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Abstract—A multi-stub-loaded resonator is presented in this paper.
The resonators can be conveniently applied to design high-order
dual-band bandpass filters (BPFs). Base on the analysis of the
resonator, the first two even-mode resonant frequencies are controlled
independently by the lengths of the loaded stubs. Two high-order
dual-band BPFs using the first two even-mode resonant frequencies of
the multi-stub-loaded resonators are proposed. The bandwidth of each
passband can be adjusted independently by the coupling strength of
the adjacent resonators. This paper deals with the analysis and design
of the proposed high-order dual-band BPFs as well as the experimental
validations of the predicted dual-band performance.

1. INTRODUCTION

Emerging wireless standards produce new consumer systems, such
as wireless local area networks (WLANs), global system for
mobile communications (GSM), and worldwide interoperability for
microwave access (WiMAX). With the ever-increasing demand for
these applications in the communication market all around the world,
dual- or multi-band filters have enabled a single wireless system to
support dual- or multi-band operations in [1]. To meet the needs,
much research regarding them has been carried out and various design
approaches have been proposed. For instance, stepped impedance
resonators (SIRs) had been implemented to realize dual-band BPFs.
The dual-band BPFs using SIRs had attractive features such as, simple
and compact structure in [2, 3], low insertion loss in [4], high isolation
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in [5]. However, independently controllable bandwidths and passband
frequencies were not mentioned in these papers. Another method was
to realize dual-band BPFs by using stub-loaded resonators in [6–8].
Theoretical analysis showed that the even-mode resonant frequencies
of stub-loaded resonators could be conveniently tuned without affecting
the odd-mode resonant frequencies. All of the aforementioned filters
were only considered the second-order dual-band BPFs. For high
selectivity, some researchers were interested in high-order dual-band
BPFs. The SIRs were applied to high-order dual-band BPFs with a
good analytical method in [9]. Stub-loaded resonators were proposed
to design compact high-order dual-band BPFs in [10]. However, both
centre frequencies and bandwidths of these high-order filters were
dependent.

In this paper, two high-order dual-band BPFs using multi-stub-
loaded resonators are presented. Based on our investigation, the multi-
stub-loaded resonators are appropriate to build up high-order dual-
band BPFs. Moreover, the first two even-mode resonant frequencies
can be conveniently tuned by the lengths of the open loaded stubs.
The coupling strength of each passband is independently determined
by the coupling spacing between the resonators. When the external
quality factors remain unchanged, the bandwidths of the two passbands
can be controlled independently by the coupling spacing without
affecting each other. Thus the proposed high-order dual-band BPFs
have attractive features of independently controllable bandwidths and
centre passband frequencies. To validate the concept, two microstrip
dual-band BPFs centered at 3.5 GHz (WiMAX)/5.2GHz (WLANs)
with different bandwidth ratios. One is a fourth-order dual-band
filter. The other is a fifth-order dual-band filter. These two filters
are designed, fabricated, and measured.

2. CHARACTERISTICS OF THE MULTI-STUB-LOADED
RESONATOR

Figure 1(a) is basic structure of the proposed resonator. It is a
conventional transmission line in the vertical position with two sets
of open loaded stubs. As the resonator is symmetrical, the odd-even
mode method can be applied to analyse the resonant characteristics.
The resonator is decomposed into odd-mode model and even-mode
model indicated in Figures 1(b) and (c). The even-mode model consists
of a transmission line with impedance Z3, electrical length θ3, and
physical length l3 in the vertical position, and two open loaded stubs
in the horizontal position. One open loaded stub is with impedance
Z1, electrical length θ1, and physical length l1. The other open loaded
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Figure 1. (a) The multi-stub-loaded resonator. (b) The even-mode
model. (c) The odd-mode model.

stub is with impedance Z2, electrical length θ2, and physical length
l2. The basic parameters of the odd-mode model are the same as the
even-mode model, but the end of the transmission line of the odd-mode
model is grounded. In this paper, the characteristic impedances are
selected to be different, implying Z1 6= Z2 6= Z3

The even-mode model or odd-mode model is equivalent to three
transmission lines in parallel, thus the even-mode resonant condition
can be obtained as follows:

K1 tan θ1 + K2 tan θ2 + tan θ3 = 0 (1)

the odd-mode resonant condition can be expressed as follows:

K1 tan θ1 + K2 tan θ2 − cot θ3 = 0 (2)

where K1 = Z3/Z1 and K2 = Z3/Z2 are defined as impedance ratios.
For further discussing the characteristics of the resonator, one

resonator is built on a substrate with dielectric constant εr = 2.55, loss
tangent δ = 0.0029, and thickness h = 0.8mm. Full-wave simulation
is carried out by using software IE3D. The resonant frequencies of the
resonator can be obtained by the simulated result shown in Figure 2.
The first, the third, the second, and the fourth resonant frequencies
are named as fodd1, fodd2, feven1, and feven2, respectively. When only
the physical length L1 is tuned, only feven2 is unchanged. In the same
way, when only the physical length L2 is changed, fodd1 and feven1 are
fixed. Thus the even-mode resonant frequencies can be independently
controlled by the lengths of the loaded stubs. In this paper, only the
even-mode resonant frequencies are used and the odd-mode resonant
frequencies are restrained.

In order to simplify the analysis of the resonant characteristics,
only even-mode resonant frequencies are taken into account. A chart,
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Figure 2. (a) Shows the relationship between the resonant frequencies
and the physical length L1, while the physical length L2 is unchanged.
(b) Displays the relationship between the resonant frequencies and the
physical length L2, when the physical length L1 is fixed.
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Figure 3. Frequencies f1 and f2 versus the physical lengths l1 and l2,
considering that l3 = 11 mm, K1 = 0.6, and K2 = 0.4. The resonator
is built on a substrate with dielectric constant εr = 2.55, loss tangent
δ = 0.0029, and thickness h = 0.8mm.

which is shown in Figure 3, reveals that the relationship between the
first two even-mode frequencies (f1, f2) and the physical lengths (l1, l2).
It is extracted by Formula (3). It is found that f1 is determined by the
physical length l1 and the physical length l2 only affects f2. Frequencies
f1 and f2 can be controlled independently without affecting each other.

K1 tan(α · f · l1) + K2 tan(α · f · l2) + tan(α · f · l3) = 0 (3)

where α is 2π
√

εr/c, c is the speed of light in vacuum, εr is dielectric
constant.
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3. DESIGN PROCESS OF HIGH-ORDER DUAL-BAND
FILTER

3.1. Filter Configuration

A fourth-order dual-band BPF using multi-stub-loaded resonators
is presented in Figure 4. It consists of four resonators, namely,
resonator I, resonator II, resonator III, and resonator IV. Resonator I
and II are exactly the same, and resonator III and resonator IV are
also identical. The dimension of two resonators which are connected
with each other to be a resonator III is exactly the same as the ones
of resonator I. Resonator I is equivalent to the even-mode model
of resonator III. Only even-mode signals can pass resonator I or
resonator II. That is to say, the odd-mode resonant frequencies can
not be energized in resonator III and IV.

The fourth-order dual-band filter is designed at frequencies f1 =
3.5GHz and f2 = 5.2 GHz, which is built on a substrate with dielectric
constant εr = 2.55, loss tangent δ = 0.0029, and thickness h = 0.8mm.
For the fourth-order filter, a Chebyshev lowpass prototype with a
passband ripple of 0.1 dB is chosen, the element values are g0 = 1,
g1 = 1.1088, g2 = 1.3061, g3 = 1.7703, g4 = 08180, and g5 = 1.3554.
Under the conditions of K1 = 0.6 and K2 = 0.4, impedance Z3 is
selected to be 50 Ω (line width W3 = 2.2 mm), so impedance Z1 is
83.3Ω (line width W1 = 1 mm) and Z2 is 125Ω (line width W2 =
0.4mm), respectively. According to frequencies f1 and f2 marked as
crossing point ‘A’ in Figure 3, the parameters of the resonator can be
obtained as follow: l2 = L2 + L5 = 9.2mm, l1 = L1 + L4 = 16.2 mm,
and l3 = L3 = 11 mm.
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Figure 4. Layout of the fourth-order dual-band BPF.
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3.2. Feed Circuit and Resonator Coupling

The coupling scheme in [11] is used as the input/output of the proposed
filter because it has more degrees of freedom in the design process. Four
parameters, including d0, L6, L7, and W4 shown in Figure 4, can be
tuned to obtain different external quality factors. Here, the external
quality factors Qek are extracted by [12]

Qek = fk/δf±900 , k = 1 or 2 (4)
where fk and f◦±90 represent the resonant frequencies and the absolute
bandwidth between the ±90◦ points of the S11 phase response for the
coupling structure related to each band.

Given the desired Qe1 and Qe2, the parameters of the coupled-
line structure can be determined by the curves shown in Figure 5.
The coupled-line length and the coupling spacing can be selected
properly to meet different bandwidths. It is found that independent
controllability is very limited in Qe1 or Qe2 and also the tuning ranges
of Qe1 and Qe2 are limited. More design data can be obtained by
choosing different combinations of L6, L7, W4, and d0, while it is
needed.

The coupling coefficients between the adjacent resonators are
determined by [12]

(Mi,i+1)k =
∆k√
gigi+1

, for i = 1 to N − 1, and k = 1or 2 (5)

where ∆k (i.e., k = 1 or k = 2) is defined as the fractional bandwidth
of the first or second passband. (Mi,i+1)1 and (Mi,i+1)2 denote the
coupling coefficients of the first and second passbands, respectively.
The parameter N is the order of the filter.
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Figure 5. Simulated Qe1 and Qe2 under different coupled-line length
L6 and coupling spacing d0 with L6 = L7 and W4 = 0.3mm.
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Figure 6. Simulated the coupling coefficients under different coupling
spacing. (a) d1, while d2 = 0.67 mm is fixed. (b) d2, when d1 =
0.53mm is fixed.

The coupling coefficients Mi,i+1 between the adjacent resonators
can be extracted by [12]
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where f1 and f2 are two resonant frequencies at the two resonators
and fp1 and fp2 defined to be the lower and higher resonant modes of
coupled resonators at resonant frequency f1 or f2.

The relationship between the coupling coefficients and the
coupling spacing (d1, d2) is shown in Figure 6. It can be seen that the
couplings of these even-mode resonances (between the inner resonators)
are independently controlled by the coupling spacing d1 or d2.

According to the aforementioned discussion, the overall design
steps of this kind of high-order dual-band filters are summarized as
follows:

Step 1 : Confirm the dual-band filter specifications, including the
centre frequencies (f1, f2), the fractional bandwidths (∆1, ∆2), the
order (N) of the filter, and the low-pass prototype elements gi, i = 0, 1,
. . ., N , N + 1.

Step 2 : The structural parameters of the multi-stub-loaded
resonator can be achieved by the curves in Figure 3, including l1, l2,
l3, K1, and K2.

Step 3 : Basing on ∆1, ∆2, N , and gi, we can calculate the
parameters, including the external quality factors Qe1 and Qe2, and
the coupling coefficients M1 and M2. Depending on Qe1 and Qe2, the
parameters including, L6, L7, W4, and d0 of the coupling structure, are
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gotten from the gridlines in Figure 5. In the same way, the coupling
spacing can be obtained by Figure 6.

Step 4 : Combine the parameters from Step 2 and Step 3 above,
the filter with initial parameters is simulated by a full-wave EM
simulator. The final parameters of the filter are determined after
optimizing through the EM simulator.

4. DESIGN EXAMPLES

4.1. One Fourth-order Dual-band Filter with ∆1/∆2 = 1

According to the dual-band filter specifications aforementioned, the
physical parameters of the resonator have been obtained in Section 3.

1 2 3 4 5 6 7
-120

-100

-80

-60

-40

-20

0

Frequency (GHz)

|S
21

| (
dB

)

L1=11 mm

L1=12 mm

L1=13 mm

1 2 3 4 5 6 7
-120

-100

-80

-60

-40

-20

0

Frequency (GHz)

|S
21

| (
dB

)

L2=5.11mm

L2=6.11mm

L2=4.11mm

(a) (b) 

1 2 3 4 5 6 7
-120

-100

-80

-60

-40

-20

0

Frequency (GHz)

|S
21

| (
dB

)

i =0.0 mm
di =-0.2 mm

i =0.2mm

1 2 3 4 5 6 7
-120

-100

-80

-60

-40

-20

0

Frequency (GHz)

|S
21

| (
dB

)

j =0.0 mm

j =-0.2mm

j =0.2mm

(c) (d)

∆d
∆

∆d

∆d
∆d
∆d

Figure 7. (a) Frequencies versus the length L1, while the length
L2 = 5.11 mm is fixed. (b) Frequencies versus the length L2, when
the length L1 = 11 mm is fixed. (c) The lower bandwidth versus
different coupling spacing variation ∆di, while the coupling spacing
d2, d4, and d6 remain unchanged. (d) The higher bandwidth versus
different coupling spacing variation ∆dj , when the coupling spacingd1,
d3, and d5 are fixed.
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The fractional bandwidths of the two passbands are defined as follows:
∆1 = ∆2 = 4%. The external quality factors can be deduced as
follows: Qe1 = Qe2 = 27.7; According to Qe1 and Qe2, the parameters
of the feed structure are properly obtained by Figure 5 as follows:
L6 = L7 = 11 mm, W4 = 0.4 mm, and d0 = 0.3mm. The coupling
coefficients can be calculated by the element values of Chebyshev
lowpass prototype: (M12)1 = 0.0332, (M23)1 = 0.0263, (M34)1 =
0.0276, (M12)2 = 0.0332, (M23)2 = 0.0263, (M34)2 = 0.0276, where
(M12)1, (M23)1, and (M34)1 indicate the coupling coefficients of the
first passband between the adjacent resonators, and (M12)2, (M23)2,
and (M34)2 denote the coupling coefficients of the second passband.
According to the above mentioned coupling coefficients, the coupling
spacing between the adjacent resonators at f1 can be obtained by
Figure 6(a) as follows: d1 = 0.82mm, d3 = 0.92 mm, and d5 = 0.9mm.
In the same way, the coupling spacing of the second passband can be
obtained by Figure 6(b) as follows: d2 = 0.67 mm, d4 = 0.8mm, and
d6 = 0.75 mm.

As can be seen in Figure 7, when the length L1 is tuned (all the
other parameters are fixed), only frequency f1 (3.5GHz) is changed.
Likewise, tune the length L2, only frequency f2 (5.2GHz) is affected.
Remain the input/output structure unchanged, when only the coupling
spacing d1, d3, and d5 are changed, the lower bandwidth can be
adjusted, whereas the higher bandwidth remain unaltered. Similarly,
the higher bandwidth is affected independently by the coupling spacing
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Figure 8. Simulated (dashed lines) and measured (solid lines) results
of the dual-band filter. (a) Scattering parameters. (b) Photograph of
the fourth-order dual-band filter. (d0 = 0.3, d1 = 0.53, d2 = 0.67, d3 =
0.63, d4 = 0.45, d5 = 0.65, d6 = 0.72, L1 = 11, L2 = 4.23, L3 = 11,
L4 = 5.11, L5 = 5.02, L6 = 11.3, L7 = 11.3, W1 = 1.0, W2 = 0.4,
W3 = 2.2, W4 = 0.4. All are in mm.).



262 Chu and Li

d2, d4, and d6. Here ∆di is defined as variation of the coupling spacing
d1, d3, and d5, which are changed at the same time. In the same way,
∆dj denotes that the coupling spacing d2, d4, and d6 are changed at
the same time.

The simulated and measured results of the fabricated filter are
shown in Figure 8. The size of the filter is approximately 0.8λ0×0.35λ0,
where λ0 is the full wavelength of frequency at f1 = 3.5GHz. It can be
seen that the measured and simulated results are in good agreement.
The lower passband of 3.5 GHz has 2.2 dB insertion loss and better than
15 dB return loss. The higher passband of 5.2 GHz has 2.2 dB insertion
loss and better than 15 dB return loss. The rejection level between
the two passbands is better than 50 dB from 3.88 to 4.62 GHz. The
3 dB fractional bandwidths (FBWs) are ∆1 = 4.2% and ∆2 = 4.1%,
respectively.

4.2. One Fifth-order Dual-band Filter with ∆1/∆2 > 1

The second example is a fifth-order dual-band filter shown in Figure 9
with the centre frequencies located at f1 = 3.5GHz and f2 = 5.2GHz.
The fractional bandwidths of the two passbands are ∆1 = 4.5% and
∆2 = 3.5%, respectively. For the fifth-order filter, a Chebyshev lowpass
prototype with a passband ripple of 0.1 dB is chosen, the elements
values are g0 = 1, g1 = 1.1468, g2 = 1.3712, g3 = 1.9750, g4 = 1.3712,
g5 = 1.1468, and g6 = 1. The physical parameters of the resonator
have been obtained in Section 3. The external quality factors can be
deduced as follows: Qe1 = 25.5, Qe2 = 32.8. According to Qe1 and
Qe2, the proper input/output coupled-line parameters are obtained
by Figure 5 as follows: L16 = L17 = 11.5 mm, W14 = 0.4 mm, and
d10 = 0.43 mm. The coupling coefficients can be calculated by the
element values of the chebyshev lowpass prototype: (M12)11 = 0.0357,
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Figure 9. Layout of the fifth-order dual-band BPF.
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Figure 10. Simulated (dashed lines) and measured (solid lines) results
of the dual-band filter. (a) Scattering parameters. (b) Photograph of
the fifth-order dual-band filter. (d10 = 0.43, d11 = 0.6, d12 = 0.4, d13 =
0.4, d14 = 0.6, d15 = 0.8, d16 = 0.7, d17 = 0.7, d18 = 0.8, L11 = 11,
L12 = 4.23, L13 = 11, L14 = 5.21, L15 = 5.4, L16 = L17 = 11.5, W11 =
1.0, W12 = 0.4, W13 = 2.2, W14 = 0.4. All are in mm.).

(M23)11 = 0.0273, (M34)11 = 0.0273, (M45)11 = 0.0357, (M12)22 =
0.0279, (M23)22 = 0.0213, (M34)22 = 0.0213, and (M45)22 = 0.0279,
where (M12)11, (M23)11, (M34)11 and (M45)11 indicate the coupling
coefficients of the lower passband, and (M12)22, (M23)22, (M34)22, and
(M45)22 denote the coupling coefficients of the higher passband. The
coupling spacing between the adjacent resonators can be achieved by
Figure 6 as follows: d11 = 0.65 mm, d12 = 0.84 mm, d13 = 0.84 mm,
d14 = 0.65mm,d15 = 0.72mm, d16 = 0.82 mm, d17 = 0.82 mm, and
d18 = 0.72 mm.

In this design, the fifth-order filter has the similar features like the
aforementioned fourth-order filter in part A of this section, including
controllable frequencies and tunable bandwidths independently. The
simulated and measured results of the fabricated filter are depicted
in Figure 10. It is seen that the measured and simulated results
are in good agreement. The lower passband of 3.5GHz has 2.5 dB
insertion loss and better than 12 dB return loss. The higher passband
of 5.2 GHz has 2.8 dB insertion loss and better than 14 dB return loss.
The rejection level between the two passbands is better than 50 dB
from 3.72 to 4.82 GHz. The 3 dB fractional bandwidths (FBWs) are
∆1 = 4.9% and ∆2 = 4%.
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5. CONCLUSION

This paper has presented two high-order dual-band BPFs using multi-
stub-loaded resonators and also given exhaustive design steps to design
the high-order dual-band BPFs. Measured results are found to be in
good agreement with simulated ones. They reveal that the presented
filters achieve high isolation and good selectivity at passband edges.
As can be seen in Figure 3, when the length l1 is tuned, only f1 is
changed and f2 keeps fixed. In the same way, the length l2 mainly
controls f2 without affecting f1. The couplings of these even-mode
resonances (between the inner resonators) are independently controlled
by the coupling spacing shown in Figure 6. Simulated results also
show that passband frequencies and bandwidths of the proposed filters
are flexibly independently controlled. The tunable features indicate
that the proposed filters have a potential to be utilized in wireless
communication systems with different frequencies and bandwidths.
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