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Abstract—PEMC medium is a special type of metamaterial which
generalizes the pre-existing concepts of perfect electric conductor
(PEC) and perfect magnetic conductor (PMC). PEMC medium is
described by a special parameter named as admittance which decides
the nature of medium as PEC or PMC. Electromagnetic fields scattered
by a PEMC sphere are investigated theoretically. A Hertz dipole as
a source of excitation is considered. Co-polarized and cross-polarized
components of the scattered fields are taken into consideration. A
general solution of fields scattered by the PEMC sphere has been
sought.

1. INTRODUCTION

The concept of perfect electromagnetic conductor (PEMC) was
introduced a few years ago. Lindell and Sihvola proposed a
generalization of the perfect electric conductor (PEC) and perfect
magnetic conductor (PMC) as perfect electromagnetic conductor
(PEMC) [1]. In order to solve the problems involving PEMC structures
Lindell and Sihvola introduced the transformation method [2]. At the
same time they worked for the realization of PEMC boundary [3]. By
this realization, the PEMC surface was proved to be a perfect reflector
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for electromagnetic energy. Both these pioneers also discussed possible
applications of this newly introduced concept [4] and the reflection
and transmission from the PEMC interface [5]. In light of all this
work it is accepted by the past & recent researchers that perfect
electromagnetic conductors (PEMC) are metamaterials that possess
special properties which are not usually observed in nature. Due to
this reason, the field of study of perfect electromagnetic conductors
(PEMC) has fascinated the interest of many scientists. In recent times,
much theoretical research work has been done in the study of PEMC.
Hussain discussed the comparison of PEMC with fractional duality [6]
and fractional waveguide [7]. Previous methods for the calculation of
fields in different regions and with different apparatus considerations
were also implemented for PEMC material [8–11].

It is well known that PEC has following boundary conditions

n×E = 0, n ·B = 0 (1)

while PMC boundary may be defined by the conditions

n×H = 0, n ·D = 0 (2)

At the surface of a PEMC, boundary conditions are of more general
form and can be read as

n× (H+ME) = 0, n · (D−MB) = 0 (3)

where M denotes the admittance of the PEMC boundary and n is the
unit normal vector. It is obvious from above boundary conditions that
PEMC corresponds to the PMC when M = 0, while it corresponds to
the PEC for M → ±∞.

In order to fulfill the boundary conditions, co-polarized as well
as cross-polarized field components are required to represent the field
and as a result PEMC is found as a non-reciprocal feature. When
PEMC material is represented in differential form, it is found as the
simplest probable medium [12]. It has been verified theoretically that
a PEMC material acts as a perfect reflector of electromagnetic waves.
The difference between PEMC and PMC or PEC is that the reflected
wave has a cross-polarized component. This non-reciprocal effect of
the PEMC medium has been established for the planar, cylindrical and
spherical geometries. Scattering of electromagnetic field by different
geometries of PEMC material and different conditions and situations
has been studied time to time. Two main geometries discussed
by most of the researchers in the topic of scattering are circular
cylinder [13–22] and sphere [23–29]. We have studied scattering of
electromagnetic waves from a PEMC sphere. In real sense as used
in practical applications, there exist two sources of excitation which
can be treated as the basic sources. One is the electric source and
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second the magnetic source. The simplest form of electric source is
electric dipole and of magnetic source is magnetic dipole [30]. The
source of excitation for the sphere in our case is a Hertz dipole. The
study of scattering of electromagnetic radiation from a sphere has
found its applications in many recent scientific fields such as biomedical
applications involving (a) implantations inside the human head for
hyperthermia or biotelemetry as well as excitation of the human brain
by the neuron’s current, (b) modeling of the interaction between
different antennas and the human head in order to seek important
information about the biological effects of electromagnetic radiation
and (c) analysis of biological phenomena at the cell level of living
organisms, e.g., investigations of biological cells involving a central
spherical nucleus. The space communication is also concerned with
the scattering of electromagnetic waves from different planets and other
space probes and objects.

2. PEMC SPHERE ILLUMINATED BY HERTZ DIPOLE

Consider a PEMC sphere of radius a, which is a scattering body, in
this case as shown in the Figure 1. If the radius of the PEMC sphere
is considered very small as compared to the wavelength, the fields
falling on the PEMC sphere can be approximated as plane wave. This
approximation is known as Raleigh approximation.

In case of validation of Raleigh approximation, the fields scattered
by the PEMC sphere can be approximated as the fields radiating from
a point source with a dipole moment directed along the direction of
incident field [23]. Let this sphere is located at the origin of the
spherical coordinates system. The electromagnetic field incident on
the sphere is those, of a Hertz dipole located at P (r′, θ′, φ′) in radial
direction. It is assumed that the dipole is parallel to the axis of sphere.
Our interest is to find scattered field at an arbitrary observation point
R(r, θ, φ). It is assumed the medium surrounding PEMC sphere is
free space having constructive parameters µ0 and ε0.

The radiated field due to a dipole may be obtained by introducing
the vector potentials, i.e., magnetic vector potential A for electric
dipole and electric vector potential F for magnetic dipole [14].

The vector potentials and fields are related as [31]

B = ∇×A, E = −jω

[
A +

1
k2

∇∇ ·A
]

(4)

E = − 1
ε0

∇× F, H = −jω

[
F +

1
k2

∇∇ · F
]

(5)

To find out the fields scattered by the sphere, the equation in terms of
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Figure 1. PEMC sphere as a scattering body illuminated by a hertz
dipole which is in radial direction.

radial component of electric Hertz vector is as follows:
(∇2 + k2

)
πer = − Jr

jωεr
(6)

where πer represents the radial component of electric Hertz vector. For
a short Hertz dipole

Jr = I0dlδ
(
r− r′

)
(7)

The incident and scattered components of the fields are found in the
form of appropriate products of Bessel/Hankel functions and Legendre
polynomials and applying boundary conditions.

In case of Hertz dipole incident electric field can be found as under:

E = EA + EF (8)
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where Electric field in terms of magnetic vector potential A can be
written as

EA = −jωA− j
1

ωµ0ε0
∇ (∇ ·A) (9)

Magnetic field of the dipole can be written as

H = HA + HF (10)

where magnetic field in terms of magnetic vector potential A can be
written as

HA =
1
µ0

∇×A (11)

Electric and magnetic fields in terms of their components are as follows

EA = Er îr + Eθ îθ + Eφîφ, HA = Hr îr + Hθ îθ + Hφîφ (12)

For spherical coordinates

∇×A =
1

r sin θ

[
∂

∂θ
(Aφ sin θ)− ∂Aθ

∂φ

]
îr+

1
r

[
1

sin θ

∂Ar

∂φ
− ∂

∂r
(rAφ)

]
îθ

+
1
r

[
∂

∂r
(rAθ)− ∂Ar

∂θ

]
îφ (13)

∇A =
1
r2

∂

∂r

(
r2Ar

)
+

1
r sin θ

∂

∂θ
(Aθ sin θ) +

1
r sin θ

∂Aφ

∂φ
(14)

∇ϕ =
∂ϕ

∂r
îr +

1
r

∂ϕ

∂θ
îθ +

1
r sin θ

∂ϕ

∂φ
îφ (15)

For a short electric dipole located at (r′, θ′, φ′) and directed along
z-axis, magnetic vector potential is given by [23]

Az =
µ0I0dl

4π

e−jk|r−r′|

|r− r′| (16)

Radial and theta components of magnetic vector potential are as [23]

Ar =
jkµ0I0dl cos θ

4π
h

(2)
0

(
k

∣∣r− r′
∣∣) (17)

Aθ =
jkµ0I0dl sin θ

4π
h

(2)
0

(
k

∣∣r− r′
∣∣) (18)

where

h
(2)
0

(
k

∣∣r− r′
∣∣) =

∞∑

n=0

(2n + 1)h(2)
n

(
kr′

)
jn (kr) Pn (cos γ) (19)
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&

Pn (cos γ)=
n∑

m=1

∞∑

n=0

2 (n−m)!
(n + m)!

Pm
n (cos θ) Pm

n

(
cos θ′

)
cosm

(
φ−φ′

)
(20)

In above equations, h
(2)
n (. . .) is Hankel function of second kind and

Pm
n (. . .) is associated Legendre’s polynomial.

3. ELECTRIC FIELD

3.1. Incident Electric Field Components

Using Equations (9), (12), (14) & (15) radial component of incident
electric field Ei

r can be expressed as

Ei
r = −jωAr − j

1
ωµ0ε0

∂

∂r

[
1
r2

∂

∂r

(
r2Ar

)
+

1
r sin θ

∂

∂θ
(Aθ sin θ)

]
(21)

Putting the values of Ar & Aθ from Equations (17) & (18) in above
equation we get

Ei
r =

jkµ0I0dl

4π

[
−jω cos θh

(2)
0

(
k

∣∣r− r′
∣∣)

−j
1

ωµ0ε0

∂

∂r

{
1
r2

∂

∂r

(
r2 cos θh

(2)
0

(
k

∣∣r− r′
∣∣)

)

+
1

r sin θ

∂

∂θ

(
sin2θh

(2)
0

(
k

∣∣r− r′
∣∣)

)}]
(22)

Using Equations (19) & (20) in above equation, the radial component
of incident electric field Ei

r becomes

Ei
r =

kI0dl cos θ

4πωr2ε0
h

(2)
0

(
k

∣∣r− r′
∣∣) [

r2ω2ε0µ0

+
r2j′′n (kr) + Rn

jn (kr)

(
4 + tan θ

(
Pm′

n (cos θ)
Pm

n (cos θ)

))]
(23)

where

Rn = rj′n (kr)− jn (kr) (24)

In above equation, jn(kr) is Bessel’s function of first king and j′n(kr)
is its first derivative.

Again using Equations (9), (12), (14) & (15), however now for
theta component of incident electric field Ei

θ

Ei
θ = −jωAθ − j

1
ωµ0ε0

1
r

∂

∂θ

[
1
r2

∂

∂r

(
r2Ar

)
+

1
r sin θ

∂

∂θ
(Aθ sin θ)

]
(25)
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Putting the values of Ar & Aθ from Equations (17) & (18) in above
we get

Ei
θ =

jkµ0I0dl

4π

[
−jω sin θh

(2)
0

(
k

∣∣r− r′
∣∣)

−j
1

ωµ0ε0

1
r

∂

∂r

{
1
r2

∂

∂r

(
r2 cos θh

(2)
0

(
k

∣∣r− r′
∣∣)

)

+
1

r sin θ

∂

∂θ

(
sin2θh

(2)
0

(
k

∣∣r− r′
∣∣)

)}]
(26)

Using Equations (19) & (20) in above equation, the radial component
of incident electric field Ei

r becomes

Ei
θ =

kµ0I0dl sin θ

4π
h

(2)
0

(
k

∣∣r − r′
∣∣)

[[
ωµ0 +

1
r2ωε0

{
1

Pn (cos γ)(
∂2

∂θ2 Pn (cos γ)
)

+
(

∂

∂θ
Pn (cos γ)

)
cot θ

Pn (cos γ)

+
(

3 +
Tn

jn (kr)

)((
∂

∂θ
Pn (cos γ)

)
cot θ

Pn (cos γ)
− 1

)}]]

Above equation can also be written as

Ei
θ =

kµ0I0dl sin θ

4π
h

(2)
0

(
k

∣∣r − r′
∣∣)

[[
ωµ0 +

1
r2ωε0

{(
Pm′′

n (cos θ)
Pm

n (cos θ)

)
+

(
Pm′

n (cos θ)
Pm

n (cos θ)

)
cot θ

+
(

3 +
Tn

jn (kr)

)((
Pm′

n (cos θ)
Pm

n (cos θ)

)
cot θ − 1

)}]]

where

Tn = rj′n (kr) + jn (kr) (27)

3.2. Scattered Electric Field Components

Let us suppose that electric hertz vector in radial direction πs
er can be

written as

πs
er =

I0dl

jωεr′

∞∑

n=0

anh(2)
n (k1r)Pn (cos γ) (28)

Now scattered radial component of electric field can be expressed as

Es
r =

(
∂2

∂r2 + k2

)
rπs

er (29)
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Using equation given below
(

d2

dr2 + k2 − n (n + 1)
r2

)
r [Zn (kr)] = 0 (30)

where Zn(kr) is any spherical Bessel function, Es
r can be written as

Es
r =

n (n + 1)
r

πs
er (31)

Es
r =

I0dl

jωεrr′

∞∑

n=0

n(n + 1)anh(2)
n (k1r)Pn(cos γ) (32)

Let us suppose that magnetic hertz vector in radial direction πs
mr can

be expressed as

πs
mr =

∞∑

n=0

bnh(2)
n (k1r)Pn (cos γ) (33)

Now

Es
θ = − 1

sin θ
jωµ

∂

∂φ
πs

mr +
1
r

∂2

∂r∂θ
(rπs

er) (34)

With Equation (33), first part of RHS of Equation (34) is

1
sin θ

jωµ
∂

∂φ
πs

mr =
1

sin θ
jωµ

∂

∂φ

[ ∞∑

n=0

bnh(2)
n (k1r)Pn (cos γ)

]
(35)

Using Equation (20) and applying derivative, Equation (35) takes the
form

=
1

sin θ
jωµ

∞∑

n=0

bnh(2)
n (k1r)

(
∂

∂φ
Pn (cos γ)

)
(36)

The second part of Equation (34), with the help of Equation (28), can
be written as

1
r

∂2

∂r∂θ
(rπs

er) =
1
r

∂2

∂r∂θ

(
r

I0dl

jωεr′

∞∑

n=0

anh(2)
n (k1r)Pn (cos γ)

)
(37)

Using Equation (20) and applying derivative, Equation (37) takes the
form

=
1
r

I0dl

jωεr′

∞∑

n=0

an

(
∂

∂θ
Pn (cos γ)

) (
h(2)

n (k1r) + rh(2)′
n (k1r)

)
(38)
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After substituting the values from Equations (36) & (38) and
simplifying, theta component of scattered electric field Es

θ becomes

Es
θ =

∞∑

n=0

n∑

m=1

h(2)
n (k1r)Pn (cos γ)

[
jmωµ tan m (φ− φ′)

sin θ
bn +

I0dl

jωεr′

(
Pm′

n (cos θ)
Pm

n (cos θ)

)
Qnan

]
(39)

where

Qn =
1
r

+
h

(2)′
n (k1r)

h
(2)
n (k1r)

(40)

4. MAGNETIC FIELD

4.1. Incident Magnetic Field Components

Using Equations (11), (12) & (13) we get the radial component of the
incident magnetic field H i

r

H i
r =

1
µ0r sin θ

[
∂

∂θ
(Aφ sin θ)− ∂Aθ

∂φ

]
(41)

As field is assumed to be along z-axis so radial component can be
written in simplified form

H i
r = − 1

µ0r sin θ

∂Aθ

∂φ
(42)

Using Aθ from Equation (18) in Equation (42) above we get

H i
r = − 1

rµ0 sin θ

∂

∂φ

[
jkµ0I0dl sin θ

4π
h

(2)
0

(
k

∣∣r− r′
∣∣)

]
(43)

Using Equations (19) & (20) in above equation and then simplifying

H i
r =

jmkI0dl

4πr

∞∑

n=0

n∑

m=1

h
(2)
0

(
k

∣∣r− r′
∣∣) tanm

(
φ− φ′

)
(44)

H i
r can also be expressed as

H i
r =

(
∂2

∂r2 + k2

)
rπi

mr (45)

πi
mr denotes the incident radial component of magnetic Hertz vector.

Using Equation (30)

H i
r =

n (n + 1)
r

πi
mr (46)
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Comparing Equations (44) & (46) πi
mr can be expressed as

πi
mr = jmkI0dl

∞∑

n=0

n∑

m=1

tan m (φ− φ′)
4πn (n + 1)

h
(2)
0

(
k

∣∣r− r′
∣∣) (47)

Using Equations (11), (12) & (13) we get the theta component of the
incident magnetic field H i

θ

H i
θ =

1
µ0r sin θ

∂Ar

∂φ
(48)

Using Equation (17) in above

H i
θ =

1
µ0r sin θ

∂

∂φ

[
jkµ0I0dl cos θ

4π
h

(2)
0

(
k

∣∣r− r′
∣∣)

]
(49)

Putting values from Equations (19) & (20) in above equation, we get
theta component of incident magnetic field H i

θ

H i
θ = −jmkI0dl cot θ

4πr

∞∑

n=0

n∑

m=1

h
(2)
0

(
k

∣∣r− r′
∣∣) tanm

(
φ− φ′

)
(50)

4.2. Scattered Magnetic Field Components

Using Maxwell’s equations and the values of Es
r & Es

θ from
Equations (32) & (39) we get radial and theta components of scattered
magnetic field, i.e., Hs

r & Hs
θ as follows

Hs
r = − I0dl

ηωεrr′

∞∑

n=0

n (n + 1)anh(2)
n (k1r) Pn (cos γ) (51)

&

Hs
θ = −1

η

∞∑

n=0

h(2)
n (k1r)

[
1

sin θ

(
∂

∂φ
Pn (cos γ)

)
ωµbn

+
I0dl

ωεr′

(
∂

∂θ
Pn (cos γ)

)
Qnan

]
(52)

Above equation can also be written as

Hs
θ = −1

η

∞∑

n=0

n∑

m=1

h(2)
n (k1r)Pn (cos γ)

[
−mωµ

sin θ
tanm

(
φ− φ′

)
bn

+
I0dl

ωεr′

(
Pm′

n (cos θ)
Pm

n (cos θ)

)
Qnan

]
(53)

where

η =
√

µ

ε
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5. SCATTERING BY PEMC SPHERE

The tangential field components have to satisfy the boundary condition
at the PEMC sphere surface, i.e., r = a

H i
θ + MEi

θ + Hs
θ + MEs

θ = 0 (54)

and the boundary condition for the radial component is

ε0E
i
r −Mµ0H

i

r + ε0E
s
r −Mµ0H

s
r = 0 (55)

Applying the above conditions to the theta and radial components of
the fields, we obtain a system of linear equations, from these equations
we find that the expansion coefficients an and bn are given by

an = −
[

1
1 + jMη

]
jkεr′

4πaε0

∞∑

n=0

n∑

m=1

h
(2)
0 (k |r− r′|)

n (n + 1)h
(2)
n (k1a) Pn (cos γ)[

cos θ

{
a2ω2ε0µ0 +

a2j′′n (ka) + Rn

jn (ka)

(
4 + tan θ

Pm′
n (cos θ)

Pm
n (cos θ)

)}

−jMaωµ0m tanm
(
φ− φ′

)]
(56)

bn =
[

1
1 + jMη

] ∞∑

n=0

n∑

m=1

jkI0dl sin θh
(2)
0 (k |r− r′|)

4πωµh
(2)
n (k1a) Pn (cos γ)

[
Qn

n (n + 1)
[cos θ

{
aωµ0 +

a2j′′n (kr) + Rn

aωε0jn (ka)

(
4 + tan θ

Pm′
n (cos θ)

Pm
n (cos θ)

)}

−Mm tanm
(
φ−φ′

)]
+

η

m tanm (φ−φ′)

[
cot θ

a
m tanm

(
φ−φ′

)

+jMµ0 sin θ

[
ωµ0+

1
a2ωε0

{
Pm′′

n (cos θ)
Pm

n (cos θ)
+

(
4+

Tn

jn (ka)

)

Pm′
n (cos θ)

Pm
n (cos θ)

cot θ − 3− Tn

jn (ka)

}]]]
(57)

By introducing the values of these constants an & bn in Equations (32),
(39), and (53), scattered electric and magnetic fields can be found. As
the illuminating Hertz dipole is oriented in radial direction so the radial
components of the scattered electric and magnetic fields are considered
to be the co-polarized components of the fields and theta components
of the two fields are considered to be the cross-polarized components.
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6. RESULTS & DISCUSSION

The equations for co-polarized components as well as cross-polarized
components of the electric and magnetic fields are implemented
in terms of Bessel, Hankel and Legendre function along with the
derivatives of these functions. This is done by programming in
MATHEMATICA. Built-in functions for spherical Bessel and Hankel
functions and Legendre function are available in the software. In order
to check the functionality of the MATHEMATICA on the system, some
graphs from [14] were plotted and thus the program was verified.

Following figures show the variation of co-polarized and cross-
polarized components of the electric field scattered from the PEMC
sphere for different values of admittance parameter. Three values of
admittance are taken for obtaining the results. When Mη = 0 the
PEMC sphere acts as PMC sphere and when Mη = ∞, sphere acts
as a PEC sphere. Radius of the sphere is taken to be 0.15 × 2π and
the position of the Hertz dipole illuminating the sphere is taken as
5.05 × 2π. φ is varied from 0 to 2π whereas φ′ is taken as constant,
i.e., φ′ = π

3 . I0 & dl both are taken to be unity. The series is taken
from 0 to 5.

It is clear from Figures 2 & 3 that the co-polarized and cross-
polarized components of the electric field vary approximately inversely
to each other. However on the other hand Figure 4 shows that the
behavior of the two components of the scattered electric field became
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Figure 2. Variation of co & cross-polarized components of scattered
electric field. (when Mη = 0, ω = 3× 108 & θ = θ′ = π

3 ).
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Figure 3. Variation of co & cross-polarized components of scattered
electric field, when Mη = 1, ω = 3× 108 & θ = θ′ = π

3 ).
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Figure 4. Variation of co & cross-polarized components of scattered
electric field, (when Mη = ∞, ω = 3× 108 & θ = θ′ = π

3 ).
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Figure 5. Comparison of co-polarized components of scattered electric
field for PEMC and PMC sphere.
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Figure 6. Variation of co-polarized component of scattered electric
field.
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Figure 7. Variation of cross-polarized component of scattered electric
field.

similar to each other. So it can be concluded that for small values of
M the co & cross-polarized component of the scattered electric field
behave in such a way so as to cancel each other’s effect and for large
value of M these components behave in such a way so as to add up
and give a uniformly varying resultant field. Also by the increase in
the value of M , the maximum peaks of scattered field shift to a smaller
value.

It can also be noted from these plots that the maximum peak value
of co-polarized component is greater than that of the cross-polarized
component for most of the values of angle of observation. Figure 5
shows that for Mη = 0 the behavior of PEMC sphere exactly matches
to that of PMC sphere. In Figures 6 and 7, it can be observed that
the field intensity in case of co-polarized component as well as cross-
polarized component of the electric field decreases as the value of Mη
increases.

In above Figures 2, 3 and 4
— Co-Polarized Component of Scattered Electric Field.
- - - Cross-Polarized Component of Scattered Electric Field.
In above Figures 6 & 7 (for Mη = TanV)
— When V = 0◦.
— When V = 15◦.
. . . When V = 90◦.
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