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Abstract—A time-dependent nonlinear theory for complex cavity
gyrotron is presented in this paper. The theory includes generalized
telegrapher’s equations and electron motion equations, which are
deduced in detail. A calculation code for the self-consistent nonlinear
beam-wave interaction is developed based on the presented theory.
Using the code, a 94 GHz complex cavity gyrotron operating in TE021–
TE031 modes is thoroughly studied. Numerical results show that an
output power of 180 kW, about 36% efficiency is achieved with a 50 kV,
10A electron beam at a focused magnetic field of 1.78 T and a beam
velocity ratio of 1.65. The results from MAGIC simulation are also
given and an output power of 192 kW, 38.4% efficiency is obtained
This tells the agreement with these two simulation codes.

1. INTRODUCTION

In millimeter-wave frequency range, the high-power gyrotrons are
needed in many applications, e.g., long range radars, electron
cyclotron resonance heating of plasma, industrial heating, material
processing [1, 2]. As the frequency increases, the gyrotrons encounter
mode competition, output radiation mode content, heat wall loading,
output power and efficiency increasing problems and need strong
magnetic field at the fundamental cyclotron frequency, which makes
the magnet heavy and difficult to achieve. The high order harmonic
complex-cavity gyrotron with gradual transition has the advantage of
overcoming mode competition and enhancing interaction efficiency.
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Complex cavities for a gyrotron were proposed by Pavelyev and
Tsimring [3] and first practical studies were published by Gaponov et
al. [4]. Realization of a stable and high efficient gyrotrons for controlled
fusion research was reported in [5]. Coupled cavities with mode
conversion in gyrotrons [6, 7] had confirmed the effectiveness of the
method of mode selection considered and allowed for an increase in
output power and efficiency. Complex cavities were comprised of a set
of circular open resonators that supported TEmn modes with different
n and equal eigenfrequencies of modes [8].

Vacuum electron devices are based on the interaction between an
electron beam and the electromagnetic fields. Modeling and simulation
of these devices became a key element in their development [9]. In
recent years, there has been significant progress in time-dependent
numerical simulations. There are several working codes in which the
fields are calculated using the finite-difference time-domain (FDTD)
scheme, and the particles are described by the particle-in-cell (PIC)
scheme such as MAGIC [10], MAFIA and ARGUS. These codes could
be used to simulate and design vacuum electron devices. However,
most FDTD-PIC codes need small time for advancement of the FDTD
scheme compared with the wave period. Accordingly, the code must
be run for a relatively large number of time steps to get to steady
state. Furthermore, the spatial resolution usually requires storage of
field value on very large matrices. As a direct result, these codes
require extensive computing resources. Therefore, there is still a need
for accurate and fast design tools for electron-beam devices.

In the past few decades, several theories and codes of gyrotrons
have been developed, which include the time-dependent theory derived
in [11, 12], linear theory in [13], self-consistent theory in [14]. The
simulation code MAGY developed at University of Maryland and Naval
Research Laboratory, which is a time-dependent code for simulation of
slow and fast microwave sources, is an example of a hybrid code [15].
The code has been used effectively, primarily for the design and
simulation of gyro-devices. A hybrid code is a different approach
which prepares a highly specialized code [16–18] by incorporating
restricting assumptions concerning the physics involved. Such codes
require modest computational resources at the price of the restricting
model.

In this paper, a self-consistent, time-dependent nonlinear theory
is obtained, which is based on a reduced description of the
electromagnetic fields and the electron beam. A 94 GHz second
harmonic complex cavity gyrotron is simulated to test and verify the
nonlinear theory, and the effects of the parameters on the output power
and efficiency are stressed to find the optimum parameters of the
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complex cavity gyrotron. This is a preliminary study for the complex
cavity gyrotron. The paper is organized as follows. In Section 2, the
time-dependent nonlinear theory for the complex cavity gyrotron is
presented and the generalized telegrapher’s equations and the electron
motion equations are described. At the same time, the numerical
method and initial conditions on the nonlinear theory are simply
introduced. Computational results obtained by the developed self-
consistent nonlinear code and MAGIC code are discussed in Section 3.
Conclusions are given in Section 4.

2. TIME-DEPENDENT NONLINEAR THEORY MODEL

The time-dependent nonlinear theory model includes a time-dependent
description of the electromagnetic fields and a self-consistent analysis
between the fields and electrons. The theory uses the generalized
telegrapher’s equations to represent the electromagnetic fields. The
equations of electron motion are described in the framework of the
guiding-center approximation. When all the trajectories are calculated
to update current source, the current source is prepared and the
electromagnetic fields are recalculated. This completes the description
of the self-consistent beam-wave interaction.

The generalized telegrapher’s equations are derived as follows.
Firstly, the electromagnetic fields are separated into transverse and
longitudinal parts, that is

~E (~r, t) = Re
{(

~ET (~r, t) + ẑEz (~r, t)
)

exp (−iωt)
}

(1)

~B (~r, t) = Re
{(

~BT (~r, t) + ẑBz (~r, t)
)

exp (−iωt)
}

(2)

where ~ET , ~BT are the transverse electric and magnetic fields and Ez,
Bz the longitudinal fields, which are assumed to be slowly varying of
time. ω is the circular frequency.

From the Maxwell’s equations (esu-Gaussian), we have

∂ ~ET

∂z
= ik0

~BT × ẑ +∇T Ez (3)

∂ ~BT

∂z
= ik0

(
ẑ × ~ET

)
+∇T Bz − 4π

c
ẑ × ~JT (4)

Ez = − 1
ik0

∇T ·
(

~BT × ẑ
)

+
4π

iω
Jz (5)

Bz = − 1
ik0

∇T ·
(
ẑ × ~ET

)
(6)



144 Ma et al.

where ~JT , Jz are the transverse and longitudinal parts of current
density, and k0 = ω/c is the free space wavenumber.

The transverse components of the electromagnetic fields can be
expressed as a sum over eigenmodes of the waveguide, that is

~ET =
∑
mn

Vmn (z, t)~emn (~rT , z) (7)

~BT =
∑
mn

Imn (z, t)~bmn (~rT , z) (8)

where m,n are mode numbers, Vmn, Imn the complex voltage and
current amplitudes, respectively, and ~emn, ~bmn the eigenvectors. The
eigenvectors are defined by the following equations:

∇T

(∇T · ~e ′mn

)
+ k2

c,mn~e ′mn = 0 (9)
~emn · ~s|onS = 0 (10)

for the TM modes, and

∇T

(
∇T ·~b′′mn

)
+ k2

c,mn
~b′′mn = 0 (11)

~b′′mn · ~n
∣∣∣
onS

= 0 (12)

for the TE modes. The eigenfunctions are orthonormal and satisfy
∫

e∗mn · eml =
{

1 if n = l
0 if n 6= l

(13)
∫

e′∗mn · e′′ml = 0 (14)

Here, ~n, ~s are the normal and tangential unit vectors in the plane of
the local cross section. S stands for the curve defining the boundary
of the local cross section. ∗ represents complex conjugate.

We dot (3) with ~e ∗mn and (4) with ~b∗mn, and then integrates over
the transverse cross section of the waveguide, that is

∫∫

S

∂ ~ET

∂z
· ~e ∗mndS =

∫∫

S

(
ik0

~BT × ẑ +∇T Ez

)
· ~e ∗mndS (15)

∫∫

S

∂ ~BT

∂z
·~b∗mndS =

∫∫

S
ik0

(
ẑ× ~ET

)
·~b∗mndS+

∫∫

S
∇T Bz ·~b∗mndS

−
∫∫

S

4π

c
ẑ × ~JT ·~b∗mndS (16)
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Using the orthogonal normalization of the waveguide mode
eigenvectors, we get the generalized telegrapher’s equations:

(
1 +

k2
c,mn

k2
0

)
∂Imn (z, t)

c∂t

= ik0

(
1− k2

c,mn

k2
0

)
Imn (z, t)− ∂Vmn (z, t)

∂z
+

∑

ml

Kmn,mlVml (z, t)

−Sz,mn +
∫

C
dln · e∗mn

(
Ez + r′w~n · ET

)
(17)

(
1 +

k2
c,mn

k2
0

)
∂Vmn (z, t)

c∂t

= ik0

(
1− k2

c,mn

k2
0

)
Vmn (z, t)− ∂Imn (z,t)

∂z
−

∑

ml

Kml,mkIml (z, t)−ST,mn

− 1
ik0

∫

C
dl∇⊥ · b∗mn~n · (ET × ẑ) (18)

where Kmn,ml is the mode coupling term due to the varying wall radius.
ST,mn and Sz,mn are the coupling terms between current source and
the modes. r′w is the derivative of radius rw to the axial variable z.

Consider the interaction of a relativistic electron beam with
electromagnetic fields in the complex cavity gyrotron. The Lorenz
force equation is written as

d (γ~v)
dt

=
−e

m

[
~E (r, t) +

1
c
~v ×

(
~B (~r, t) + ~B0 (r, z)

)]
(19)

where γ is the relativistic energy factor, ~v the velocity of the electron,
e/m the ratio of the charge to rest mass for an electron, and ~E(~r, t)
and ~B(~r, t) are the RF fields, ~B0(r, z) is the guiding magnetic field.

Using the transformation relations of coordinates (see Figure 1),
assuming that the axial magnetic field is strong and thus the Larmor
radius is small and the particles essentially follow the magnetic field
lines, taking axial position z as the free variable. we finally obtain the
following equations under the guiding-center coordinate system:

∂ (γβ⊥)
∂z

=
1
βz

Re

{
(γβ⊥)s−1 exp (−isψ)

∑
mn

(Vmn−βzImn)F⊥mn,s

}

+
γβ⊥
2

∂ ln B0

∂z
(20)
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Figure 1. A schematic diagram of the relationship between the
guiding center position (Re, θ0) and actual position (r, φ) on cross
section of the gyrotron.

∂ (γβz)
∂z

=
1
βz

Re

{
(γβ⊥)s exp (−isψ)

∑
mn

(
Imn − ik0

k2
c,mn

Sz,mn

)
F‖mn,s

}

−γβ2
⊥

2βz

∂ ln B0

∂z
(21)

∂ψ

∂z
=

1
γβ⊥βz

Im

{
(γβ⊥)s−1 exp(−isψ)

∑
mn

(Vmn−βzImn)F⊥mn,s

}

+
1
βz

(
k0

s
− Ω0

γc

)
(22)

∂γ

∂z
=

1
γβz

Re




∑
mn

Vmn [(γβ⊥)s exp (−isψ) F⊥mns]

+ (γβz)
[ ∑

mn

(
I ′mn − ik0

k2
c,mn

Szmn

)

(
(γβ⊥)s exp (−isΨ)F ′

‖mns

)]




(23)

where Vmn, Imn are normalized to e/mc2, β⊥. βz are electrons
transverse and longitudinal velocity normalized to light speed. Ω0 =
eB0(z)/mc is the nonrelativistic cyclotron frequency. ψ = ξ+ωt/s+θ0,
s is the harmonic number. The summation is over TE and TM modes
except for the longitudinal current source, which exists only for the TM
modes. F⊥mn,s, F‖mn,s are coupling coefficients between fields and the
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electrons which are given by

F ′
⊥mn,s

= c′mn

i
(
k′c,mn

)s

(
Ω0
c

)s−1
(2s)(s−1)!

Jm+s

(
k′c,mnRe

)
exp

(
i (m+2s)θ0+is

π

2

)
(24)

F ′
‖mn,s

= c′mn

(
k′c,mn

)s+2

ik0

(
Ω0
c

)s
2s (s)!

Jm+s

(
k′c,mnRe

)
exp

(
i (m + 2s) θ0 + is

π

2

)
(25)

for TM modes with c′mn = 1
jmn

√
πJ ′m(jmn)

, and

F ′′
⊥mn,s =−c′′mn

(
(kc,mn)s

(
Ω0
c

)s−1
(2s) (s− 1)!

Jm+s (kc,mnRe)

exp
(
i (m + 2s) θ0 + is

π

2

) )
(26)

F ′′
‖mn,s =

F ′′
⊥mn,s

γ
(27)

for the TE modes with c′′mn = 1√
π(j′2mn−m2)Jm(j′m)

where Re and θ0 are the guiding center radius and the angle.
When the trajectories of the electrons are known, the current

source ST,mn and Sz,mn are calculated from current density ~JT and
Jz, which satisfy

~JT =
∑

i

−eδ (~r⊥ − r⊥i) δ (z − zi)~v⊥i (28)

Jz =
∑

i

−eδ (~r⊥ − r⊥i) δ (z − zi) vzi (29)

Substituting (28) into ST,mn in (18) and (29) into Sz,mn in (17), and
then, averaging over a high-frequency period, we get

S′z,mn =
4ωe2

mc3
〈(γβ⊥)s exp (isψ)〉F ′∗

‖mn,s (30)

S′T,mn =
4ωe2

mc3

〈
(γβ⊥)s

γβz
exp (isψ)

〉
F ′∗
⊥mn,s (31)

S′′T,mn =
4ωe2

mc3

〈
(γβ⊥)s

γβz
exp (isψ)

〉
F ′′∗

⊥mn,s (32)
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Equations (17), (18) and (20)–(23), together with (30)–(32),
constitute the self-consistent nonlinear theory model. To solve these
equations, we need boundary conditions for fields and initial conditions
for electrons describing initial values of the injected electron beam.

For at the left end of the open-ended gyrotron, the fields are
usually evanescent and at the right end outgoing, the following
boundary conditions can be adopted

Vmn (zin) = 1 (33)
dVmn

dz
− γmnVmn

∣∣∣∣
z=zin

= 0 (34)

dVmn (z)
dz

− jβmnVmn (z)
∣∣∣∣
z=zout

= 0 (35)

where β2
mn = k2

0 − k2
c,mn, γmn (zin) =

√
k2

c,mn (zin)− k2
0. Here,

(33) represents the fields initial conditions at the left end of the
interactin region, which are implemented only at the first time step.
(34) (35) are the fields boundary conditions which are combined with
the generalized telegrapher’s equations to decide the fields amplitudes
in the interaction region. These boundary conditions are performed at
each time step.

The initial conditions of the electron motion are described as
follows:

1) All the electrons have the same energy.
2) The initial phases are uniformly distributed. That is, the electrons

are uniformly distributed over the guiding center angle θ0 and the
gyrating angle θ

θ0j =
2π

N1
(j − 1) , j = 1, . . . , N1 (36)

θi =
2π

N2
(i− 1) , i = 1, . . . , N2 (37)

where N1 is the number of electron cyclotron trajectories and N2 the
number of the particles on every electron cyclotron trajectory.

At the same time, it is assumed that Nt patches of particles are
introduced into the gyrotron each wave period. That is,

ωtk =
2π

Nt
(k − 1) , k = 1, . . . , Nt (38)

When we show the distribution of the ωt, θ0 and θ, according to
ψ = ξ + ωt/s + θ0, we can get the the distribution of angle ψ.
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Solving the generalized telegrapher’s equations for the voltage
and current amplitudes, we can obtain fields at any position. The
generalized telegrapher’s equations are solved by the classic implicit
finite-difference scheme,which are not bounded by stability conditions
and relatively large time step is allowed. This method requires
relatively few computing resources. Furthermore, we simplify the
generalized telegrapher’s equations and get a series of second-order
differential equations. For each mode, the amplitudes are determined
numerically by a tridiagonal matrix. We use Thomas algorithm for
solving the tridiagonal equations. Then, the generalized telegrapher’s
equations receive solved.

The equations of motion could be obtained by fourth-order Runge-
Kutta method. At each time step all particles move from the entrance
plane z = 0 to z = L (L is the length of interaction region). Using a
relatively small number of particles (choose one wave period particles),
we calculate the trajectories and the current source for updating the
electromagnetic fields synchronously.

3. RESULTS AND ANALYSIS

Based on the above time-dependent nonlinear theory model, a
calculation code is developed and a complex cavity gyrotron is
simulated in detail. The schematic of the gyrotron under study is
shown in Figure 2, whose dimensions and working parameters [19] are
given in Table 1 and Table 2, respectively. The gyrotron is designed
to operate in TE021–TE031 modes with second harmonic at 94 GHz.

The dimension of the complex cavity gyrotron has important

0 1 4 6
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2  Radial location

R
ad

ia
l l

oc
at

io
n 

(c
m

)

z (cm)

L1
L

2

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

 Magnetic Field

M
ag

ne
tic

 F
ie

ld
 (

T
)

52 3
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Table 1. Complex cavity gyrotron dimensions.

Cavity 1 length 0.63 cm Cavity 1 radius 0.36 cm
Cavity 2 length 2.47 cm Cavity 2 radius 0.52 cm

The first
taper length

0.10 cm
The first

taper angle
40◦

The second
taper length

0.21 cm
The second
taper angle

35◦

Output
taper length

2.62 cm
Output

taper length
8◦

Table 2. Working parameters of the complex cavity gyrotron.

Beam Voltage 50 kV Beam Current 10A
α (v⊥/vz) 1.65 Magnetic Field 1.78T

Operation Mode TE021–TE031 Cyclotron Harmonic 2nd

effect on the operating mode and interaction efficiency. Especially, the
output performance is strongly influenced with the length of the second
cavity. The output power as a function of the cavity length L2 is given
in Figure 3. From the curve, we can get the optimal output power
with proper selection of the cavity length. When the cavity length L2

is equal to 2.47 cm, the output power is the maximum, which is about
191 kW and corresponds to about 38.3% efficiency.

By adjusting the dimension of the complex cavity gyrotron, we
finally get a set of optimized parameters. The simulated gyrotron
performance for several working parameters variations is given in the
following Figures 4–9 with the optimal gyrotron dimensions.

There are multiple modes in the complex cavity gyrotron. In
addition to TE021 and TE031, other higher modes may be excited near
the up-tapered sections such as TE041. For the simulated complex
cavity gyrotron is well designed and the parameters are selected to
depress the unwanted modes, only the TE021, TE031 and TE041 are
considered in the simulation. The normalized voltage amplitudes are
shown in Figure 4. One can see in the first cavity only mode TE021 is
excited and other modes are depressed, while the second cavity mainly
works in TE031 mode, TE021 and TE041 are restrained, which meets
the design requirements.

Figure 5 shows the dependence of efficiency on axial coordinate z.
In the first cavity, the electrons are prebunched for TE021 mode and
the effect on efficiency is very small. While in the taper of the second



Progress In Electromagnetics Research M, Vol. 25, 2012 151

0.00

0.05

0.10

0.15

0.20

0.25

0.30
 TE 021
 TE 031
 TE 041

N
or

m
al

iz
ed

 V
ol

ta
ge

 A
m

pl
itu

de

z (cm)
630

Figure 4. The normalized volt-
age amplitude of the operating
mode TE021–TE031 (solid line,
black line is TE021, red line is
TE031) and higher order mode as
a function of z.

0

10

20

30

40

E
ffi

ci
en

cy
 (

%
)

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8
2.0

R
ad

ia
l l

oc
at

io
n 

(c
m

)

0 1 4 6
z (cm)

52 3

Figure 5. Efficiency as a function
of the axial variable z.

1.77 1.78 1.79 1.80 1.81 1.82
0

50

100

150

200

No oscillations 

O
ut

pu
t P

ow
er

 (
kW

)

Magnetic Field (T)

Figure 6. Dependence of out-
put power on the axial magnetic
field.

0

50

100

150

200

250
Output Power

O
ut

pu
t P

ow
er

 (
kW

)

Current (A)

0

10

20

30

40

E
ffi

ci
en

cy
 (

%
)

Efficiency

7 8 9 10 11 12 13 14 15

Figure 7. Output power and
efficiency versus beam current.

cavity, the efficiency does not change at once. The reason is that the
TE031 mode is not completely stably coupled. The electrons are still in
prebunching state, thus the efficiency could drop in the second cavity.
However, as the TE031 mode reaches steady, the efficiency is greatly
improved, and reaches 36%.

A small change of magnetic field in gyrotron has a great influence
on output power. Figure 6 shows dependence of output power on
the axial magnetic field. The maximum output power occurs at
1.7825T. As the magnetic field increases, the output power is sensitive
to the magnetic field and decreases quickly. Since the magnetic field
determines the electron cyclotron harmonic frequency, accordingly it



152 Ma et al.

decides the intensity of the beam-wave interaction. Below 1.78T, the
gyrotron can not oscillate [20].

The beam current and output power are closely related. Overhigh
and overlow current can not bring the greatest output power. From
Figure 7, we show output power and efficiency versus beam current.
As the beam current varies from 9 A to 15 A, the output power changes
between 150 kW and 220 kW with the efficiency about 30%. When the
beam current is less than 8 A, the gyrotron can not start oscillation. As
shown in Figure 7, the complex cavity gyrotron has the optimization
of the output power at current 10 A.

The output power versus beam voltage is plotted in Figure 8.
Output power increases steadily with beam voltage below 50 kV. At
beam voltage near 50 kV, the output power attains the maximum.
Then there is a roll-off occurring at the highest voltage level. When
the beam voltage is greater than 51 kV, there is no oscillations in the
gyrotron. So we choose 50 kV as working voltage.

Figure 9 shows the dependence of the output power on the velocity
ratio α which is defined as the ratio of transverse velocity and axial
velocity. The alteration of α can cause electron beam transverse energy
variance. Thus it influences the cluster circumstances and the output
power.

Based on the above analysis, the optimized working parameters
are obtained. In order to examine the results of the nonlinear
code, MAGIC code is used to simulate this complex cavity gyrotron.
Figure 10 gives the results of the MAGIC.

Figure 10(a) shows electrons kinetic energy as a function of z. It
shows that the kinetic energy has a slight change in the first cavity,
while a great change in the second cavity. The electrons have bunched
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(a) (b)

(c) (d)

Figure 10. (a) Dependence of the electrons energy on z. (b) Output
power as a function of time. (c) Distributed scheme of poloidal electric
field. (d) Frequency spectrum of the electric field in the output end.

already in the second cavity and the electrons energy change indicates
that there is an energy loss from the electrons. The instantaneous
output power as a function of time is shown in Figure 10(b). The
output power reaches steady state at 25 ns. The maximum peak output
power of the MAGIC code is 192 kW, 38.4% efficiency. For comparison,
the results of the nonlinear theory code is 180 kW, 36% efficiency.
The two methods of the results are found to be in quite agreement.
Figure 10(c) illustrates the poloidal electric field distribution. One can
see that the first cavity operates in TE021 mode and the second cavity
TE031 mode. This is consistent with that in Figure 4. The frequency
spectrum of the electric field in the output end is given in Figure 10(d).
When the driver frequency is 94 GHz, we get a frequency spectrum of
93.933GHz and the frequency spectrum is pure.

For comparision, we get above numerical simulation results at the
same computer, which is on the platform of intel xeor CPU E5430
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and Window xp (64 bit) operating systems. The CPU time needed
by nonlinear theory code is 5 minutes and the MAGIC code is 113
minutes. Obviously, the time needed by the nonlinear theory code is
much shorter. Therefore, the nonlinear theory code can be used as a
design tool.

4. CONCLUSION

A self-consistent, time-dependent nonlinear theory model is provided.
A 94 GHz second harmonic complex cavity gyrotron is studied by using
the nonlinear theory. The effects of various parameters, such as beam
current, beam voltage, magnetic field and velocity ratio on the output
power and efficiency are discussed in detail. Optimized parameters
of the complex cavity gyrotron have been found. The agreement
between results from the nonlinear theory model and the MAGIC code
implies that the time-dependent self-consistent nonlinear theory and
the corresponding code are effective for the simulation of the complex
cavity gyrotron.
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