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Abstract—Generation of a wide-band response using partial
information from the time domain (TD) data and frequency domain
(FD) data has been accomplished in this paper through the use of
three different orthogonal functions, such as the continuous Laguerre
functions, the Bessel-Chebyshev functions, and the associate Hermite
functions. In this hybrid approach, one can generate the early-time
response using the method of marching-on-in-time (MOT) and use the
method of moment (MOM) to generate the middle-frequency response,
as the low-frequency data may be unstable. Since the early-time
and the middle-frequency data are mutually complimentary, they can
provide the missing low- and high-frequency response and the late-
time response, respectively. Even though obtaining middle-frequency
response from an object needs more computation time than the low-
frequency response, this approach has better performance for the
interpolation and extrapolation of a wide-band response.
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1. INTRODUCTION

Typically, one can perform the electromagnetic analysis using
Maxwell’s equation either in the time domain (TD) or in the frequency
domain (FD). The method of moments (MOM), which uses an integral-
equation formulation, can be applied to perform the electromagnetic
analysis in the frequency domain. The disadvantage of the MOM is
that it needs a large matrix equation to solve electromagnetic problems
as the electrical dimension of the structure increases. Therefore, this
FD approach is computationally demanding to perform a wide-band
analysis, especially to obtain the high-frequency response. A TD
approach is preferred to a wide-band analysis because of relatively
small computational time based on fewer arithmetic operations. For a
time-domain integral equation formulation, the method of marching-
on-in-time (MOT) is usually employed. A serious drawback of this
algorithm is the occurrence of late-time instabilities in the form of
high-frequency oscillations.

For overcoming the disadvantages and strengthening the advan-
tages of each of the approaches, the hybrid TD-FD method has been
proposed to interpolate and extrapolate data in both domains simulta-
neously using only early-time and low-frequency data [1–6]. The MOM
approach can efficiently generate low-frequency data, while the MOT
algorithm can be used to obtain stable early-time data quite quickly.
The basic principle is that the early-time and low-frequency data pro-
vide the missing high-frequency response and the missing late-time
response, respectively. From this basic principle, one can also extend
the hybrid TD-FD method to generate a wide-band response in both
domains using early-time and middle-frequency data instead of using
early-time and low-frequency data [7]. There are two reasons for this
extended hybrid TD-FD method. One reason is that the low-frequency
data may be unreliable. Another reason is that one does not need much
more computation time to obtain middle-frequency data.

The objective is to generate a wide-band electromagnetic response
with high accuracy using the orthogonal functions from the extended
hybrid TD-FD. We will use not only the continuous Laguerre functions
but also the associate Hermite and Bessel-Chebyshev functions to
interpolate and extrapolate the wide-band response using the hybrid
TD-FD data such as early-time and middle-frequency data, in an
electromagnetic analysis.

This paper is organized as follows. In Section 2, we will
explain the definitions and properties of the orthogonal functions, the
process of interpolating and extrapolating the wide-band response.
Section 3 shows one numerical example (bow-tie antenna) to evaluate
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the performance of the wide-band response using three orthogonal
functions (continuous Laguerre, associate Hermite, and Bessel-
Chebyshev functions). Finally, some conclusions are presented in
Section 4.

2. FORMULATIONS

2.1. Continuous Laguerre Functions

The continuous orthonormal Laguerre functions and its Laplace
transform can be defined by [8]

φcn(t, l1) =
1√
l1

e
− t

2l1 Ln(t/l1) (1)

Φcn(s, l1) =
1√
l1

(
s− 1

2l1

)n

(
s + 1

2l1

)n+1
l1 > 0; n ≥ 0 (2)

where l1 is the scaling factor with only positive values because its poles
should be all on the negative real axis of the s-plane to have stability.
The continuous Laguerre polynomials Ln(t) can be defined by

Ln(t) =
et

n!
dn

(
tne−t

)

dtn
, n ≥ 0; t ≥ 0 (3)

They are causal, i.e., they are nonzero only for t ≥ 0 where the
continuous Laguerre polynomials can be computed in a stable fashion
recursively through

L0(t) = 1
L1(t) = 1− t

Ln(t) =
2n− 1− t

n
Ln−1(t)− n− 1

n
Ln−2(t), n ≥ 2; t ≥ 0

(4)

A causal electromagnetic response x(t) at a particular location in space
for t ≥ 0 can be expanded by a Laguerre series as

x(t) =
∞∑

n=0

cnφcn(t, l1) (5)

The Fourier transform of (1) can be evaluated as

Φcn(f, l2) =

(
−1

2 + j f
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)n

√
2πl2

(
1
2 + j f

l2

)n+1 (6)
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where l2 = 1/ (2πl1) and j =
√−1.

If we consider the discrete Laguerre functions, one can also use
the scale factor a as [9]

a = e
− ∆t

2l1 (7)

2.2. Bessel-Chebyshev Functions

The orthogonal basis function is φbn(t, l1) = (t/l1)
−1 Jn (t, l1), where

Jn (t, l1) is a Bessel function of the first kind of degree n. A signal with
compact time support can be expanded as

x(t) ≈
N∑

n=0

cn (t/l1)
−1 Jn (t, l1) (8)

The Fourier transform of the above expression can be given as

X(f)=

{∑N
n=0 cn

i
n(−i)nl1

[
1−(f/l2)

2
]1/2

Un−1 (f/l2) , |f |<l2

0, |f |>l2
(9)

where Un(f) is the Chebyshev polynomial of the second kind defined
by [10]

Un(f) =
sin

[
(n + 1) cos−1 f

]

(1− f2)1/2
(10)

In this expression, the causality in time is not forced, whereas the
signals we are dealing with are causal. The relationship between the
first kind of Chebyshev polynomial and the second kind of Chebyshev
polynomial are related by the Hilbert transform, i.e.,

RV

∫ 1

−1

√
1− y2

y − x
Un−1(y)dy = −πTn(x) (11)

where RV
∫ b
a is a Cauchy principle value integral and Tn(f) the

Chebyshev polynomial of the first kind defined by
Tn(f) = cos

[
n cos−1(f)

]
(12)

Therefore, the causal time signal and its Fourier transform can be
rewritten as

x(t)≈
N∑

n=0

cn (t/l1)
−1 Jn (t, l1), t ≥ 0 (13)

X(f)=
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(14)
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2.3. Associate Hermite Functions

The orthonormal associate Hermite functions can be defined as [11]

hn (t, l1) =
Hn(t/l1)√

2nn!
e
−t2

2l21√√
πl1

, n ≥ 0 (15)

where Hn(t) is Hermite polynomial of order n, with l1 as a scaling
factor, and n! represents factorial of n. The Hermite polynomial can
be computed recursively through

H0(t) = 1
H1(t) = 2t

Hn(t) = 2tHn−1(t)− 2(n− 1)Hn−2(t) n ≥ 2
(16)

Using (15)–(16), the recursive formula for the associate Hermite
function can be expressed as

hn (t) =
1√
n

[√
2thn−1(t)−

√
n− 1hn−2(t)

]
, n ≥ 2 (17)

A signal x(t) can be expanded into an associate Hermite series as

x(t) =
∞∑

n=0

cnhn(t, l1) =
∞∑

n=0

cnφhn(t, l1) =
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n=0

cn√
l1
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Since the associate Hermite functions are the eigenfunctions of the
Fourier transform operator, their Fourier transform are given by

hn (t/l1) ⇔ (−i)n hn (f/l2) (19)

Therefore, the Fourier transform of x(t) is given by

X(f) =
∞∑

n=0

(−i)ncnhn(f, l2)

=
∞∑
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(−i)ncnφhn(f, l2) =
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(−i)n cn√
l2

φhn(f/l2) (20)

2.4. Process of Interpolation and Extrapolation

Let M1 and M2 be the number of TD and FD samples that are given
for the functions x(t) and X(f), respectively. The total number of
available samples is Mt in the TD and Mf in the FD. It means one
can utilize only early-time data (x1) and low- or middle-frequency data
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(X1). From these relationships, TD and FD samples can be defined as
follows:



x1 ={x (t0) , x (t1) , . . . , x (tM1−1)}T

x2 ={x (tM1) , x (tM1+1) , . . . , x (tMt−1)}T

X1 ={X (fP ) , X (fP+1) , . . . , X (fP+M2−1)}T

X2 =



{
X (fM2) , X (fM2+1) , . . . , X

(
fMf−1

)}T
, at P = 0{

X (f0) , . . . , X (fP−1) , X (fP+M2) , . . . , X
(
fMf−1

)}T
,

at P = 1, 2, . . . , Mf −M2 − 1

(21)

where x2 is late time data, X2 the low- or high-frequency data, and
P the starting point of the FD samples to apply the hybrid TD-FD
method. The matrix representation for this hybrid TD-FD data would
be 
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X (f0)
...
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Im




X (f0)
...

X (fM2−1)







(22)

where ‘Re’ and ‘Im’ in the matrix equation are the real and imaginary
parts of the transfer function, respectively. The unknown coefficients
cn can be obtained by solving this matrix equation with the total least-
square implementation of the Singular Value Decomposition (SVD)
method [12].
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3. NUMERICAL SIMULATION: A BOW-TIE ANTENNA

In this example, a bow-tie antenna is used to validate the hybrid TD-
FD data using the three different orthogonal functions. The main goal
of this example is to interpolate and extrapolate the S-parameters on
the feed line of the bow-tie antenna using early TD and middle FD
data and compare them with the complete TD and FD solutions. To
evaluate the performance of the interpolation and extrapolation, we
compute the estimated error following the normalized mean square
errors (MSEs) in the time and frequency domain as

Eest =
‖x̂− x‖2

‖x‖2

+

∥∥∥X̂ −X
∥∥∥

2

‖X‖2

(23)

where ‖•‖2 is the L2-norm of a vector. x̂ and X̂ are the estimated
TD and FD data. Typically, we use a Gaussian input pulse as the
excitation for solving the TD problem as

g(t) =
4

σ
√

π
U0e

−
(

4(t−t0)
σ

)2

(24)

where U0 is the amplitude of the input pulse, σ is the width of the
Gaussian pulse, and t0 is the delay to make g(t) ≈ 0 for t < 0. In FD,
the Gaussian pulse is given by

G(f) = U0e
−

(
(2πfσ)2

64
+j2πft0

)

(25)

In our computation, U0 is chosen to be 1 V. The Gaussian
excitation voltage has the parameters with σ = 2.604 ns and
t0 = 4.883 ns. Thus, the bandwidth (BW) of the original data is
approximately 1.53 GHz. We obtained the S-parameter (S11) on the
feed line of the bow-tie antenna using the HOBBIES (Higher Order
Basis Based Integral Equation Solver) simulation program as shown
Fig. 1 [13]. The computed frequency range is from dc to 1.53 GHz
(∆f = 6 MHz, 256 data points). We can obtain the FD data of the
bow-tie antenna with the Gaussian pulse excitation by multiplying
the response of the bow-tie antenna obtained in the frequency domain
by the electromagnetic simulator HOBBIES and the spectrum of the
Gaussian plane wave. Theoretically, the TD data generated by the
MOT method should be the same as the TD data from IDFT of the
FD data. Thus, one can obtain the TD data from t = 0 to t = 32.39 ns
(∆t = 0.1628 ns, 200 data points) using IDFT of the FD data.

We evaluate the performance of the interpolation and extrapola-
tion using the same TD data (the first 50 points) and different FD
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Figure 1. HOBBIES simulation model for the bow-tie antenna.

data (65 points, shifted to the right with 30 incremental points) ver-
sus the scaling factor a for the continuous Laguerre functions, Bessel-
Chebyshev functions, and associate Hermite functions. The perfor-
mance of the hybrid TD-FD method is sensitive to the scaling factor
a and the expansion order N of orthogonal polynomials [14]. To com-
pare the performance of the hybrid TD-FD method with the seven
different dataset, we utilize the scaling factor a under the fixed ex-
pansion order of orthogonal polynomials. We choose the degree of the
orthonormal functions as N = 350 for the continuous Laguerre func-
tions, N = 300 for the Bessel-Chebyshev functions, and N = 200 for
the associate Hermite functions, respectively. When we solve (22) by
singular value decomposition (SVD), we set the tolerance level as 10−9

for the continuous Laguerre functions, 10−14 for the Bessel-Chebyshev
functions, and 10−5 for the associate Hermite functions, respectively.
Fig. 2 shows the results of the MSE for seven different hybrid TD-FD
dataset using the three orthogonal functions.

From Fig. 2(a), one can get better performance if one utilizes
the hybrid early TD data and the middle FD data (case 2 and 3)
instead of the hybrid early TD and the low FD data (case 1) to apply
the continuous Laguerre technique (0.20 ≤ a ≤ 0.82). The estimated
MSE for the case 1 and case 2 at a = 0.8 for the continuous Laguerre
technique are 6.93e-2 and 6.075e-4, respectively. Fig. 2(b) also shows
that one can have better performance for the case 2 and 3 than for
the case 1 to apply the Bessel-Chebyshev technique (0.34 ≤ a ≤ 0.40).
The estimated MSE of the case 1 and case 2 at a = 0.4 for the Bessel-
Chebyshev technique are 1.862e-3 and 7.155e-4, respectively. One also
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Figure 2. MSE for the same TD data and different FD data:
(a) continuous Laguerre functions, (b) Bessel-Chebyshev functions,
and (c) associate Hermite functions.

can get lower MSE value for the both case 2 and 3 than the case 1 to
apply the associate Hermite technique around a = 0.96 as shown in
Fig. 2(c). The estimated MSE for the case 1 and case 2 at a = 0.96 for
the associate Hermite technique are 3.145e-3 and 6.078e-4, respectively.
From Figs. 2(a), (b), and (c), one can recognize that the range of the
scaling factor a for the continuous Laguerre technique is wider whereas
the range of a for the associate Hermite technique is more narrow, to
have accurate results. If one use high FD data (case 4–7), instead of
using low- or middle-frequency data, the hybrid TD-FD method does
not work too well, as the early-time data and the high-frequency data
may contain redundant information and thus may not be mutually
complementary.

The TD of the S-parameter (S11) on the feed line of the bow-
tie antenna is shown by the blue solid line in Fig. 3. The real and
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Figure 4. Estimated (a) real and (b) imaginary FD data using the
three orthogonal functions.

imaginary parts of the FD of the S11 are shown in Fig. 4. From the
partial information of the TD and FD data (case 2, 50 TD points:
0 to 7.9754 ns, 65 FD points: 180 to 564 MHz) one can interpolate
and extrapolate the original TD and FD data using the continuous
Laguerre functions (at a = 0.8, black ‘o’ marker) and Bessel-Chebyshev
functions (at a = 0.4, blue ‘x’ marker), and associate Hermite functions
(at a = 0.96, red ‘.’ marker) as shown in Figs. 3 and 4.
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4. CONCLUSION

In this paper, we have presented the continuous Laguerre, Bessel-
Chebyshev, and associate Hermite functions to interpolate and
extrapolate the wide-band response in both TD and FD simultaneously
using seven different hybrid TD-FD dataset. The performance of the
hybrid TD-FD method with a fixed expansion order N of the three
orthogonal polynomials is sensitive to the scaling factor a. It is possible
to find the optimal scaling factor a. At the optimal scaling factor a, the
performance of the three orthogonal functions in the case 2 are almost
the same. For the range of the scaling factor a satisfied with the cases 2
and 3 getting better performance than the case 1, the continuous
Laguerre technique has the widest range whereas the associate Hermite
technique has very narrow range. Even though computing the middle-
frequency response needs more time and memory than generating the
low-frequency response, one can generate the wide-band response with
better performance using the continuous Laguerre, Bessel-Chebyshev,
and associate Hermite functions in consideration of the range of the
scaling factor a from the hybrid early-time data and the middle-
frequency data.
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