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Abstract—In this paper, we propose a method based on evolutionary
computations for joint estimation of amplitude, Direction of Arrival
and range of near field sources. We use memetic computing in
which the problem starts with a global optimizer and ends up with
a local optimizer for fine tuning. For this, we use Genetic algorithm
and Simulated annealing as a global optimizer while Interior Point
Algorithm as a rapid local optimizer. We set up Mean Square Error
as a fitness evaluation function which defines an error between actual
and estimated signal. This fitness function is optimum and is derived
from Maximum likelihood principle. It requires only single snapshot
to converge and does not require any permutations to link it with the
angles found in the previous snapshot as in some other methods. The
efficiency and reliability of the proposed scheme is tested on the basis
of Monte-Carlo simulations and its inclusive statistical analysis.

1. INTRODUCTION

Estimating the parameters, especially Direction of Arrival (DOA) of
multiple electromagnetic waves is an important issue and is directly
applicable to radar, radio astronomy, mobile communication and
smart antennas [1, 2]. It is relatively easy to estimate the DOA of
waves impinging from far field sources because all the wave-fronts
are assumed to be plane waves. Many classical algorithms exist
for such case like MUSIC, ESPRIT, Maximum Likelihood (ML) and
Capon [3]. The situation becomes more complicated when the sources
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are in the Fresnel zone (Near field) of array aperture. In such
situations, the wave-front is no longer planar but is spherical and
the source location cannot be solely found by simply estimating the
angle. In this case, along with the angle, we also need to estimate
correctly the range of sources [4]. Hence, the techniques developed
for the estimation of far field sources cannot be applied directly to
estimate the DOA of near field sources. Near field situation can
occur in many practical situations such as, electronic surveillance,
seismic exploration, ultrasonic imaging, under water source localization
and speech enhancement with microphone arrays [5]. For joint
estimation of ranges and DOA, Maximum Likelihood (ML) method
was proposed first [6]. Later on an effort was made by using least
squares ESPRIT like algorithm based on fourth order cummulants but
this is computationally heavy [7]. In [8], a weighted linear prediction
method was proposed which needs additional computation to solve
pairing problem in the case of multiple sources but this can result in
inaccurate pairing at low Signal-to Noise (SNR) when arrival angles
are closely spaced.

In todays developments, no one can deny the significance of
evolutionary computational techniques such as Genetic algorithm
(GA), Particle Swarm Optimization (PSO), Genetic programming
(GP) and Differential evolution (DE) etc.. These techniques are
based on principle of biological evolution such as genetic inheritance
and natural selection. Among these evolutionary techniques, GA
received extra attention due to its simplicity in understanding, ease
in implementation and more importantly having less probability
of getting stuck in the presence of local minima. GA is being
successfully widely applied to a mixture of problems ranging from
handy applications in industry and commerce to leading-edge scientific
research. In many problems the efficiency and reliability of GA
significantly improves when it is hybridized with any other efficient
evolutionary computational technique such as Pattern Search (PS),
Active Set (AS) and Interior Point algorithm (IPA) etc. [9–11]. In [11],
the amplitude and DOA of far field sources impinging on L-type array
are jointly estimated and the performance of GA, PS and Simulated
Annealing (SA) is compared with the hybrid approach GA-PS and
SA-PS. For all these schemes Mean Square Error (MSE) is used as a
fitness evaluation function. In [12], the same MSE is used as a fitness
evaluation function with PSO for DOA estimation of far field sources
impinging on uniform linear array (ULA).

In this paper, we propose a method based on memetic computing
for joint estimation of amplitude, DOA and range of near field sources.
We use GA, IPA, SA, GA-IPA and SA-IPA in which GA and SA are
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used as global optimizers while IPA is used as a rapid local optimizer
for further fine-tuning. For this, we used MSE as a fitness evaluation
function which defines an error between actual and estimated signals.
This fitness function is optimum and is derived from ML. It has the
advantage of linking automatically the DOA estimated in the previous
snapshot to a current estimated DOA which is the main issue in
multiple targets tracking system [13]. Moreover, this fitness function
is real in nature, avoids any ambiguity between the angles that are
supplement to each other, requires only single snapshot to converge and
provides fairly good results even in the presence of low Signal to Noise
ratio (SNR). The efficiency and reliability of the proposed approach is
tested on the basis of large number of Monte-Carlo simulations and its
statistical analysis.

This paper is organized as follows: In Section 2, we have given
the data model, in Section 3, we discussed the proposed methodology
while Sections 4 and 5, are devoted for results and future work direction
respectively.

2. DATA MODEL

Consider P near field sources impinging on a passive uniform linear
array. This linear array consists of N = 2Nx sensors and having the
same inter-element spacing between the two consecutive elements as
shown in Fig. 1 [14].

We have assumed that the impinging wave is narrow band, zero
mean and having unit variance σ2

i . For this, our signal model on lth
sensor in the array can be written as,

xl =
P∑

i=1

si exp
(
j
(
αil + βil

2
))

+ ηl (1)

for l = −Nx + 1, . . . , 0, 1, . . . , Nx, where l = 0 is the phase reference
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Figure 1. Array geometry.



202 Zaman et al.

point of our co-ordinate system. The parameters αi and βi in (1) are
the function of elevation angle θi and range ri respectively of the ith
source. Mathematically it can be expressed as follow,

αi =
−2πd

λ
sin(θi)

and

βi =
πd2

λri
cos2(θi)

In matrix-Vector form (1) can be written as

x = As + η (2)

where

x = [x−Nx+1, . . . xo . . . xNx ]T

s = [s1, s2, . . . , sP ]T

η = = [η−Nx+1, . . . ηo . . . ηNx ]T

A = [a1,a2, . . . ,aP ]

where ai(θi, ri) = [exp(j(−Nx+1)αi+j(−Nx+1)2βi), . . . exp(j(−αi+
βi)), 1, exp(j(αi + βi)), . . . exp(j(Nxαi + N2

xβi))]T is the steering
vector. The goal of this paper is to estimate jointly the unknown
parameters, i.e., the amplitude (si), elevation angle (θi) and range (ri)
of the waves for i = 1, 2, . . . , P as given by (1).

3. PROPOSED METHODOLOGIES

In this section, flow diagram, brief introduction and parameter setting
of GA, IPA, SA, GA-IPA and SA-IPA is given for joint estimation of
amplitude, DOA and range of near field sources.

The Interior Point Algorithm (IPA), which is also called barrier
method, was invented by John von Neumann [15]. It is a certain class
of algorithms used for linear and non-linear optimization problems. It
reaches the optimum solution of the problem by going through the
feasible region of the problem rather than its surrounding [16].

Simulated Annealing (SA) technique is used for local and global
optimization problem. The main purpose of SA algorithm is to
proficiently locate the candidate solution in fixed amount of time. SA
has already got application in many engineering problems such as 3-D
face recognition problem, unit commitment problem and transmission
network expansion planning problem etc. [17, 18].

Genetic Algorithm (GA) belongs to a large family of evolutionary
computing which was first discovered by John. H. Holland in 1970 and
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is considered to be more reliable and efficient algorithm than any other
evolutionary technique. Due to ease in implementation, less probable
to get stuck in the presence of local minima, it has been widely used
in the field of soft computing, communication and especially in array
signal processing [19, 20].

The flow chart of GA and hybrid GA-IPA is shown in Fig. 2 while
the steps are given as follows.

Step 1 Initialization: Generate M number of particles at random
where each particle (chromosome) consists of unknown (genes), i.e.,
amplitude, DOA and range. The length of each particle (chromosome)
is 3 × P where P is number of sources. Mathematically, it can be
written as

bi = [si,1, . . . si,P , θi,P+1, . . . θi,2P , ri,2P+1, . . . ri,3P ]
= [bi1, . . . biP , bi,P+1, . . . , bi,2P , bi,2P+1, . . . bi,3P ]

where sij ∈ R : Ls ≤ sij ≤ Hs, ∀i = 1, 2, . . . , M , j = 1, 2, . . . , P ,
where Ls and Hs are the lowest and highest possible limits of the signal
amplitudes. Similarly, θij ∈ R : 0 ≤ θij ≤ π, ∀i = 1, 2, . . . , M , j =
P + 1, P + 2, . . . , 2P , and rij ∈ R : Lr ≤ rij ≤ Hr, ∀i = 1, 2, . . . , M ,
j = 2P + 1, 2P + 2, . . . , 3P , where Lr and Hr are the lowest and
highest possible limits of the source ranges.

Step 2 Fitness Evaluation: Calculate the fitness of each
chromosome by using the following fitness function

D(i) = (1/M)
M∑

l=1

∣∣xl − x̂k
l

∣∣2 (3)

This fitness function is derived from the Maximum likelihood, i.e.,

p(X/s, θ, r) =
1

(2πσ2
n)N

exp
(
−

(
1

2πσ2
n

∥∥∥X − Âŝ
∥∥∥

2
))

where the probability of X is to be maximized and conditioned on
s̄, θ̄, r̄. It is very obvious that to maximize p(X/s, θ, r), we need to

minimize
∥∥∥X − Âŝ

∥∥∥
2

which is actually our MSE (fitness function).

In (3) xl is given by (1) while x̂k
l is given by

x̂k
l =

P∑

k=1

bk exp
(
j
(
ω̂kl + φ̂kl

2
)

where

ω̂k =
−2πd

λ
sin

(
b̂P+k

)

φ̂k =
πd2

λrb,2P+k
cos2

(
b̂P+k

)
For k = 1, 2, . . . P.
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Step 3 Termination Criteria: The termination criteria of the
algorithm are made on the following results achieved, if the pre-defined
fitness value is achieved, i.e., 10−12 OR if the maximum numbers of
cycles have reached.

Step 4 Reproduction: Use the operators of Elitism, crossover,
and Mutation selection as shown in Tables 1 & 2, to mimic the new
population.

Step 5 Refinement : IPA algorithm is used for further refinement
of the results (Call FMINCON Function of MATLAB). The best
individual of GA and SA has been set as a preliminary point to IPA
algorithm.

Step 6 Storage: Store the global best of this cycle and repeat
the steps 2 to 5 for sufficient number of independent runs, which will
ultimately be used for better statistical analysis.

4. SIMULATION AND RESULTS

In this section, the accuracy and reliability of GA, IPA, SA, GA-
IPA, and SA-IPA are discussed for joint estimation of amplitudes,
DOAs, and Ranges of near field sources. A uniform aperture array
having N = 2Nx sensors is used in which the inter-element spacing
“d” between the two consecutive sensors is same, i.e., λ/4. MSE is
setup as a fitness evaluation function which is given by (3). Different
cases are discussed on the basis of different number of sources and
different number of sensors in the array. The proximity in terms of

Table 1. Parameters settings for GA and IPA.

GA  IPA 

Parameters Parameters

Population size 240 Chromosome size 30 

No of Generation 1000 Sub problem algorithm Idl factorization 

Migration Direction Both Way Maximum perturbation 0.1 

Crossover fraction 0.2 Minimum perturbation

 Crossover Scaling Objective & Constraint 
Function Tolerance 10−12 Hessian BFGS 

Initial range [0−1] Derivative type Central difference 

Scaling function Rank Penalty factor 100 

Selection uni Maximum function evaluation 50000 

Elite count 2 Maximum Iteration 1000 

Mutation function Adaptive feasible X Tolerance 10−15 

Heuristic 

Stochastic form

SettingSettings

1e -8
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Table 2. Parameters settings for SA.

SA
Parameters Settings
Annealing Function Fast
Reannealing interval 100
Temperature update function Exponential temperature update
Initial temperature 100
Data type Double
Function Tolerance 10–12
Max iteration 1000
Max function evaluations 3000∗ number of variables

angular separation, distance and signal level is also examined for GA-
IPA. All the values of DOA are taken in radians while the values of
ranges are taken as a multiple of wavelength (λ). A MATLAB built-
in toolbox “optimization of population” based algorithm is used with
the setting shown in Tables 1, 2 and a MATLAB version 7.8.0.347.
Throughout the simulations, only a single snapshot is used and each
result is averaged over 50 independent runs.

4.1. Case I

In this case, the accuracy of all techniques is discussed for two sources
and eight sensors in the (ULA). The amplitudes, DOAs and ranges of
these two sources are denoted by s1, s2, θ1, θ2, r1, r2 respectively.
Actual values are taken as s1 = 1, s2 = 2, θ1 = 0.6981 (rad),
θ2 = 1.2217 (rad), r1 = 3λ, r1 = 4λ where as s1, θ1, r1, correspond to
the first source while s2, θ2, r2, correspond to the second source. As
shown in Table 3, all the five schemes produced fairly good estimates,
however, among these techniques, the hybrid GA-IPA gives better
results. The second and third best results is given by GA and IPA
respectively for the same said problem.

Now, the reliability of all schemes in terms of their MSE and
convergence rate (reliability) is discussed for increasing number of
sensors in the array. By convergence, we imply the percentage of
total number of times, a particular technique achieves the actual values
under the same condition. For this purpose, 10−2 is used as a threshold
MSE value. Initially, the array consists of four sensors for which the GA
converges 90% with MSE 10−5 as shown in Table 4. The convergence
and MSE of GA improve when it is hybridized with IPA which has
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Figure 2. Generic flow diagram of intelligent hybrid computing

Table 3. Amplitude, DOA and range of two sources.

Scheme s1 s2 θ1 (rad) θ2 (rad) r1λ r2λ

Actual
values

1.0000 2.0000 0.6981 1.2217 0.3000 4.0000

GA 1.0024 2.0026 0.7006 1.2243 0.3025 4.0027
IPA 1.0088 2.0089 0.7069 1.2306 0.3088 4.0089

GA-IPA 1.0015 2.0015 0.6996 1.2232 0.3015 4.0015
SA 1.0206 2.0205 0.7187 1.2423 0.3206 4.0207

SA-IPA 1.0104 2.0105 0.7089 1.2326 0.3104 4.0106
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Table 4. MSE and % convergence of two sources for different number
of sensors.

Elements
Scheme MSE % Convergence

Elements
Scheme

 
MSE % Convergence

4 GA 10   90 8

 

GA 10   92  
IPA 10   40  IPA 10  45 

GA-IPA 10   93  GA-IPA 10  95 
SA 10    10   SA 10   13  

SA-IPA 10    30    SA-IPA 10   34  

6 GA 10   92 10 GA 10  93 
IPA 10   42  IPA 10  48 

GA-IPA 10   94  GA-IPA 10  96 
SA 10   11  SA 10  14 

SA-IPA  10    32   SA-IPA 10   35  

-5

-3
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No. of No. of 

Table 5. Amplitude, DOA and range of three sources.

Scheme  
 

   
 

 

   
 

  (rad)

Actual  1.0000  2.0000  3.0000 0.8727 1.3963 1.9199 4.0000  5.0000  6.0000

GA 1.0084  2.0083  3.0083 0.8811 1.4047 1.9283 4.0083  5.0084  6.0083

IPA 1.0548  2.0548  3.0547 0.9275 1.4511 1.9747 4.0548  5.0548  6.0548

GA-IPA 1.0058  2.0057  3.0058 0.8785 1.4021 1.9257 4.0058  5.0057  6.0058

SA 1.0883  2.0883  3.0884 0.9610 1.4846 2.0082 4.0883  5.0884  6.0883

SA-IPA 1.0810  2.0811  3.0811 0.9537 1.4773 2.0009 4.0810  5.0810  6.0811

s1 s2 s3 θ1 θ θ2 3 (λ)r1 r3r2 (λ) (λ)(rad)(rad)

convergence rate 93% with MSE 10−6. Similarly, one can see that
convergence and MSE of SA algorithm improve when it is hybridized
with IPA which has 30% convergence with MSE 10−4. The convergence
and MSE of all schemes slightly improve when the number of sensors
are increased in the array.

4.2. Case II

In this sub-section, the performance of all five techniques is evaluated
for three sources. As shown in Table 5, the actual values are s1 = 1,
s2 = 2, s3 = 3, θ1 = 0.6981 (rad), θ2 = 1.3090 (rad), θ3 = 2.0944 (rad),
r1 = 5λ, r2 = 6λ, r3 = 7λ. In this case, with the increase of sources
(unknown), we faced few local minima due to which the accuracy of
all schemes degrade slightly. However, the hybrid GA-IPA proves to
be the best among all these techniques even in the presence of local
minima. The second best is GA.

Now, the reliability and MSE of all schemes are discussed for three
sources. As shown in Table 6, the GA-IPA converges many times and
has minimum MSE as compared to the other schemes. It converges
85% with MSE 10−5. The second best is GA which converges 80%
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Table 6. MSE and % convergence of three sources for different number
of sensors.

No. of Elements Scheme MSE % Convergence No. of Elements Scheme MSE % Convergence

6 GA 10  80 10  GA 10   84 

IPA 10  25  IPA 10   35 

GA-IPA 10   85   GA-IPA 10   88 

SA 10   0  SA 10   0 

SA-IPA 10   4   SA-IPA 10   8  

8 GA 10   82  12  GA 10   85 

IPA 10   28   IPA 10   36 

GA-IPA 10   88   GA-IPA 10   90 

SA 10   0  SA 10   5 

SA-IPA  10  5   SA-IPA 10   10 
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Table 7. Amplitude, DOA and range of four sources.

Scheme 

Actual  1.0000  2.0000  3.0000  4.0000  0.6981 1.3090  2.0944  2.7925  5.0000 6.0000  7.0000 8.0000

GA 1.0183  2.0184  3.0183  4.0183  0.7161 1.3274  2.1127  2.8107  5.0183 6.0183  7.0184 8.0182

IPA 1.0445  2.0446  3.0445  4.0445  0.7427 1.3537  2.1391  2.8371  5.0445 6.0445  7.0445 8.0445

GA-IPA 1.0103  2.0104  3.0102  4.0103  0.7083 1.3194  2.1047  2.8028  5.0103 6.0104  7.0103 8.0103

SA 1.1273  2.1274  3.1272  4.1273  0.8254 1.4362  2.2218  2.9199  5.1273 6.1272  7.1273 8.1274

SA-IPA 1.0232  2.0234  3.0231  4.0235  0.7213 1.3322  2.1176  2.8157  5.0232 6.0232  7.0233 8.0232

 (rad)s1 s2 s3 θ1 θ θ2 3 (λ)r1 r3r2 (λ) (λ)(rad)(rad)s4
 (rad)θ4 r (λ)4

with MSE 10−4. The effect of increasing the sensors in the array is
also shown due to which the convergence and MSE of all these schemes
slightly improve.

4.3. Case III

In this sub-section section, the accuracy of four sources impinging on
ULA is discussed. The actual values are considered as s1 = 1, s2 = 2,
s3 = 3, s3 = 4, θ1 = 0.6981 (rad), θ2 = 1.3090 (rad), θ3 = 2.0944 (rad),
θ4 = 2.7925 (rad), while r1 = 5λ, r2 = 6λ, r3 = 7λ, r4 = 8λ. In
this case, we faced even more strong local minima as compared to
the previous case. Due to the presence of these strong local minima,
the accuracy of all techniques despoiled. GA got stuck little in these
local minima which are the inherent ability of GA and its performance
improves more when it is hybridized with IP as shown in Table 7.

Now, the reliability (convergence rate) of these techniques is
discussed for four sources. Even in this case, the hybrid approach
GA-IPA converges many times towards the actual values. It converges
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Table 8. MSE and % convergence of four sources for different number
of sensors.

No. of Elements Scheme MSE % Convergence No. of Elements Scheme MSE % Convergence

8 GA 10   60 12  GA 10   65 

IPA 10
  

4  IPA 10   5 

GA-IPA 10
  

70  GA-IPA 10   77 

SA 10
  

0  SA 10   0 

SA-IPA 10
  

1   SA-IPA 10   2  

10  GA 10
  

62 14  GA 10   70 

IPA 10   4  IPA 10   6 

GA-IPA 10   74  GA-IPA 10   80 

SA 10   0  SA 10   0 

SA-IPA  10   1  SA-IPA 10   2 
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70% with MSE 10−5 for eight sensors in the ULA. The GA converges
60% with MSE 10−4. However, the performance of IPA, SA-PS and
SA is drastically despoiled in the presence of local minima. As shown
in Table 8, The IPA alone gets out only four times from these local
minima while the SA does not avoid the local minima even for a single
time. The effect of increasing elements is also considered due to which
GA-IPA, GA and SA-IPA improve slightly. All these techniques failed
when the number of sensors in the array is less than the number of
sources as it becomes an under-determined problem.

As obvious from the previous discussion, GA-IPA proved to be
the best technique as compared to GA, IPA, SA and SA-IPA, so from
now onwards our discussion will be limited only to GA-IPA. Now, we
discussed the proximity in terms of amplitudes, angular separation
and ranges of three sources and eight sensors in the ULA. The actual
values of amplitudes, DOAs and ranges for all the below cases are
taken as s1 = 1, s2 = 3, s3 = 5, θ1 = 0.5236 (rad), θ2 = 1.2217 (rad),
θ3 = 2.2969 (rad), r1 = 0.5λ, r2 = 4λ, r3 = 7λ respectively. No noise
is considered in the system and 10−2 is taken as threshold MSE value.

4.4. Case IV

In this sub-section, the behavior of GA-IPA technique is discussed for
the amplitudes proximity. Every time, only the values of amplitudes
are changed while the values of DOA and ranges are left unchanged.
As shown in Table 9, the performance of GA-IPA in terms of accuracy,
MSE and convergence rate degrades especially when the amplitudes
are very close to each others. However, the GA-IPA is robust enough
even to produce fairly good results for proximity of amplitudes.
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Table 9. GA-IPA for amplitude proximity.

                                         

              1.0000  3.0000  5.0000 0.5236 1.2217 2.2689 0.5000 4.0000  7.0000  

                1.0054  3.0053  5.0054 0.5290 1.2270 2.2743 0.5054 4.0053  7.0053  10   89%  
              1.0000  2.0000  5.0000 0.5236 1.2217 2.2689 0.5000 4.0000  7.0000  

                1.0058  2.0058  5.0054 0.5291 1.2272 2.2744 0.5055 4.0054  7.0053  10   88%  
              1.0000  1.5000  5.0000 0.5236 1.2217 2.2689 0.5000 4.0000  7.0000  

                1.0061  1.5062  5.0057 0.5293 1.2274 2.2745 0.5056 4.0056  7.0055  10   86%  
              1.0000  1.5000  2.0000 0.5236 1.2217 2.2689 0.5000 4.0000  7.0000  

                1.0065  1.5067  2.0067 0.5295 1.2276 2.2747 0.5058 4.0059  7.0057  10   84%  

Autual Values
Estimated Values

Autual Values

Estimated Values

Autual Values

Estimated Values

Autual Values

Estimated Values

-6

-6

-6

-5

MSE Convergences1 s2 s3 θ1 θ θ2 3 r1 r3r2

Table 10. GA-IPA for DOA proximity.

1.0000  3.0000  5.0000 0.5236 1.2217 2.2689 0.5000 4.0000  7.0000  

1.0054  3.0053  5.0054 0.5290 1.2270 2.2743 0.5054 4.0053  7.0053  10   89%  

1.0000  3.0000  5.0000 0.5236 0.8727 2.2689 0.5000 4.0000  7.0000  

1.0055  2.0054  5.0055 0.5291 0.8782 2.2744 0.5055 4.0054  7.0054  10   88%  

1.0000  3.0000  5.0000 0.5236 0.6981 2.2689 0.5000 4.0000  7.0000  

1.0056  3.0056  5.0057 0.5296 0.7042 2.2747 0.5056 4.0056  7.0055  10   85%  

1.0000  3.0000  5.0000 0.5236 0.6458 0.7854 0.5000 4.0000  7.0000  

1.0058  1.5058  2.0059 0.5303 0.6527 0.7924 0.5058 4.0059  7.0057  10   83%  

                                

        

      

        

      

        

      

Autual Values
Estimated Values

Autual Values

Estimated Values

Autual Values

Estimated Values

Autual Values
Estimated Values

MSE Convergences1 s2 s3 θ1 θ θ2 3 r1 r3r2

-6

-6

-6

-5

4.5. Case V

In this case, the role of GA-IPA is examined for DOA proximity in
terms of accuracy, MSE and convergence rate. Each time, only the
values of DOAs are changed while keeping the values of amplitude and
ranges unchanged. The number of local minima increases, as soon as
we brought the DOA close to each other. Due to these local minima
the accuracy, MSE and convergence rate degrade, especially when the
values of DOA are very close to each others. However, the GA-IPA is
still robust enough to produce fairly good results even in this case also
as shown in Table 10.

4.6. Case VI

In this sub-section, we examined the proximity of ranges. Each
time the values of amplitudes, DOAs are kept same while changing
the values of ranges only. Again one can see from Table 11, the
performance of GA-IPA affected slightly in terms of accuracy, MSE
and convergence when the values of ranges are kept close to each other.

4.7. Case VIII

In this sub-section, the GA-IPA is all together examined for the
proximity of amplitudes, DOA and ranges. In this case, more strong
local minima arises due to the simultaneous proximity of amplitude,
DOA and Ranges. As a result the performance of GA-IPA degrades
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Table 11. GA-IPA for range proximity.

1.0000  3.0000  5.0000 0.5236 1.2217 2.2689 0.5000 4.0000  7.0000  

1.0054  3.0053  5.0054 0.5290 1.2270 2.2743 0.5054 4.0053  7.0053  10   89%  

1.0000  3.0000  5.0000 0.5236 1.2217 2.2689 0.5000 2.0000  7.0000  

1.0055  2.0054  5.0055 0.5292 1.2273 2.2744 0.5059 2.0057  7.0054  10   88%  

1.0000  3.0000  5.0000 0.5236 1.2217 2.2689 0.5000 2.0000  2.5000  

1.0056  3.0055  5.0056 0.5293 1.2275 2.2745 0.5061 4.0063  2.5062  10   87%  

1.0000  3.0000  5.0000 0.5236 1.2217 2.2689 0.3000 0.9000  1.6000  

1.0057  3.0056  5.0057 0.5295 1.2277 2.2749 0.3070 0.9071  1.6072  10   85%  

                          

        

      

        

      

        

      

Autual Values
Estimated Values

Autual Values

Estimated Values

Autual Values

Estimated Values

Autual Values
Estimated Values

MSE Convergences1 s2 s3 θ1 θ θ2 3 r1 r3r2

-6

-6

-6

-5

Table 12. GA-IPA for amplitudes, DOA and ranges proximity.
 

 
      (rad)s1 s2 s3 θ1 θ θ2 3 (λ)r1 r3r2 (λ) (λ)(rad)(rad)

1.000 0 3.000 0 5.000 0 0.5236 1.2217 2.2689 0.500 0 4.000 0 7.000 0
1.005 4 3.005 3 5.005 4 0.5290 1.2270 2.2743 0.505 4 4.005 3 7.005 3 10   89% 

1.000 0 1.500 0 5.000 0 0.5236 0.6981 2.2689 0.500 0 4.000 0 4.500 0

1.006 5 1.506 6 5.005 6 0.5302 0.7049 2.2748 0.506 0 4.006 7 4.006 8 10   85% 

1.000 0 1.500 0 2.000 0 0.5236 0.6458 0.7854 3.000 0 3.600 0 4.200 0

1.008 6 1.508 5 2.008 5 0.5333 0.6565 0.7952 3.008 7 3.608 9 4.208 8 10   80% 
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Figure 3. Mean square error vs signal to noise ratio.

more as compared to the previous discussed cases. However, as one
can see from Table 12, that even in this case, the GA-IPA acts
well to produce fairly good results for the simultaneous proximity of
amplitude, DOA and Ranges of three sources.

4.8. Case IX

In this section, we examined the robustness of all schemes against noise.
In this case, two sources and eight sensors are considered. The MSE of
all five schemes is evaluated against the different values of SNR ranging
from 30 dB to 5 dB. As shown in Fig. 3, the hybrid approach GA-IPA
is fairly robust even in the presence of low SNR. The second best is
GA. Which gives minimum MSE against the different values of SNR.
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5. CONCLUSION AND FUTURE WORK

In this work, we propose a method based on memetic computing for the
joint estimation of amplitude, DOA and range of near field sources. In
this regard, the performance of five techniques have been discussed, i.e.,
GA, IPA, SA, GA-IPA and SA-IPA. Among these five techniques, the
hybrid approach GA-IPA produces fairly better results as compared to
GA, IPA, SA and SA-IPA. MSE is used as a fitness evaluation function
which is optimum and requires only a single snapshot to converge. All
the above mentioned schemes fail when the number of sensors in the
array is less than the number of sources. In future, we will use the
same approach for three-dimensional arrays.
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