLCMP beamformer.
Hence, the quadratic inequality constraint parameter ε should be
chosen in the interval defined by the inequalities above.

5. LCMP BEAMFORMER UNDER QUADRATIC
EQUALITY CONSTRAINT

Based on the analysis above, we can see that the quadratic inequality
constraint can enhance the robustness of LCMP beamformer. Since
the inequality relationship has a wide range, the norm of the weight
vector will vary in the relevant wide range. If the fluctuation of
the weight vector norm is acute, the performance improvement will
be weakened greatly. Because the quadratic equality constraint
(QEC) is stronger than the quadratic inequality constraint (QIC), the
QECLCMP beamformer will have more ascendant robust performance
than the QICLCMP beamformer. Hence, the QECLCMP beamformer
is proposed and is solved effectively.

The QECLCMP beamformer is to impose an additional quadratic
equality constraint on the Euclidean norm of w. Hence, The
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QECLCMP beamformer problem is formulated as follows:



min
w

wHRxw

s.t. CHw = f
‖w‖2 = ε

(50)

Comparing the QECLCMP with QICLCMP beamformer, we can
educe the conclusions as follows. (I) The solution to the QICLCMP
beamformer is obtained on the boundary of its constraint. Similarly,
for the QECLCMP beamformer, the solution is also obtained on
its constraint boundary. (II) However, the solving methods of the
two beamformer (or the optimization problem) is different, such
as the forenamed solution to the QICLCMP beamformer. The
Lagrange multiplier of the QICLCMP beamformer is taken as a
positive real-value only, but for the QECLCMP beamformer, the
Lagrange multiplier is taken as an arbitrary real-value, that is to say,
it will be not only the positive real-value, but also the negative real-
value. Hence, if we analyze from the view of solving the optimization
problem, the QECLCMP beamformer has two solutions to the optimal
Lagrange multiplier, one is positive, the other is negative. Actually,
the positive one is the solution to the QICLCMP beamformer. For
the sake of distinguishing the otherness, the negative solution is
interested to the QECLCMP beamformer. In order to solve the
QECLCMP beamformer, we must make use of the discussed results
of the QICLCMP beamformer. Since the manipulation of some
inequality, such as the inequality lessening and enlarging are only right
for the positive real-value when we solve the QICLCMP beamformer.

Similar to the QICLCMP beamformer, the solution to the
QECLCMP beamformer can also be solved by the Lagrange multiplier
methodology. And the optimal weight vector of the QECLCMP
beamformer has the same form as the QICLCMP beamformer. The
only difference between the QECLCMP and QICLCMP beamformer
is the Lagrange multiplier

^

λ. For the QICLCMP beamformer, λ ≥ 0,
here

^

λ is arbitrary real-value.

5.1. Solution to the Optimal Lagrange Multiplier

Although the solution to the QECLCMP beamformer has the same
form as the QICLCMP beamformer, the bound of the Lagrange
multiplier is different. In order to use the analyzed results of the
QICLCMP beamformer to disscuss the QECLCMP beamformer, we
replace the Lagrange multiplier with its absolute value, namely the
bound of the Lagrange multiplier

^

λ for the QECLCMP beamformer is
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given by:

√
ε

γ
≤

λ1 +
∣∣∣
^

λ
∣∣∣

λN +
∣∣∣
^

λ
∣∣∣

(51)

√
ε

γ
≥

λN +
∣∣∣
^

λ
∣∣∣

λ1 +
∣∣∣
^

λ
∣∣∣

(52)

(1) If a > 1, then from (51) and (52), we can have:

λN − aλ1

a− 1
≤

∣∣∣
^

λ
∣∣∣ ≤ λ1 − aλN

a− 1
(53)

If λ1−aλN > 0, then a < λ1/λN . Since λN−aλ1 < 0, but
∣∣∣
^

λ
∣∣∣ > 0.

Therefore, when 1 < a < λ1/λN , we can have:
^

λ
(1)

min
∆=−λ1 − aλN

a− 1
≤ ^

λ ≤ λ1 − aλN

a− 1
∆=

^

λ
(1)

max (54)

Since
^

λ
(1)

max > 0, and
^

λ
(1)

min = −^

λ
(1)

max < 0. Hence, when
1 < a < λ1/λN , the solution to the QECLCMP beamformer in the

bound of [0,
^

λ
(1)

max] is the same as the QICLCMP beamformer, but the

solution in the bound of [
^

λ
(1)

min, 0] is the true solution to the QECLCMP
beamformer.

(2) If a < 1, then from (51) and (52), we can have:

aλN − λ1

1− a
≤

∣∣∣
^

λ
∣∣∣ ≤ aλ1 − λN

1− a
(55)

If aλ1−λN > 0, then a > λN/λ1. Since aλN−λ1 < 0, but
∣∣∣
^

λ
∣∣∣ > 0.

Therefore, when λN/λ1 < a < 1, we can have:
^

λ
(2)

min
∆=−aλ1 − λN

1− a
≤ ^

λ ≤ aλ1 − λN

1− a

∆=
^

λ
(2)

max (56)

Since
^

λ
(2)

max > 0, and
^

λ
(2)

min = −^

λ
(2)

max < 0, with the analysis of the
QICLCMP beamformer above, we can obtain that when λN/λ1 < a <

1 there isn’t a solution in the bound of [0,
^

λ
(2)

max] to the QECLCMP

beamformer. But the solution in the bound of [
^

λ
(2)

min, 0] is the true
solution to the QECLCMP beamformer.

Based on the analysis above, we can conclude as follows.
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(I) When 1 < a < λ1/λN , the solution in the bound of [
^

λ
(1)

min, 0]
is the true solution to the QECLCMP beamformer, and the quadratic
equality constraint parameter ε should be chosen in the interval defined
by γ < ε < min{γ · (λ1/λN )2, ε0}.

(II) When λN/λ1 < a < 1, the solution in the bound of [
^

λ
(2)

min, 0]
is the true solution to the QECLCMP beamformer, and the quadratic
equality constraint parameter ε should be chosen in the bound of
γ · (λN/λ1)

2 < ε < min {γ, ε0}.
(III) The QECLCMP beamformer has the form of diagonal loading

with negative loading level, while the QICLCMP beamformer has the
form of diagonal loading with positive loading level.

5.2. The QECLCMP Beamforming Algorithm

Similar to the QICLCMP beamforming algorithm, we summarize the
QICLCMP beamforming algorithm below.

Step 1) Compute the eigendecomposition of the data covariance
matrix Rx, obtain the eigenvalues/eigenvectors of Rx. And compute
the parameter γ by the definition (30).

Step 2) For the given constraint parameter ε, compute the
parameter a by the definition a =

√
ε/γ. If the inequality relationship

1 < a < λ1/λN is satisfied, solve the Equation (31), namely f(
^

λ) = 0
in the bound of [−(λ1 − aλN )/(a− 1), 0] (i.e., [ ^

λ
(1)

min, 0 ]). So the
optimal Lagrange multiplier will be obtained by the Newton’s method.
Else if λN/λ1 < a < 1, solve the Equation (31), namely f(

^

λ) = 0 in the
bound of [ −(aλ1 − λN )/(1− a), 0 ], (i.e., [ ^

λ
(2)

min, 0 ]). Except for

the two bounds above, there isn’t the solution to equation f(
^

λ) = 0.
And the constraint parameter should be modified, so that the solution
condition can be satisfied.

Step 3) Use the optimal Lagrange multiplier obtained in Step 2
to get the optimal weight vector according as (21), or as follows:

ŵ = U
(
Λ +

^

λI
)−1

UHC
[(

UHC
)H

(
Λ +

^

λI
)−1

UHC
]−1

f (57)

where the inverse of the diagonal matrix Λ +
^

λI is easily computed,
and the matrix UHC is also available from Step 1.
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6. SIMULATION ANALYSIS

In order to validate the correctness and the efficiency of the proposed
algorithms, we analyze as follows. In our simulations, we assume a
uniform linear array with N = 10 omnidirectional sensors spaced half
a wavelength apart. Through all examples, we assume that there is
one desired and two interfering sources, namely, there is a signal from
direction 0◦, and two equi-powered interferers are located at −40◦ and
60◦ respectively. The Signal Noise Ratio (SNR) and the Interferer
Noise Ratio (INR) of the array data are both −5 dB. Therein, the
presumed signal direction is equal to 5◦ (i.e., there is a 5◦ look direction
mismatch). In the simulation, the sample number is 1000.

For comparison, the benchmark LCMP algorithm that corre-
sponds to the ideal case when the covariance matrix is estimated by the
Maximum Likelihood Estimator (MLE) and the actual steering vector
is used. This algorithm does not correspond to any real situation but
is included in our simulations for the sake of comparison only, and is
denoted by Ideal-LCMP. The other algorithms include: LCMP, vari-
able loading recursive least square (VLRLS)-LCMP [20], QICLCMP,
QECLCMP. For the QICLCMP and QECLCMP beamformer, the con-
straint parameter are selected as the median of the allowable bound.

6.1. Effectivity Analyzing

In order to attest the efficiency of the proposed algorithms, the
beamformer patterns are compared particularly, and the beamformer
output SNR versus sample number and angle mismatch are analyzed
in detail.

The LCMP beamformer pattern is given in Fig. 1. Since the
mismatch of the the signal direction exists, the mainlobe of the
LCMP beamformer departs from the signal actual direction, but in the
interferers directions, there are deep nulls. The pattern of the VLRLS-
LCMP beamformer is close to that of the LCMP beamformer. The
QICLCMP beamformer is almost the same as the LCMP beamformer,
and the QECLCMP beamformer is the best of all. The direction
mismatch is overcame commendably, and its pattern has the lowest
sidelobe level and interferer nulls. Here, the QICLCMP beamformer
uses the positive optimal loading level, the QECLCMP beamformer
uses the negative optimal loading level. From the comparison, we can
see that the QECLCMP beamformer has a better performance than
the QICLCMP beamformer and the others.

The variation of the beamformer output SNR versus samples
number is given in Fig. 2. Apparently, the SNRs of the QICLCMP
and VLRLS-LCMP beamformer are almost closed to that of the
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Figure 1. LCMP beamformer pattern comparison.

Figure 2. Output SNR versus
samples number.

Figure 3. Output SNR versus
angle mismatch.

LCMP beamformer, which are lower than that of the Ideal-LCMP
beamformer. But the QECLCMP beamformer is the best of all,
especially for the small number, it has the preferable performance.
This is because that the QECLCMP beamformer not only has the
precise pointing performance, but also has the lowest sidelobe level.
Therefore, the quadratic equality constraint can improve the output
SNR of the LCMP beamformer.

The variation of the LCMP beamformer output SNR versus signal
direction mismatch or angle mismatch is given in Fig. 3. We can see
that when the angle error is in the bound of [−7◦, 7◦], the QECLCMP
beamformer has a higher SNR than the QICLCMP, VLRLS-LCMP,
LCMP beamformer. This is caused by the QECLCMP beamformer
which not only has the precise pointing performance, but also has the
lowest sidelobe level.



Progress In Electromagnetics Research, Vol. 130, 2012 557

Based on the analysis above, we can see that the QECLCMP
beamformer has the best robustness against the signal direction
mismatch.

6.2. Correctness Analyzing

The QICLCMP and QECLCMP beamformers have the same form as
the LCMP beamformer with diagonal loading. However, their key
problems are to find their own optimal loading level or Lagrange
multiplier. In order to show the impact of loading level on the LCMP
beamformer under quadratic constraint (QCLCMP) and attest the
correctness of the proposed algorithms, the simulation results are given
as follows.

The variation of the output SNR versus diagonal loading level is
given in Fig. 4. We can see that with the change of the loading level

in the bound of [
^

λ
(1)

min,
^

λ
(1)

max], the SNR of the QCLCMP beamformer
varies accordingly. When the loading level is positive, QCLCMP is
QICLCMP, whereas, when the loading level is negative, QCLCMP
is QECLCMP. By comparison, we can see that the QECLCMP
beamformer has higher SNR than the QICLCMP beamformer. For
the optimal loading, namely when the loading level is equal to −4.23,
the QECLCMP beamformer has the best pointing performance, and its
SNR is the highest one. Hence, the loading level has a great impact on
the SNR of the LCMP beamformer, and determines the performance
improvement.

From the simulation results above, we can see that the loading
level has a great impact on the performance of the LCMP beamformer,

Figure 4. Output SNR versus
loading level.

Figure 5. Output SNR versus
constraint parameter.
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and the QECLCMP beamformer has the best pointing performance,
namely, the optimal negative loading is the best. This is also consistent
to the theory analysis. For the robust beamformer with diagonal
loading, the improvement is determined by the optimal loading level.
When the loading level is optimal, the performance improvement will
be the optimal. But for other values, the improvement will be little,
or even worse.

6.3. Constraint Parameter Selection Analyzing

For the QCLCMP beamformer, there are two key problems, one is how
to find the optimal loading level, and the other is how to select the norm
constraint parameter. Although we have solved the two problems in
theory, there is another key problem, namely, how to select the optimal
norm constraint parameter. Therefore, the impact of norm constraint
parameter on the QCLCMP beamformer is analyzed here particularly.

The variation of the output SNR versus norm constraint
parameter is given in Fig. 5. We can see that with the change of the
norm constraint parameter in the allowable bound of (εmin, εmax), the
SNR of the LCMP beamformer varies accordingly. The QICLCMP
beamformer has a little higher SNR than that of the LCMP
beamformer, and the QECLCMP beamformer has the highest SNR.
And with the norm constraint parameter increasing, the SNR of the
QECLCMP beamformer increases correspondingly, but the SNR of
the QICLCMP beamformer is inclined to the SNR of the LCMP
beamformer. When the norm constraint parameter is equal to the
maximum, the constraint is inactive, and the three SNRs tend to the
same value. Hence, the SNR is determined by the choice of the norm
constraint parameter, especially for the QECLCMP beamformer.

According to the simulation results above, we can see that if the
norm constraint parameter is selected in the allowable bound, the
norm constraint parameter has a great impact on the performance
of the QICLCMP and QECLCMP beamformer, especially for the
QECLCMP beamformer. But the QECLCMP beamformer with the
larger constraint parameter has the better pointing performance,
namely, when the constraint parameter is selected as a larger value
in its allowable bound, the optimal negative loading has the optimal
improvement.

7. CONCLUSION

Since the quadratic constraints on the weight vector of the LCMP
beamformer can improve the robustness to pointing errors and to
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random perturbations in sensor parameter, the Lagrange multiplier
method is developed to solve the LCMP beamformer under quadratic
constraint which includes the inequality and equality constraint.
Therein, the exact Lagrange multiplier or loading level is obtained,
and the optimal weight vector can be computed exactly. The choice
of the quadratic constraint parameter is analyzed and the selecting
bound is given. Above all, this method gives the efficient solution to
find the optimal loading level for the QCLCMP beamformer. From
the theory analysis and the simulations, the QECLCMP beamformer
has the best performance to overcome the steering vector mismatch,
namely the optimal negative loading has the preferable robustness.
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