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Abstract—We have applied the phase unwrapping technique
to resolve the phase ambiguity problem arising from complex
expressions of scattering parameters, for reflection-only measurement
configurations, since, at some instances, only one side of the sample
under test is accessible for electromagnetic measurements. We
considered two different measurement configurations for testing the
applicability of the phase unwrapping technique as: 1) two identical
samples with different lengths flushed by a short-circuit termination
and 2) one sample shorted by a varying short-circuit termination.
For each measurement configuration, the underlying expressions for
the reflection scattering parameters are derived. For both cases,
we evaluated the suitability of the phase unwrapping technique by
considering a highly-dispersive medium (distilled water) as our test
sample. We note that continuity of the real part of the complex
wavelength is a key issue in the unwrapping technique for (one-port)
reflection-only measurements.

1. INTRODUCTION

Transmission-reflection and reflection-only non-resonant methods have
been widely utilized for characterization of materials owing to their
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relative simplicity, broad frequency coverage, and higher accuracy [1–
14]. There are few problems of these methods such as undesired ripples
in the measured parameters, the increased uncertainty in reference-
plane positions, and multiple solutions for electromagnetic parameters.
Among these problems, multiple-solutions ambiguity, which is of our
main concern in this study, arises from the effect of non-unique
retrieval of the imaginary part of the complex propagation factor, T , in
scattering (S-) parameter equations. A variety of techniques have been
put forward for retrieving the correct solutions for εr and/or µr [15–27].
For example, multiple solutions problem can be avoided by choosing a
material thickness less than one-quarter wavelength [15, 16]. However,
thin materials can result in sagging, which alters the theoretical
formulations, and also decrease the feasibility and repeatability of
measurements. In [17], Weir proposed a technique that compares
the calculated and measured group delays of the signal propagating
through the sample, although this method might not be valid for
highly dispersive media since the concept of group velocity is no
longer useful in regions of anomalous dispersion. With regard to
dielectric materials, a different approach [18–23] to the multivalued
problem for the determination of the permittivity of low-loss or lossy
samples relies on using transmission-only measurements at two close
frequencies to estimate an accurate initial guess for the permittivity.
Upon using the mathematical continuity of εr and µr parameters,
an iterative method [24] determines the proper branch by verifying
whether the candidate initial branch satisfies causality relations at
each frequency step using at least two identical samples with different
lengths. Furthermore, Buyukozturk et al. proposed a technique
which uses time difference of arrival along with S21 measurements for
overcoming the same problem [25].

Alternatively, based on the fact that the real part (attenuation
factor) in the complex propagation is independent of the phase
ambiguity, with only the determination of the imaginary part (phase
factor) depending on the phase change, other works [26, 27] have
enforced causality to calculate the phase factor from the attenuation
factor. Such a method, however, requires that real part of the
propagation factor be known as a function of frequency in the entire
spectrum. Since this is not possible, the Kramers-Kronig relation is
numerically integrated over a truncated frequency range thus providing
an approximation for the phase factor.

Apart from these previously mentioned methods which deal
in a limited way with the phase ambiguity problem, in a recent
study, we have applied the phase unwrapping method to resolve
the phase ambiguity in measured constitutive parameters of low-to-
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high-loss materials for transmission-reflection (two-port) methods [28].
Simple and not relying on heavy computation as the Kramers-Kronig
approach does, such a technique correctly retrieves the phase of the
complex wavenumber by detecting successive phase jumps that exceed
π at specific frequencies. The phase unwrapping method finds a
variety of applications, for instance, in continuous-wave interferometry,
holographic measurements by Fourier transform technique, computed
tomography, digital phase demodulation techniques, medical imaging,
and so on [29]. The physical quantities of interest are encoded
in the phase of the complex signal and the unwrapping method
allows extracting the information conveyed by the signal by correctly
interpreting the ambiguity of the phase, which can only be derived
as modulo 2π. In this research paper, we extend this powerful
method to retrieve the constitutive parameters of materials using
reflection-only (one-port) measurements because, in some instances,
only one side of the specimen under test is visible to electromagnetic
signals [30, 31], and because the use of the phase unwrapping method
becomes a significant issue in characterization of materials, especially
for highly-dispersive media, in which anomalous dispersion takes place
as the one studied here (distilled water). Two typical reflection-only
measurement scenarios are considered, and for each configuration,
the necessary expressions for εr and µr are derived. We selected
distilled water as a highly dispersive test specimen, and then uniquely
and non-ambiguously retrieved its electromagnetic properties from the
considered two different reflection-only measurement configurations.

2. EXPRESSIONS AND RETRIEVAL PROCEDURES

In this section, we first derive expressions of S-parameters of two
reflection-only measurement configurations, and then present the
retrieval process of εr and µr of samples for each configuration.

2.1. Two Identical Samples with Different Length

The retrieval problem of two identical samples with different lengths,
L1 and L2 is pictured in Fig. 1. It is assumed that the sample is
a simple medium (linear, homogeneous, and isotropic) and is placed
inside an empty rectangular waveguide. In addition, we presume that
the short-circuit termination is flushed (in contact) with the sample
back surface at interface II-III, and that the calibration plane coincides
with the front face of each sample in Fig. 1.

The expressions of electric and magnetic fields, ~E and ~H, in each
region in Fig. 1 can be derived from their vector potentials (or Hertzian
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(a) (b)

Figure 1. Measurement configuration for constitutive parameters re-
trieval from two-sample measurements through the phase unwrapping
technique.

vectors), ~A and ~F , as in [32]
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where ε = ε0εr and µ = µrµ0. Here, ε0 and µ0 are the (absolute)
permittivity and permeability of vacuum, and the time dependence of
exp(iω t) is assumed in the phasor (complex) domain. Assuming that
the rectangular waveguide operates in the dominant mode (TEz

10), we
have ~A = 0, Fx = 0 = Fy and ∂Fz/∂y = 0 [32]. Then, the electric
vector potential, ~F , for regions I and II in Fig. 1 can be written
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Here, C1 : C4 are complex amplitudes; γ and γ0 are the propagation
constants inside the sample and air regions of the guide; λ0 = c/f and
λc = c/fc correspond to the free-space and cut-off wavelengths; f , fc,
and c are the operating and cut-off frequencies and the speed of light,
respectively; and εr = εr − iε′′r and µr = µ′r − iµ′′r .

Using the electric vector potentials in Eq. (2), electric and
magnetic fields can be determined from Eq. (1). Applying boundary
conditions (continuation of tangential components of electric and
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magnetic fields and vanishing of tangential electric field at the short-
circuit termination (PEC)) at interfaces I-II and II-III (z = 0 and
z = −L1 or z = −L2), reflection scattering parameter (S11) at the
calibration plane can be derived as

S
(u)
11 =

Γ− T 2
u

1− ΓT 2
u

, Γ =
γ0µr − γ

γ0µr + γ
, Tu = e−γLu . (4)

In Eq. (4), u = 1, 2; Γ is the first reflection coefficient at the interface
I-II and T1 and T2 are the propagation factors of samples with lengths
L1 and L2.

The well-known Nicolson-Ross-Weir technique [4, 17] cannot be
applied to our problem, for it was devised for reflection-transmission
(two-port) measurements. Following a similar procedure in [33] and
from Eq. (4), we obtain a relation between T1 and T2

T 2
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11

)/(
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, T 2
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)k
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Utilizing an optimization technique for non-linear expressions, the
accurate and unique value of Γ can be computed from Eq. (5), where
S

(1)
11 and S

(2)
11 are known or measured quantities, and from the foregoing

relation together with the constraint |Γ| ≤ 1, corresponding to positive
heat dissipation for passive samples [34–36]. But, for some specific
combination of sample lengths, an analytical solution for Γ can be
attained. For instance, for k = 2 (L2 = 2L1), we have
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Once determining Γ from Eqs. (6) and (7), T1, T2, εr, and µr can be
found as
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, 1/Λ = i ln (Tu)/(2πLu), (8)
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ln (Tu) = ln (|Tu|) + i(φu ∓ 2πmu), mu = 0, 1, 2, . . . (10)

Since the complex guided wavelength Λ relates to the sample
propagation constant γ in the complex propagation factors T1 and T2 in
Eq. (8), unique solutions for εr and µr are generally not possible from
Eq. (9). This is because correct assignment of mu integer values in the
argument of complex wavenumber is required for the correct retrieval of
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εr and µr. By using the phase unwrapping technique, which exploits
the continuity of the guided wavelength over frequency [28], unique
solution for εr and µr will be cast as discussed in the following section.

Although the technique of using two identical samples with
different lengths is effective in measuring the εr and µr parameters
of materials, any impurity and/or inhomogeneity present in the
second sample may drastically lower the accuracy of measurements.
In addition, using two samples increase the overall thickness
uncertainty [37]. In the next subsection, we propose another reflection-
only measurement configuration for eliminating the preceding
drawbacks.

2.2. Measurements of One Sample with a Variable
Short-circuit

To eliminate the problems of reflection-only measurements of two
identical samples, here, we propose another measurement configuration
based on reflection-only measurements of one sample with non-flushing
two short-circuit terminations, Ls1 and Ls2, as shown in Fig. 2. In
this configuration, the sample is positioned into the waveguide section
and varying the location of termination, independent reflection-only
measurements are carried out for retrieving εr and µr of the sample.

As in the case of reflection-only measurements of two identical
samples, assuming the sample is a simple medium and only the
dominant mode (TEz

10) is propagating through the sample, electric

(a) (b)

Figure 2. Measurement configuration for constitutive parameters
retrieval from shifted short-circuit measurements through the phase
unwrapping technique.
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vector potential, ~F , for regions I, II, and III as can be written

F (I)
z (x, z) = ψ (x)
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, (11)
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Here, C5 : C10 are complex amplitudes, and the definitions and
expressions of each variable in Eqs. (11)–(13) have the same meaning
and usage as in Subsection 2.1. Applying boundary conditions
(continuation of tangential components of electric and magnetic
fields and vanishing of tangential electric field at the short-circuit
termination (PEC) at interfaces I-II, II-III, and III-IV (z = 0, z = −Ls1

or z = −Ls2, and z = −L−Ls1 or z = −L−Ls2), S11 at the calibration
plane can be derived as
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where γ and Γ are given in Eqs. (3) and (4), and Tsu = exp (−γ0Lsu).
Here, Ls1 and Ls2, the distances between the sample back surface and
the front face of short-circuit termination, are assumed to be known
precisely. Performing reflection-only measurements for two different
positions of the variable termination, Ls1 and Ls2 in Fig. 2, we can
eliminate T 2 terms in Eq. (14) and derive
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The correct choice for Γ in Eq. (15) can be found using
∣∣Γ(1,2)

∣∣ ≤ 1, as
discussed in Subsection 2.1. After determining the correct Γ, T can be
computed by

T =
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suΓ)
(
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11
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Finally, εr and µr can be found from Eq. (9). We note that, in this
measurement configuration, we could have assumed either Ls1 = 0
or Ls2 = 0 to simplify the analysis. However, here, we have tried
to keep our analysis as general as possible. Although the shifted
short-circuited measurements eliminate errors arising from using the
second sample, they require the knowledge of Ls1 and Ls2. As
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pointed out in Subsection 2.1, the correct assignment of mu integer
values in the argument of complex wavenumber is a requirement for
correct retrieval of constitutive parameters. In the next section, we
will discuss the phase unwrapping technique for retrieving correct
constitutive parameters for two reflection-only (one-port) measurement
configurations analyzed in this section.

3. PHASE UNWRAPPING METHOD

In this section, we apply the phase unwrapping technique for retrieval
of εr and µr of samples using reflection-only measurements mentioned
in previous section.

3.1. Two Sample Measurements

For validation of the phase unwrapping technique for two sample short-
circuited measurements in Fig. 1, we first assume some test constitutive
parameters and sample lengths to calculate Γ and T , then substitute
them into Eq. (4) to determine S11 values, and finally retrieve the
parameters using the proposed technique. For example, we use the
distilled water at 30◦C as the test sample whose dielectric properties
can be analytically estimated by the Debye model [38] as

εr(ω) = ε∞ + (εs − ε∞)/(1 + iωτ). (19)

Here, ε∞ is the so-called infinite frequency permittivity, εs the static
value (DC value) of the permittivity, and τ the relaxation time. Setting
ε∞ = 4.9, εs = 76.47, and τ = 7.2 ps, we see in Fig. 3(a) that the
principal absorption band (interpreted as being due to a relaxation
of molecular origin) shows a maximum at around 22.1GHz. Next

(a) (b)

Figure 3. (a) Dependence of permittivity of distilled water over f
and (b) real part of inverse of the wrapped complex guided wavelength
using two sample measurements (L1 = 1.0 cm).
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(a) (b)

Figure 4. (a) Wrapped (continuous line) and unwrapped (dashed line)
real part of complex guided wavelength for the 1.0-cm thick sample
using two-sample measurements, and (b) dependence of m1 values over
frequency to obtain unwrapped Re {1/Λ} dependence in Fig. 4(a) using
two sample short-circuit measurements.

we assume µr = 1.0 − i0.7 for the magnetic permeability of distilled
water and choose L1 = 1.0 cm and L2 = 2.0 cm for the sample lengths,
fc = 6.6517GHz, and this completes the input data for the calculation
of the S-parameters from Eq. (4). Note that we utilize a µr value
different than that used in [28] to test the phase unwrapping technique
for various constitutive parameter combinations.

Substituting S
(1)
11 and S

(2)
11 into Eqs. (6) and (7), we first determine

Γ. Then, we put its value into Eq. (8) for obtaining T1 and T2. After,
using Eq. (8), we draw Re {1/Λ}, as shown in Fig. 3(b) without the
application of the phase unwrapping technique. From the dependence
in Fig. 3(b), we note that the thickness of the sample can be extracted
from the bouncing off nature of Re {1/Λ} over frequency between +π
and −π [28]. It was observed in [28] a negative slope of the sawtooth
waveform of Re {1/Λ} before the cutoff frequency, and a positive
slope after the cutoff frequency. Here, we have a different scenario.
Inclusion of magnetic loss (tan δm = 0.7) into simulation changes the
slope pattern of Re {1/Λ} before cutoff frequency. This is seen in
greater detail for the dependence of wrapped Re {1/Λ} (continuous
line) over the range 0–14GHz in Fig. 4(a). In the same figure, the
unwrapped Re {1/Λ} (dashed line) is superposed over the wrapped
one. In obtaining the unwrapped Re {1/Λ} in Fig. 4(a), correct
integer values of mu in Eq. (10) are assigned to obtain a continuous
dependence, corresponding to adding a phase function to the inverse
of the complex wavelength, 1/Λ [28], by

lim
φu→±π

f (φu)=f (±π) , | f (φu)−f (±π)|<δ1, |φu−(±π)|<δ2, (20)

where f (φu) = Re {1/Λ} and δ1 and δ2 are the small positive numbers.
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(a) (b)

Figure 5. Retrieved (a) real part and (b) imaginary part of the εr

using two sample measurements for corrected and uncorrected phases
from Eqs. (5)–(10).

(a) (b)

Figure 6. Retrieved (a) real part and (b) imaginary part of the µr

using two sample measurements for corrected and uncorrected phases
from Eqs. (5)–(10).

This approach also resembles to Riemann surfaces in complex variables
used for keeping a multi-valued function as single-valued. The assigned
values of m1 to have continuous dependence of Re {1/Λ} using Eq. (20)
are shown in Fig. 4(b). It is seen from Fig. 4(b) that we have
dependence of m1 values different than that in Fig. 5 of [28]. This
difference arises as a consequence of the inclusion of tan δm. Whenever
electrical properties and the sample lengths change, the dependencies
in Figs. 3(b)–4(b) change since T1 and T2 in Eq. (4) are both functions
of εr, µr, and L1 (or L2). Once the real part of complex wavelength Λ
is unwrapped, then we proceed to retrieve the parameters εr and µr.
Following the proposed unwrapping procedure, retrieved εr and µr of
water are shown in Figs. 5 and 6, respectively. Upon comparison with
the Debye representation (Fig. 3(a)), it is clearly apparent that real
and imaginary parts of εr are correctly retrieved. The same is valid for
the retrieved µr and assumed µr (= 1.0 − i0.7). In Fig. 5(a) through
Fig. 6(b), the components of permittivity and permeability extracted
for the unwrapping case are also indicated by dashed lines.
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3.2. Shifted Short-circuit Measurements

We use, as before, distilled water whose frequency-dependent εr is
shown in Fig. 3(a), as our test sample for illustration of the phase
unwrapping technique for shifted short-circuit reflection measurements
of one sample (Fig. 2). This time, we assume µ = 1.0 − i0.0 for the
magnetic permeability of distilled water and choose L = 1.5 cm for
the sample length, Ls1 = 2 mm and Ls2 = 3 mm for the distance
between back surface and the shifted short-circuit termination, fc =
6.6517GHz, and this completes the input data for the calculation of
the S-parameters from Eq. (14). Substituting these calculated S

(1)
11

and S
(2)
11 into Eqs. (15)–(17), we first determine Γ using the constraint

|Γ| ≤ 1. Then, we put its value into Eq. (18) for obtaining T .
After, using Eq. (8), we obtain the dependence of Re {1/Λ} over
frequency. We note that the thickness of the sample can be extracted
from the bouncing off nature of Re {1/Λ} over frequency (Fig. 7(a))
when its value approaches 1/3.0 cm−1, yielding a sample thickness of
L = 1.5 cm.

To obtain a continuous dependence of Re {1/Λ} on frequency,
using Eq. (20), we unwrap it and attain the dependence in Fig. 7(a)
for a frequency range 0–14 GHz to see in great detail. In obtaining
a continuous dependence for Re {1/Λ} over a broad frequency band,
we consider two distinct regions as f < fc and f > fc [28], as can
be seen from negative slope of Re {1/Λ} before cutoff frequency, and
then positive slope of Re {1/Λ} after cutoff frequency in Fig. 7(a).
Continuous dependence corresponds to adding a piecewise phase
function to the inverse of the complex wavelength, 1/Λ [28]. The

(a) (b)

Figure 7. (a) Wrapped (continuous line) and unwrapped (dashed line)
real part of complex guided wavelength for the 1.5-cm thick sample
using shifted short-circuit measurements and (b) dependence of m1

values over frequency to obtain unwrapped Re {1/Λ} dependence in
Fig. 7(a) using shifted short-circuit measurements.
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(a) (b)

Figure 8. Retrieved (a) real part and (b) imaginary part of the εr

using shifted short-circuit measurements for corrected and uncorrected
phases from Eqs. (15)–(18).

(a) (b)

Figure 9. Retrieved (a) real part and (b) imaginary part of the µr

using shifted short-circuit measurements for corrected and uncorrected
phases from Eqs. (15)–(18).

assigned values of m1 to have continuous dependence of Re {1/Λ} are
shown in Fig. 7(b). Comparing the dependencies in Figs. 4(a) (or
4(b)) and 7(a) (or 7(b)), we note that although we should consider the
regions before and after the cutoff frequency as two separate regions, in
some cases, at cutoff frequency, continuity of Re {1/Λ} may assure that
the values of Re {1/Λ} at immediately before and immediately after the
cutoff frequency are equal in magnitude (1.83 cm-1) (Fig. 4(a)). This
circumstance, sometimes, arise for some combinations of thickness and
electrical properties of the sample.

After unwrapping the complex wavelength, we continue to retrieve
the parameters εr and µr. Following the proposed unwrapping
procedure, retrieved εr and µr of water are shown in Figs. 8
and 9, respectively. As before, upon comparison with the Debye
representation (Fig. 3(a)), it is clearly apparent from Fig. 8 that real
and imaginary parts of εr are correctly retrieved. The same is valid for
the retrieved µr and assumed µr (= 1.0 − i0.0). In Figs. 8 and 9, the
components of εr and µr extracted for the unwrapping case are also
indicated by dashed lines.
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4. CONCLUSIONS

We applied the phase unwrapping method as a powerful tool to
solve the phase ambiguity problem posed by the multiple-valued
logarithm function of the complex transmission coefficient in the
scattering equations of reflection-only (one-port) measurements, since
at some instances, only the front face of the specimen is visible
to incident electromagnetic radiation. We considered two special
cases for testing the method. In the first case, reflection scattering
parameter measurements of two identical samples shorted by a short-
circuit termination (samples back faces and termination are flushed)
are utilized and then the phase unwrapping method is applied. In
the second case, reflection scattering parameter measurements of
one sample shorted by a varying short-circuit termination are used
and afterwards the phase unwrapping method is implemented. We
accurately retrieved the electromagnetic properties of distilled water
used as a test sample using phase unwrapping method for the preceding
two measurement configurations. For both configurations, we note
that the continuity of complex wavelength is the core feature of the
phase unwrapping technique, that for some combinations of sample
electromagnetic properties and lengths, real part of the complex
wavelength does not necessarily abruptly changes its value at cutoff
frequency, and that the sample length, which is a prerequisite in some
methods, can be extracted directly from dependence of the real part
of the complex wavelength using reflection-only measurements.
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