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Abstract—The paper presents the description of multiply connected
conducting regions (MCCR) in the finite elements space. In order
to define induced currents distribution in multiply connected regions,
an innovative method of combined vector potentials T and T0 has
been suggested. The equations of T-T0 method have been presented.
The relations describing sources for the field of induced currents in
the discussed regions have been given. The proposed method has
been applied to solve Problem No. 7 of the International TEAM
Workshops. The selected results of calculation have been compared
with the measurement results.

1. INTRODUCTION

In recent years, owing to progress in numerical methods and
dynamic development of IT equipment in designing and analysis of
electrical machines and devices, algorithms enabling calculations of
electromagnetic field distribution with induced and eddy currents
are used more often. In most typical structures of machines, the
conducting regions are superficially multiply connected, e.g., squirrel-
cage winding of an induction motor or “multi-turn” winding. The
literature provides than among the methods meant to define induced
currents in these types of structures the most popular is the method
of scalar potential V [10, 13]. The main reasons for such popularity of
the method is simplicity of formulating algorithm of the FE equations
describing distribution of conduction currents, both in simply and
multiply connected conducting regions (MCCR) [4]. A disadvantage
related to this method is that it is rather time-consuming when it comes
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to calculations [2]. In order to determine induced currents distribution
the T method may be also employed. This method can be only used
for the analysis of induced currents in simply connected regions [9]
and, though for this method algorithms concurrent to V [1, 4] method
algorithms can be formed faster than, owing to being unadjusted to
the currents analysis on multiply connected regions, the T method is
not popular. Unadjustedeness of the T method to analysis of systems
with multiply connected conducting regions can easily be explained
using the circuit theory. The equations of T method refer to loops with
eddy currents around element edges, i.e., loops of electric facet network
with eddy currents imi, which are presented in Fig. 1. Although the
number of these loops is usually higher than the number of independent
loops, it has been founded that for MCCR it is impossible to create a
set of fundamental loops necessary for achieving the induced currents
that flow around the “holes”. This means that using a classic T
formulation the induced currents by fluxes Ψok passing through the
holes are not taken into account, see Fig. 1. In order to avoid
unadjustedeness of the T method to analyse systems with MCCR,
in [7] it is suggested to fill in the “holes” with a conducting material of
high resistivity ρ. After the holes have been filled with the conducting
material one can get a “quasi-single connected conductor” in which for
purposes of determining currents distribution the classic T formulation
can be easily employed. Researches on deploying this method have
been presented in [1, 2]. Authors of these papers have emphasized

Figure 1. Squirrel cage of an induction motor as a multiply connected
conductor and its facet model [5].
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superiority of the T method over V method. They have shown that
by using the classical T formulation the number of iterations in the
solving process can be reduced and the computational time can be
significantly shortened.

The T method suggested in [7], i.e., filling the holes with a high-
resistivity conducting material, has also been discussed in [5]. The
authors of this paper have noticed that when analysing the systems
with multiply connected regions the computational time depends on
the selected values of resistivity ρ of the material filling the holes.
Increasing the resistivity ρ has a positive impact on the accuracy
yet causes that the computational time is lengthened. As a result
of decreasing the value ρ the calculation time is shortened but the
accuracy of obtained solution is questionable.

To determine the conduction currents distribution in multiply
connected regions with induced currents the authors suggest
deployment of method using vector potentials T and T0. The
equations of T-T0 method are obtained by jointing the equations
describing the distribution of edge values im of vector T with equations
describing the edge values io of vector potential T0 [3, 14]. It is
known that, in order to determine the induced currents distribution
in conducting regions, the equations of T-T0 method should be
solved with equations describing the magnetic field distribution.
An advantage of this method is that the equations describing the
currents distribution can be easily coupled with equations describing
the magnetic field distribution. Moreover both formulations: scalar
potential Ω — method Ω-T-T0 [6] — as well as the vector potential A
— method A-T-T0 [14] — are allowed.

In the paper the description of multiply connected conducting
regions in the finite elements space has been discussed. In order to
determine the induced currents distribution in the considered regions
the authors suggest a method using the T-T0 formulation. Ways
of formulating equations of T-T0 method have been presented. The
relations describing sources for the field of induced currents in the
discussed regions have been given. The usefulness of T-T0 method has
been proved in the example of TEAM Workshops Problem No. 7 [12].
The finite element equations have been set up following [4, 11] and
described using the language of circuit theory. The finite element
equations arising from the scalar potential formulation and nodal
elements are equivalent to nodal equations of an edge network (EN)
constructed from branches associated with element edges (Fig. 2(a));
whereas the equations for the vector potentials for the system described
by edge elements are represented by loop equations of the facet network
(FN) made of branches joining element mid-points (Fig. 2(b)). The
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(a) (b)

Figure 2. (a) Edge and (b) facet models of hexahedron.

method using the edge elements and nodal values for scalar potential
formulations is called as the nodal elements method (NEM) [4, 15],
while the method using the facet elements and edge values for
vector potential formulations is called the edge elements method
(EEM) [3, 15].

2. EDGE ELEMENT EQUATION OF T-T0 METHOD

In the paper the way of formulating FE equations of the T-T0 method
has been explained on the base of the simple multiply connected region,
i.e., doubly connected region — a massive conducting element with
a hole (Fig. 3). Commencing formulation of the equations, after
discretisation the region with facet elements, first of all an additional
loop Lk is formed, with io current representing current induced by flux
Ψo passing through the hole. The current io in the loop Lk represents
the edge value of the potential T0 [15]. For such formed model of the
region containing an additional loop Lk, in next step the loop equations
of the T-T0 method have been formulated.

The EEM equations can be easily formulated from the branch
equations for the FN composed of facet models of elements. Those
equations describe the distribution of node to node voltages and can
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Figure 3. Doubly connected region with a shown loop Lk.

be expressed in the following form

uV = Rρis − e, (1)

where, uV is the vector of branch electric potential differences, e.g.,
difference of potentials between nodes Q0 and Q5 in Fig. 2(b), Rρ is the
matrix of branch resistances derived from the interpolating functions
of the facet element, is is the vector of branch currents associated with
faces of elements, e.g., current is3 in Fig. 2(b), and e represents the
vector of branch electromotive forces (emf s).

In the discussed example the vector of branch currents is is the sum
of two vectors: (a) vector isw representing facet values of eddy currents
densities Jw (Jw = rotT) in the region with massive elements, i.e., the
vector of eddy currents passing through the element facets and (b)
vector is0 of facet values of induced currents densities J0 (J0 = rotT0)
around the hole, i.e., the vector of induced current defined on the basis
of loop current io around the hole passing through the element faces.
Having considered that:

is = isw + is0 (2)

and inserted (2) to (1), the branch equations describing the node to
node voltages distribution for the multiply connected region can be
written in the following form

uV = Rρ(isw + is0)− e. (3)

Moreover, when formulating the equation of T-T0 method one of two
formulations can be used: (a) formulation using matrix ze describing



284 Wojciechowski et al.

distribution of additional loops around holes in the edge space (in the
discussed systems the loop Lk — Fig. 3) and (b) formulation that
applies matrix zf describing the loops distribution around holes in the
facet space. Details of how matrices ze and zf are formed have been
described in [4, 15]. Fig. 4 illustrates the description of loop Lk around
the hole in the space of edges and faces elements.

(a)

(b)

Figure 4. Loop Lk around the hole: (a) the edge element space and
(b) the facet element space.
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First, we consider approach with matrix zf . In this approach the
vector is0 of induced currents passing through facets of the elements is
determined on the basis of the following relations

is0 = zf io, (4)

and the vector isw of eddy currents is expressed by means of loop
currents im around the edges of elements [15]

isw = keim (5)

where ke is loop matrix for the loops around the edges like loop in
Fig. 2(b).

Having taken into account the interrelations (4) and (5) in (3) we
get the following branch equations

uV = Rρkeim + Rρzf io − e, (6)

on the basis of which we get the loop equations for loops with eddy
currents im around edges as well as to equations for loop with current
io around the hole.

Now, the equations describing loop currents around the holes, i.e.,
the equations that define the edge values of T0, will be considered. The
equations for loops around the holes are obtained by multiplying (6)
by the matrix zT

f

zT
f uV = zT

f Rρkeim + zT
f Rρzf io − zT

f e. (7)

The matrix product zT
f uV is a vector of the sum of node to node

voltages in the loop around the holes [15]. According to Kirchhoff’s
principle the sum of node to node voltages in the loop is equal to zero.
Thus

zT
f uV = 0. (8)

Having considered (7) and (8) the loop equations for the loop with
currents io around the holes have been formed as

zT
f Rρkeim + zT

f Rρzf io = zT
f e. (9)

The matrix Equation (9) can be conveniently presented in following
form

Rwim + Rocio = eoc, (10)

where, Roc is the matrix of loop resistances for loop around the holes

Roc = zT
f Rρzf , (11)

matrix Rw represents mutual resistances between loops with eddy
currents im and loops with induced currents io

Rw = zT
f Rρke, (12)
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and eoc is the vector of loop emf for loops around the holes

eoc = zT
f e. (13)

Basing on the Equation (6) the EE equations for loops around
element edges, i.e., for loops with eddy currents, can also be formed.
Multiplying the Equation (6) by the loop matrix kT

e we get a vector of
the sum of node to node voltages around edges of elements,

kT
e uV = kT

e Rρkeim + kT
e Rρzf io − kT

e e. (14)

Pursuant to Kirchhoff’s voltage law for circuits the sum of voltages in
a loop equals zero. Thus kT

e uV = 0 and

kT
e Rρkeim + kT

e Rρzf io = kT
e e. (15)

The aforesaid equations are loop ones for loops with eddy currents
for electric facet network obtained as a result of a discretization of
the multiply connected region. The matrix expression preceding the
vector im is a loop resistance matrix Rρo for loop with eddy currents [4],
and the expression that precedes vector io represents the transposed
matrix Rw describing mutual resistances, see (12). The product kT

e e
represents a vector eo of loop emfs for loops with eddy currents. By
the application of these matrices the Equation (15) can be presented
in the form

Rρoim + RT
wio = eo. (16)

The equations of T-T0 method for conducting multiply connected
regions in the facet elements space are obtained as a result of jointing
the Equations (10) and (16)

[
Rρo RT

w
Rw Roc

] [
im
io

]
=

[
eo

eoc

]
. (17)

In a similar way, the equations of T-T0 method for a formulation using
matrix ze, i.e., that matrix describing the paths around the holes in the
edge elements space, can be formed. Using matrix ze when formulating
loop equations around the holes give the same values of vector eoc and
matrixes Roc, Rw for circuits with additional loops [4, 15] on condition
that the loop distribution has been correctly mapped. It means when
the following identity is provided

zf = keze. (18)

Having substituted the identity (18) to (11), (12) and (13) we get
formulas describing, adequately:

(a) the matrix of loop resistances Roc for loop around the holes

Roc = zT
e kT

e Rρkeze, (19)
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(b) the matrix of mutual resistances Rw

Rw = zT
e kT

e Rρke, (20)

(c) the vector of loop emfs eoc for loops around the holes

eoc = zT
e kT

e e. (21)

The above formulas should be considered as referring to systems with
conducting multiply connected regions described in the edge space.

Solving the Equation (17) we obtain eddy currents distribution im
in loop around the edges and currents io in additional loop around the
holes.

3. DESCRIPTION OF THE LOOP ELECTROMOTIVE
FORCES

In the case of procedures meant to determine conduction currents
distribution in multiply connected regions using T-T0 method it is
important to formulate proper expressions describing loop emfs in
loops around the edges and loops around the holes. The way that the
loop emfs are calculated depends on the deployed way of describing
the location and shape of loops around the holes. It has been already
mentioned that in T-T0 method two formulations can be used: (a)
formulation using matrix ze and (b) formulation using matrix zf .
The approach (a) is more universal and can be applied both for
the magnetic scalar Ω and magnetic vector potential A formulations,
whereas approach (b) is restricted to cases where A is used as the
solution potential. Below, the way of formulating loop emfs in the
facet model of multiply connected regions for systems of known fluxes
distribution has been presented.

For the formulation using matrix ze the Equation (17) describing
induced currents distribution can be written in the following form:

[
kT

e Rρke kT
e Rρkeze

zT
e kT

e Rρke zT
e kT

e Rρkeze

]
·
[

im
io

]
=

[
eo

eoc

]
. (22)

The right side of Equation (22) represents sources, i.e., emfs eo in loops
around the element edges and emfs eoc in loops around the holes. The
field sources can be defined in terms of [4, 5, 15]: (a) branch fluxes
φb associated with edges of elements (Fig. 5(a)); (b) branch fluxes φs

penetrating faces of elements (Fig. 5(b)) or (c) loop fluxes φe around
edges of elements (Fig. 5(c)).

In the case (a), that is applied for Ω-T-T0 formulation, the
electromotive forces eo in loops of FN are represented by a time
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(a) (b)

(c) (d)

Figure 5. Fluxes associated with electric FN: (a) branch fluxes φb

associated with edges of elements, (b) branch fluxes φs associated with
faces of elements, (c) loop fluxes φe around edges of elements, (d) loop
fluxes φf associated with faces of elements [5].

derivative of the branch fluxes φb of the magnetic edges network
(Fig. 6).

eo = − ∂

∂t
φb. (23)

Multiplying the vector eo by the transposed matrix ze the vector eoc

of loop emfs for loops around the holes can be calculated from

eoc = zT
e eo = − ∂

∂t
zT

e φb. (24)

For the case (b) in which electromotive forces are defined on the basis
of a known branch fluxes φs, i.e., the facet values of magnetic flux
density B, the expressions describing emfs eo and eoc may be written
as

eo = − ∂

∂t
KT φs, (25)

eoc = zT
e eo = − ∂

∂t
zT

e KT φs, (26)

where K is a matrix transposing the branch values of the facet network
into the values related to branches of the edge network [4].
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Figure 6. Branch flux φbNi,j passing through loop of electric facet
network.

The field sources can be also calculated from loop fluxes φe around
edges, i.e., edge values of potential A (A-T-T0 formulation) — that is
for case (c). In this case the following formulas are applied

eo = − ∂

∂t
KTkeφe, (27)

eoc = zT
e eo = − ∂

∂t
zT

e KTkeφe. (28)

Taking into account that KTke = kT
e K [15] the loop emfs can be also

defined as follows

eo = − ∂

∂t
kT

e Kφe, (29)

eoc = zT
e eo = − ∂

∂t
zT

e kT
e Kφe. (30)

It was already pointed that in order to define the loop Lk around the
holes, the formulation using matrix zf can be applied. For this case,
the equations describing the distribution of induced currents can be
written as

[
kT

e Rρke kT
e Rρzf

zT
f Rρkf zT

f Rρzf

]
·
[

im
io

]
=

[
− ∂

∂tk
T
e φf

− ∂
∂tz

T
f φf

]
. (31)

In Equation (31), the sources are formulated from a given loop fluxes
φf associated with element faces, i.e., loops of the EN (Fig. 5(d)). The
expression − ∂

∂tk
T
e φf describes vector eo of emfs in loops around edges

with eddy currents, while the product − ∂
∂tz

T
f φf represents vector eoc

of electromotive forces in loops around the holes. The vector φf is a
vector of loop fluxes associated with faces of the elements, i.e., fluxes
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in loop of the EN [15]. The loop flux φfi is a numerical representation
of the integral from the vector A along the line connecting centres of
elements of a common face Si [15].

4. NUMERICAL EXAMPLE

Based on the presented above formulation, an algorithm and dedicated
software has been developed for calculation of induced current
distributions in multiply connected conducting regions. In the
elaborated software the equations of T-T0 method, i.e., equations
describing the distribution of current flow field, have been coupled
with the equations of the A method [3, 15], i.e., equations describing
the magnetic field distribution. As result of coupling of equations the
following system of A-T-T0 equations has been obtained [4]:


kT
e Rµke −KTke −KTkeze

∂
∂tK

Tke kT
e Rρke kT

e Rρkeze

∂
∂tz

T
e KTke zT

e kT
e Rρke zT

e kT
e Rρkeze




[
φe

im
io

]
=

[ Θz

0
0

]
, (32)

where, Rµ is the matrix of branch reluctances of the FN [3] and
vector Θz represents the loop mmf s set up by the flow of current
through the windings. As an example, the test problem No. 7 of
the International TEAM Workshops has been examined (Fig. 7).
Parallelepiped elements have been used resulting in about half a

(a) plane view (b) front view

Figure 7. The TEAM workshop problem No. 7 — Asymmetrical
conductor with a hole [12].
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million equations for the edge values φe of the vector potential A
and 63 thousand equations for the edge values of T-T0. The complex
potentials has been used throughout and complex ICCG method has
been applied for solving obtained matrix equations. The obtained
simulation results have been compared with measurements published
in [8]. Figs. 8, 9 and 10 present the computed and measured
distributions: (a) of the magnetic flux density Bz along the line A1-B1,

Figure 8. Magnitude of Bz along the line A1-B1 as shown in Fig. 7.

Figure 9. Magnitude of Bz along the line A2-B2 as shown in Fig. 1.
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Figure 10. Magnitude of Jy along the line A3-B3 as shown in Fig. 1.

(b) of the magnetic flux density Bz along the line A2-B2, and (c) of
the current density Jy along the line A3-B3, for two frequencies (50 Hz
and 200Hz). The positions of the lines A1-B1, A2-B2 and A3-B3 are
depicted in Fig. 7.

A comparison of simulation results with the measurements
published by Nakata and Fujiwara in [8], reveals very close agreement
and thus good accuracy of the used formulation. It is important to
notice that the total computational time for the case of frequency
of 50Hz and imposed error threshold of 10−6 was typically about 20
minutes, which should be compared with 6.5 hours needed to achieve
the same accuracy using a A-V method described in [16].

5. CONCLUSION

The paper presents the method of jointed electric potentials T-T0

applied to determine conducting currents distribution in multiply
connected regions. The representation of the MCCR in the
finite elements space has been demonstrated and discussed. The
fundamental loop equations and additional loop equations around the
holes for a facet model of discretized multiply connected regions have
been presented. By the formulating equations for loops around the
holes, the matrices ze and zf describing additional loops in the space of
edges and faces of finite elements have been used. As a result of jointing
loop equations of the electric facet network describing distribution of
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eddy currents im with equations of additional loops that describe the
distribution of induced currents io around the holes the T-T0 method
equations have been obtained. The ways of formulating loop emfs eo

and eoc for the considered facet model of a multiply connected region
have been described. The usefulness of proposed method has been
confirmed the example.
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