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Abstract—This paper studies the characteristics of a constant-K lens
when considered as a possible substitute for a Luneburg lens in a
reflector. The competitiveness of the substitute lens is investigated in
its 2D analogue, by comparing the backscattering radar cross section
for the range of D/λ ∈ (0, 200). The performance of cylindrical
reflectors with either a constant-K lens or a cylindrical Luneburg
lens (approximated by a finite number of stepped-index dielectric
layers) when illuminated by an electromagnetic plane wave is studied
using the semi-analytic Method of Regularization. Because of similar
underlying physical principles, these studies provide an insight into the
3D analogue. The radar cross section calculations of the two reflectors
for incidence angles varying from normal to grazing incidence show
that the cheaper-to-manufacture constant-K lens reflector is able to
provide a more powerful and stable backscattering performance than
the cylindrical Luneburg lens reflector, for electrical sizes in the range
considered.

1. INTRODUCTION

Most investigations on lens reflectors are concerned with the Spherical
Lens Reflectors (SLR) [1–10] in the form of a stepped-index Luneburg
Lens (LL) with attached perfectly electric conducting (PEC ) spherical
cap. The stepped-index LL has been extensively used as a focusing
device as an approximation to the ideal LL with continuously varying
dielectric constant. The stepped-index version reveals the same
performance as expected of the ideal LL at a frequency range limited
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by some “cut-off” frequency strictly depending on the number of
concentric layers. It simply means that when using the stepped-index
LL, the widening of the frequency range for desired performance is
only possible with an increased number of layers. Such an approach is
not efficient as manufacturing LL’s with a larger number of layers is
highly costly. For this reason, some recent investigations have studied
a homogeneous dielectric sphere as an alternative choice to the LL’s.
Possessing a less pronounced focusing at any selected frequency, this
simple spherical lens is advantageous when it is used as a wide-band
frequency lens. It was shown in [9] that, in some cases the radar cross
section (RCS ) spectral characteristics of the reflector attached to a
homogeneous sphere are superior those of based on the LL.

The objective of this paper is two-fold. The first objective,
similar to [9], is to study the competitiveness of the reflector based
on a homogeneous dielectric cylinder compared to that based on a
cylindrical LL. The second objective is to study the properties of
the backscattering when the incidence angle varies from that value
corresponding to normal incidence to that describing the grazing
incidence. This part of the investigation is of strong interest for
the corresponding 3D lens reflectors, because the dependence of RCS
versus incidence angle has not previously been studied in full. The
novelties of this paper are that the analysis is done with highly accurate
Method of Regularization (MoR) and it offers a fresh look at the
properties of these lenses in 2D analogue, in order to ascertain the
competitiveness of CLR and cylindrical LL reflector (CLLR) at varying
incident angle. The reflectors are treated as infinitely long in this
paper. According to [11], a finite cylinder can be approximated as an
infinitely long cylinder when its length is a lot larger than the radius
of the first Fresnel zone of the receiver; i.e., l À

√
rλ, where l is the

length of the cylinder, r is the range and λ is the wavelength.
The remainder of this paper is outlined as follows. First, we

describe the geometry of the reflectors and introduce the notation used.
Then in Section 3, we study the focusing effect of a constant-K lens at
different values of permittivity εr and electrical size D/λ (= k0R/π),
when illuminated by normal plane wave. The computed maximum
paraxial energy intensities lead us to the locations of the focal spots,
which is further used for proper placement of the strip to ensure the
optimal illumination by the focused electromagnetic flux. In Section 4,
we compare the effectiveness of the lenses based on the constant-K
lens or LL by studying the spectral dependence of the RCS in a wide
frequency range extending up to the quasi-optical region (D/λ ≈ 200).
The computations are done using the MoR, and the key steps of this
method are given in the Appendix. The principal benefit of the MoR



Progress In Electromagnetics Research B, Vol. 43, 2012 111

is its guaranteed accuracy for structures with sharp edges, secured by
the semi-analytic transform described in the Appendix. Finally, we
examine behaviour of the RCS depending on the incident angle of the
incoming plane wave in Section 5. Our conclusion appear in Section 6.

2. PROBLEM DESCRIPTION

Figure 1 gives the generic geometry of an infinitely long L-layered
cylinder with a PEC strip conformally placed on its surface. With
appropriate choice of parameters, this multilayered cylinder can be
considered as a CLR or CLLR. All the cylinders are assumed to be
parallel to the z-axis. The whole medium is divided by the L interfaces
of the multilayered cylinder into L+1 regions. The numbering system
used here is such that Region 0 denotes the scattering region external
to the cylinder (free space); while Region L denotes the innermost
dielectric loaded layer. Each of the regions is characterized by its
relative permittivity and permeability (εi, µi), for i = 1, . . . , L. The
infinitely thin PEC strip is attached to the cylinder at ρ = R1. We
use φ0 to denote the half-angular width subtended by the strip at the
centre. This cylinder is illuminated by a time harmonic plane wave
impinging normally on the z-axis, making an angle φinc with respect
to the x-axis at the centre. In this paper, only the detailed analysis for
the TM -case is given. The time dependence of e−jωt, where j =

√−1,

Figure 1. Cross-sectional view of a multilayered cylinder with an
attached conformal PEC strip.
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is assumed and omitted everywhere throughout the paper.
The CLR is a “two-layered” model of this general model, with

Region 0 and Region 1 sharing the same physical quantities (i.e.,
they are both free space) while Region 2 represents the homogeneous
dielectric lens. In other words, we have a concentric layer of air
surrounding the core dielectric cylinder. We use εr and µr to denote
the relative physical quantities of this dielectric lens, and R denotes
its radius. The PEC strip, which serves as a reflector, is placed at
ρ = R1. The location of the reflecting strip is carefully selected to lie
close to the spot where incoming plane wave is focused. This is done
by studying the energy distribution of the constant-K lens after the
impingement of the incident plane wave.

The LL is a dielectric lens with its permittivity varying with the
radius of the cylindrical lens. Its relative permittivity is given by the
well-known formula

ε(ρ) = 2−
(

ρ

R1

)2

, 0 ≤ ρ ≤ R1, (1)

where R1 is the radius of the LL. In this construction, the CLLR
focuses the plane wave to a point at its surface, where the strip
is located. From the manufacturing point of view, the CLLR is
approximated by a stepped-index dielectric lens — a special case of the
multilayered cylinder described where the permittivity of each layer is
specified by a discretization of (1).

The scattering problem involving either a CLR or a CLLR is
essentially a mixed boundary value problem at ρ = R1. For reasons
explained above, we employ the rigorous MoR instead of the more
widely used numerical methods like the Method of Moments. The
formulation of the problem and description are given in the Appendix.

3. FOCAL STUDIES OF A DIELECTRIC CYLINDRICAL
LENS

We consider the constant-K lens of radius R excited by the E-polarized
plane wave. The energy density distribution, W , resulting from the
plane wave scattering is studied using the classical exact series solution.
W is calculated using the following standard formula:

W =
1
2

{
ε0ε1

∣∣∣E(1)
z

∣∣∣
2
+ µ0µ1

∣∣∣H(1)
φ

∣∣∣
2
+ µ0µ1

∣∣∣H(1)
ρ

∣∣∣
2
}

. (2)

When regarded as a focusing device, the constant-K lens cylinder
exhibits huge aberrations which are more pronounced for electrically
large cylinders (i.e., those described by D/λ À 1). The ray-tracing
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technique shows that paraxial rays are focused at the focus point, F ,
outside the cylinder, and location of the relative focus distance, f , is
defined as:

f =
OF

OR
=

√
εr

2
(√

εr − 1
) , for 1 < εr ≤ 4 (3)

where O is the center of the lens. According to (3), the constant-K
lens with εr = 4 collects the paraxial rays at the point f = 1; i.e.,
conditional focal point lies exactly at the surface.

Simple GO in the paraxial regime indicates that a flat or curved
PEC placed exactly at the paraxial focus of the dielectric lens will
produce a collimated backscattered wave from a collimated incident
wave. If the PEC reflector, flat or curved, is placed away from the
lens focus, then the backscattered wave becomes decollimated. In this
paper, we consider the reflector to be concentric with the dielectric
lens, instead of a flat screen, not only because such structure is easily
adaptable to the solution method, but also because one of the goals
for our study, as stated previously, is the 2D analogue study of the
competitiveness of a constant-K lens reflector with varying incident
angle.

However, the constant-K lens or the step-indexed cylindrical LL
lens is not a perfect lens, non-paraxial rays always suffer aberration and
the wavelength is not zero as for GO. The use of the term “focus point”
at microwaves is somewhat tentative, since, in fact, each individual ray
passing the dielectric lens crosses the optical axis at a different point
inside some region called the “focal spot”. The characteristic size of
the focal spot is comparable with the wavelength [9]. In this section, we
restrict ourselves to the calculation of the value W across the optical
axis for the variation of intensity along the z-axis. The calculation
of W gives us the necessary information for further insight into the
energy distribution near the focal spot. More importantly, this defines
the location of the maximum energy, Wmax, across the focal spot for a
fixed electrical size D/λ. The dB-scaled value, 10 log10 W , is plotted
against the relative distance ρ/R in Figure 2.

We examine a few constant-K lenses made of material with
dielectric constant from εr = 2.1 (Polytetrafluoroethylene, PTFE) to
εr = 3.5 (fused quartz). According to (3), Wmax occurs at the points
ρ/R = 1.613 (when εr = 2.1) and ρ/R = 1.074 (when εr = 3.5). These
values may be called the GO focal points. However, at microwaves the
electrical size of a constant-K lens is always finite. When D/λ = 20, 50,
100 and 200, the calculations reveal significant discrepancies between
locations of the GO focal points and the actual locations ρ/R of
Wmax, for each values of D/λ. The chain of local maxima observed
as discussed below is actually an interference pattern observed along
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(a) (b)

(c) (d)

Figure 2. Distribution W across the optical axis of a constant-K
lens. (a) εr = 2.1, (b) εr = 2.4, (c) εr = 3.0, and (d) εr = 3.5, where
D/λ = 20 (dot-dashed, green), 50 (dotted, blue), 100 (dashed, red)
and 200 (solid, black).

the axis on one side of the cusp between the caustics. For constant-
K lens with εr = 2.1, these values are ρ/R = 1.361, 1.437, 1.480,
1.517, respectively, as shown in Figure 2(a). Similarly, when εr = 2.4
(in Figure 2(b)), the local maxima occur, respectively, at the points
ρ/R = 1.222, 1.277, 1.318, 1.340; when εr = 3.0 (in Figure 2(c)), the
local maxima occur at the points ρ/R = 1.081, 1.097, 1.122, 1.142,
respectively; when εr = 3.5 (in Figure 2(d)), they correspond to the
points ρ/R = 1.001, 1.009, 1.026, 1.038, relatively. Using formula (3),
one can find that estimated GO focal points lie at the points where
(ρ/R)GO = 1.613, 1.410, 1.183, 1.074, for εr = 2.1, 2.4, 3.0, 3.5,
respectively.

It is quite evident that the local maximum approaches the focus
predicted by the GO concept as the electrical size increases but
aberration is visible. Nevertheless, (ρ/R)max paraxial W are still far away
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(a) (b)

(c) (d)

Figure 3. Spatial EM energy density distribution due to presence of
the constant-K lens with εr = 2.1 and (a) D/λ = 5, (b) D/λ = 20, (c)
D/λ = 100, and (d) D/λ = 200.

from (ρ/R)GO. It is clear from Figures 3 and 4 that, instead of a
single focal point as predicted by simplified GO concept, the actual
energy distribution forms a chain of local maxima of nearly equal values
at higher frequencies (D/λ = 100, 200). The ideal location of the
reflector for optimal backscattering is calculated next section, taking
into account the discrepancies between ideal and actual structures.

Accurate knowledge of the distribution of W across the optical
axis is of paramount importance for optimal location of the PEC strip,
in order to maximize the backscattering phenomenon. The optimal
location is one of the necessary but not sufficient prerequisites forcing
the radiation to be effectively reflected. The optimal choice of the
angular size of the reflecting strip is equally important. The simplest
idea consists in overlapping of the focused beam entirely with the
strip, so that at least the Half Power Beam Width (HPBW ) of the
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(a) (b)

(c) (d)

Figure 4. Spatial electromagnetic energy density distribution due to
presence of the constant-K lens with εr = 3.5 and (a) D/λ = 5, (b)
D/λ = 20, (c) D/λ = 100, and (d) D/λ = 200.

focused radiation would not be larger than angular size of the strip.
The calculations of the spatial distribution W illustrated in Figures 3
and 4 show that it is sufficient to have cylindrical strip of the angular
half-width no less than 5◦, for maximal interception of the energy in a
wide range of constant-K lens with electrical size D/λ ranging from 5
up to 200.

4. CALCULATION OF BACKSCATTERING RCS

The objective of this section is to analyse the RCS behaviour of
a properly designed CLR in a wide frequency range. To obtain a
dimensionless measurement for studies, the backscattering RCS in dB-
scale, σB (dB), is normalized with respect to its GO value πR and
plotted against the electric size D/λ. All the computation of σB (dB)
for both the CLR and CLLR are based on solutions given by the MoR.
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Figure 5. Spectral dependence
of σB (dB) of a CLR (εr = 2.1)
with reflector (φ0 = 5◦) located at
ρ/R = 1.53 (dotted, black), 1.55
(solid, red) and 1.57 (dot-dashed,
blue), for φinc = 0◦.

Figure 6. Spectral dependence
of σB (dB) of a CLR (εr = 3.5)
with reflector (φ0 = 5◦) located at
ρ/R = 1.02 (dotted black), 1.04
(solid red) and 1.06 (dot-dashed
blue).

The values of σB (dB) against increasing D/λ are studied in order
to locate the optimal location for the reflecting strip. The results from
the study of paraxial energy density distribution, W , provide us with
a good initial estimate of this optimal location. The dependence of
σB (dB) for a CLR with reflector located in the vicinity of the focus
region is computed. The computed average values of σB (dB) over the
range D/λ ∈ (0, 200) at each reflector location (ρ/R) are compared
with each other. The dependences of σB (dB) at three locations
offering the three highest average values of σB (dB) are displayed in
Figure 5 (when εr = 2.1) and Figure 6 (when εr = 3.5). From these
two figures, we deduce that the optimal locations of the reflectors are
(ρ/R)max RCS = 1.55 (εr = 2.1) and (ρ/R)max RCS = 1.04 (εr = 3.5),
as measured by maximal average σB (dB) over this band.

We can see that when the reflecting strip is located away from the
optimal spot, more oscillations appear in the spectral dependence of
σB (dB). This phenomenon is particularly obvious in Figure 6 when
ρ/R = 1.02 (the black line). The deep null indicates the complex
interference between the reflector and the constant-K lens. To better
illustrate this phenomenon, the dependences of RCS for reflector
located away from this optimal location are displayed in Figure 7.
For practical application over a relatively wide band, the oscillation
in RCS values should be as small as possible relative to the average
values across the band. By this reason, behaviour as in Figure 7 is
undesirable. It reinforces the reason for choosing the optimal location
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Figure 7. Spectral dependence of σB (dB) of a CLR (εr = 3.5)
with reflector (φ0 = 5◦) located at away from the focus region; i.e.,
ρ/R = 1.01 (dotted black), 1.08 (dashed red) and 1.10 (solid blue).

Table 1. The optimal locations of the reflector according to the three
approaches, for the CLR with εr = 2.1, 2.4, 3.0 and 3.5. The second
column displays the focus distance calculated according to the GO
concept; the third column lists the four local maximal according to
the computed paraxial energy intensity; the last column gives the
location of the reflector that offers maximal average RCS over the
range D/λ ∈ (0, 200).

εr (ρ/R)GO (ρ/R)max paraxial W (ρ/R)max RCS

2.1 1.163 1.361, 1.437, 1.480, 1.517 1.55
2.4 1.410 1.222, 1.277, 1.318, 1.340 1.35
3.0 1.183 1.081, 1.097, 1.122, 1.142 1.15
3.5 1.074 1.001, 1.009, 1.026, 1.038 1.04

to be in the vicinity of the locations specified in the last column of
Table 1, which provides the summary of the optimal locations for
the strip based on the GO concept, the computed paraxial energy
intensity and the computed maximal backscattered RCS, for each of
the CLR with εr = 2.1, 2.4, 3.0 and 3.5. Therefore, to obtain the
maximum backscattering for a CLR, when εr = 2.1, 2.4, 3.0 and
3.5, the cylindrical strip is chosen to be placed at a relative distance
(ρ/R)max RCS = 1.55, 1.35, 1.15 and 1.04, respectively.

In addition, observing Figure 8, we conclude that the angular
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(a) (b)

Figure 8. Effect of angular size of the cylindrical strip on the σB (dB)
for CLR where φ0 = 5◦ (dotted, black), φ0 = 30◦ (dot-dashed, blue),
and φ0 = 60◦ (solid, red). (a) εr = 2.1, ρ/R = 1.55. (b) εr = 3.5,
ρ/R = 1.04.

Figure 9. Spectral dependence of σB (dB) of CLR with φ0 = 5◦ for
εr = 2.1 (dashed, red), 2.4 (solid, green), 3 (dot-dashed, blue) and 3.5
(dotted, black), where ρ/R = 1.55, 1.35, 1.15, 1.04 respectively.

width of the PEC strip does not have significant effect on the
reflectivity of the CLR. The comparative analysis of the spectral
dependence for CLR in Figure 9 also shows that the performance of
CLR with εr = 3.5 is marginally higher than those with εr = 2.1, 2.4
and 3.0. However, it is also worth noting that as εr increases, there
are more oscillations in the spectral dependence of σB (dB). For this
reason, the CLR with εr = 2.1 is preferred over those with higher εr.
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(a) (b)

Figure 10. Spectral dependence of σB (dB) of CLR for εr = 2.1 (solid
black), with those of CLLR with 3-(dotted green), 5-(dot-dashed blue)
and 7-(dashed red) layers. (a) φ0 = 5◦. (b) φ0 = 90◦.

Figure 10 illustrates the spectral dependence of σB (dB), when a
plane wave is incident normally (φinc = 0◦) on a cylindrical reflector,
and the strip is of total width 10◦ and 180◦, respectively. They compare
the performance of a CLR (εr = 2.1) with those of the L-layered
CLLR (constructed using stepped-index cylindrical LL). We can see
from these figures that, for a minimal strip of angular size 10◦, when
N = 3, the CLR outperforms the CLLR in the range D/λ > 20; when
N = 5, the CLR outperforms the CLLR in the range D/λ > 60; when
N = 7, the CLR outperforms the CLLR in the range D/λ > 115.
We have even better performance from the CLR when the strip size is
increased from 10◦ to 180◦. When the strip is of total width 10◦, the
dependence of RCS against the electric size has an oscillatory character
up to N = 7. As the strip size increases, more oscillations appear in the
spectral dependence RCS for CLLR, whereas for CLR, the behaviour
is still overall monotonic for both sizes of strip (10◦ and 180◦). From
our observations based on TM polarization, we draw the conclusion
that the CLLR can be replaced by the cheaper alternative of the CLR,
which offers reasonably high and smoother spectral dependence RCS
against the electric size.

5. RCS OF CLR AND CLLR VERSUS INCIDENCE
ANGLE φinc

From a general point of view, it is evident that the case of normal
incidence causes the most powerful reflection, as the incident plane
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wave illuminating the lens forms a focal spot right at the central part
of the reflector. As has been shown previously, the strip should extend
over the transverse size of a focal spot to provide strong reflection. We
can observe from Figures 3 and 4 that the characteristic transverse
size of a focal spot is about 1.0λ. Therefore, the geometrical size of
the reflector should be no less than this value. At the incidence angle
of value φinc = 90◦, there is no significant backscattering. This is
because from the GO concept, the entire surface of a strip is completely
shadowed. Thus, the effect of strong backscattering can be observed
only in the range.

A simple physical argument predicts the existence of a cut-off
incidence angle φcut-off

inc which defines the usable scanning range for the
incident angle φinc, where 0 ≤ φinc ≤ φcut-off

inc , so that a high value of
RCS is practically unchanged across the angular range. It is reasonable
to suppose that φcut-off

inc is that angle at which the right or left boundary
(depending on φinc) of the focal spot lies exactly at the sharp edge of
the reflector so that whole focal spot is covered by it. It is also clear
that workable range 0 ≤ φinc ≤ φcut-off

inc strongly depends on semi-width
of the reflector, φ0. We assume that diffraction effects are negligible.
Thus, to find the value φcut-off

inc we choose at the reflector surface the
point at which the distance to the edge equals the angular semi-width
of the focal spot; i.e., 0.5λ. Elementary algebra leads to:

φcut-off
inc = φ0 − sin−1

(
π

2k0

)
. (4)

According to (4), for φ0 = 15◦, k0R = 20π, and 100π as shown

(a) (b)

Figure 11. Comparison of σB (dB) against φinc for a CLR of
εr = 2.1 (solid, black), with those of CLLR with 3-(crossed-, purple),
5-(dot-dashed, green), 7-(dashed, blue) and 9-(dotted, red) layers when
φ0 = 15◦. (a) k0R = 20π. (b) k0R = 100λ.
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(a) (b)

Figure 12. Comparison of σB (dB) against φinc for a CLR of
εr = 2.1 (solid, black), with those of CLLR with 3-(crossed-, purple),
5-(dot-dashed, green), 7-(dashed, blue) and 9-(dotted, red) layers when
φ0 = 90◦. (a) k0R = 20π. (b) k0R = 100λ.

in Figure 11, we have φcut-off
inc = 13.56◦ and φcut-off

inc = 14.71◦. We can
see that these results for φcut-off

inc are in good agreement with accurate
numerical results. It should be noticed that the CLR provides more
stable dependence of RCS (φinc) compared to the CLLR, even though
the 5-, 7-, 9-layer CLLR exhibits a higher overall level of RCS when
k0R = 20π (Figure 11(a)). At higher frequency, where k0R = 100λ
(Figure 11(b)), the use of the CLR is preferable as its performance is
superior to that of 3-, 5-, 7-layer CLLR. More strictly, our argument
which led to an approximate formula for φcut-off

inc is reasonable only for
shallow and medium size reflectors (φ0 ≤ 45◦), otherwise, shielding
starts to occur as well as multiple reflections.

For wider reflectors, the situation is more complicated because
there are multiple reflections causing significant aberrations to the
shape of the focal spot. This results in a narrowing of the range
0 ≤ φinc ≤ φcut-off

inc (as shown in Figure 12). For example, it can be seen
from Figure 12(b) that, φcut-off

inc lies far from the angular semi-width of
the reflector, φ0 = 90◦. Again, as before, the scanning performance of
the CLR is preferable to that with the CLLR.

6. CONCLUSION

The mixed boundary value scattering problems involving the CLR and
CLLR are solved using the semi-analytic MoR. Accurate numerical
results are computed for the RCS of both lens reflectors in a broad
frequency band including not only the region of Rayleigh scattering
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(λ À R) and diffraction region (λ ≈ R), but also the quasi-optical
region (λ ¿ R). The RCS characteristics of the two reflectors
for incident angles varying from normal to grazing incident are also
computed. From the numerical results, we deduce that CLR with
lower dielectric constant εr are preferable to those with higher εr,
as wavelength dependent oscillations become too strong for higher
dielectric contrasts. We also observe that for higher frequencies, the
scanning performance of a CLR is superior to that provided by CLLR,
in the sense that the dependence of RCS has relatively less oscillations,
and is of higher average value over the range of D/λ ∈ (0, 200). The
performance of the CLR is also more stable across the incident angle
band. Coupled with the obvious manufacturing advantages of the
simpler structure, our studies strongly suggest the simpler lens design
is better.

APPENDIX A. THE METHOD OF REGULARIZATION
— FROM ILL-POSED DUAL SERIES EQUATIONS TO
SECOND KIND FREDHOLM MATRIX EQUATIONS

Because of the structure geometry, the electromagnetic fields are
expanded in terms of cylindrical wave functions. The plane wave
incident electric field can be expanded as

Einc
z (ρ, φ) = e−jk0ρ cos(φ−φinc) =

∞∑
n=−∞

(−j)nJn (k0ρ) ejn(φ−φinc). (A1)

We denote the total field then in Region i as:

E(i)
z =

∞∑
n=−∞

[
a(i)

n Hn(kiρ) + b(i)
n Jn(kiρ)

]
ejnφ. (A2)

In this formulation, notations a
(i)
n and b

(i)
n stand for unknown scattering

coefficients to be determined. Due to the Meixner condition and the
Sommerfeld radiation condition, we have b

(0)
n = (−j)ne−jnφinc and

a
(L)
n = 0. We are thus left with 2L unknown coefficients to be found.

Imposing the continuity of the tangential electric field components
on each of the interfaces ρ = R1, R2, . . . , RL, we are left with the
only unknown coefficient b

(1)
n to be solved from the mixed boundary

conditions on ρ = R1. The remaining coefficients can be found once
b
(1)
n is computed, using the following relations:

b(i−1)
n =

1

1− α
(i)
n

(
a(i−1)

n

Hn (ki−1Ri)
Jn (kiRi)

+ b(i−1)
n

Jn (ki−1Ri)
Jn (kiRi)

)
, (A3)
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α(i−1)
n =

ki−1

µi−1

J ′n(ki−1Ri)
Jn(ki−1Ri)

(
1− α

(i)
n

)
− ki

µi

(
J ′n(kiRi)
Jn(kiRi)

− α
(i)
n

H′
n(kiRi)

Hn(kiRi)

)

ki−1

µi−1

H′
n(ki−1Ri)

Hn(ki−1Ri)

(
1− α

(i)
n

)
− ki

µi

(
J ′n(kiRi)
Jn(kiRi)

− α
(i)
n

H′
n(kiRi)

Hn(kiRi)

)

× Jn (ki−1Ri)
Jn (ki−1Ri−1)

Hn (ki−1Ri−1)
Hn (ki−1Ri)

, (A4)

a(i−1)
n = − b(i−1)

n · α(i−1)
n · Jn (ki−1Ri−1)

Hn (ki−1Ri−1)
, (A5)

a(0)
n = b(1)

n

(
1− α(1)

n

)
· Jn (k1R1)
Hn (k0R1)

− Zn (k0R1)
Hn (k0R1)

, (A6)

for i = L, L − 1, . . . , 2 in descending order, with the starting value
α

(L)
n = 0. Here, the primes denote differentiation of the function with

respect to its argument.
As the tangential magnetic field is continuous across the dielectric

surface and the tangential electric field vanishes on the PEC strip, a
set of dual series equations (DSE ) is derived from this set of mixed
boundary conditions:

∞∑
n=−∞

cn ·
(
1− α(1)

n

)
ejnφ = 0, ∀ |φ| < φ0 (A7)

∞∑
n=−∞

(cnξn − d∗n)ejnφ = 0, ∀ |φ| > φ0 (A8)

where cn = bnJn(k1R1), d∗n = k0
µ0

(−j)ne−jnφinc(Jn(k0R1) · H′
n(k0R1)

Hn(k0R1) −
J ′n(k0R1)) and ξn = k0

µ0

H′
n(k0R1)

Hn(k0R1)(1−α
(1)
n )− k1

µ1
(J ′n(k1R1)

Jn(k1R1)− H′
n(k1R1)

Hn(k1R1)α
(1)
n ).

Due to the behaviours of Jn(z) and Hn(z), when n À z, we introduce
the following asymptotically small parameter:

rn = 1 +
R1µ0µ1

|n| (µ0 + µ1)
× ξn. (A9)

We can show that rn and α
(1)
n have the magnitude of order O((R2

R1
)2n)+

O(k1R1
n2 ) and O((R2

R1
)2n) as n →∞. Upon substitution of rn, the DSE

are converted to the following set

Ac0 +
∑

n 6=0

cn

(
1− α(1)

n

)
ejnφ = 0, ∀ |φ| < φ0 (A10)

Bc0 + d0 +
∑

n 6=0

(|n| cn (1− rn) + dn)ejnφ = 0, ∀ |φ| > φ0 (A11)
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where the constants introduced are A = −R1µ0µ1

µ0+µ1
(1 − α

(1)
0 ) and

B = −R1µ0µ1

µ0+µ1
ξ0, and the rescaled parameter is dn = R1µ0µ1

µ0+µ1
d∗n.

Meixner’s condition is required to ensure that the power contained
in any finite volume V is bounded. It is stated as

∫

V

(
1
2
ε0 |E|2 +

1
2
µ0 |H|2

)
dV < ∞. (A12)

By substituting the field expressions given in (6) and cn = bnJn(k1R1)
into (A12), Meixner’s condition leads to the correct choice of the
solution class for the field, which in turn provides the correct order of
singularity of the fields in the vicinity of sharp edges; i.e.,

∑
n

n|cn|2 <

∞.
We can see that, as n → ∞, the general terms of series in (A10)

and (A11) decay at rates O(n−3/2) and O(n−1/2), respectively. In
the key step of the regularization process, the slower converging
series (A11) is subjected to an integration operation to equilibrate the
rates of convergence of the DSE. The solution class,

∑
n

n|cn|2 < ∞,

provides sufficient condition for the justification for the termwise
integration operations, as (A11) is Abel-summable.

The first step of the MoR involves rewriting the DSE in terms of
Jacobi polynomials. By rescaling and levelling the convergence rates of
them, the DSE are then transformed into two independent sets of Abel
integral equations. The core of the method employs Abel inversion
formulas to obtain two decoupled infinite systems of linear algebraic
equations (ISLAE ) of the second kind Fredholm. The ISLAE are
solved by the truncation method and numerical matrix inversion. Due
to the limit of space, readers are referred to [12, 13] for more detailed
description of the MoR. The two ISLAE obtained have the following
matrix form:

(I + Hi) ~xi = ~bi, for i = 1, 2 (A13)

where ~x1 = {√n(cn + c−n)}∞n=1, ~x2 = {√n(cn − c−n)}∞n=1 are vectors
containing the unknown, I is the identity matrix operator on the
Hilbert space `2 and the right hand vector components are:

[
~b1

]
m

= −
√

2Ad0 (1 + z0)
B ln

(
1−z0

2

)−A

_

P
(0,1)

m−1(z0)
m

− (dm + d−m)√
m

+
∞∑

n=1

(dn + d−n)√
n

_

Rm−1,n−1(z0), (A14)
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[
~b2

]
m

= −(dm − d−m)√
m

+
∞∑

n=1

(dn − d−n)√
n

_

Q
(0,1)

m−1,n−1(z0). (A15)

Here, z0 = cosφ0,
_

P
(α,β)

n (z0) is the normalized Jacobi polynomials

and
_

Q
(α,β)

m,n (z0) is the incomplete scalar product of the corresponding
normalized Jacobi polynomials. We also introduce matrix operators
H1 and H2 to denote the compact part of each ISLAE :

Hi = −diag (rn)+Ai

[
diag (rn)− diag

(
α(1)

n

)]
, for i = 1, 2 (A16)

where the bounded part of each matrix operator is denoted as

{A1}m,n =
_

Rm−1,n−1(z0) =
_

Q
(1,0)

m−1,n−1(z0)

− B (1 + z0)
2

B ln
(

1−z0
2

)−A

_

P
(0,1)

m−1(z0)
m

_

P
(0,1)

n−1 (z0)
n

, (A17)

{A2}m,n =
_

Q
(0,1)

m−1,n−1(z0). (A18)

As rn, α
(1)
n → 0, as n →∞, the diagonal matrices involving them are

compact in `2. In addition, A1 and A2 can be shown to be bounded,

using the identity
_

Q
(α,β)

n,m (x) =
∞∑

k=0

_

Q
(α,β)

n,k (x)
_

Q
(α,β)

k,m (x). In fact, A2 is

idempotent and hence, a projection operator having norm at most
1. Consequently, both the matrix operators (I + H1) and (I + H2)
are Fredholm with index zero. As a result, the Fredholm alternative
theorem implies the solution existence and stability of the scattering
problem considered. The accuracy of the solution computed can be
controlled by altering the truncation number Ntr of the ISLAE. The
most notable feature of this approach and crucial for the accuracy
of our calculations is that the solution computed converges not only
theoretically, but also numerically to the exact solution of the ISLAE,
as Ntr →∞. Good results are obtained when Ntr > [k1R1] + 50.
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