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Abstract—This paper presents a novel contribution to the analysis
of skin-effect like phenomena in radially inhomogeneous tubular
geometries that fit in the category of Euler-Cauchy structures (ECS).
The advantage of ECSs is that solutions for the electromagnetic field
can be described by very simple closed form formulae. This work
addresses the evaluation of the per unit length complex magnetic
reluctance of tubular ferrites, taking into account that their complex
permeability strongly depends on the frequency. The motivation
for this research is linked up with the nascent theory of magnetic
transmission lines (MGTL), where the wave guiding structure is made
of a pair of parallel ferrimagnetic pieces, and whose performance
is critically dependent on the complex magnetic reluctance of its
component pieces. The analysis presented is mainly focused on high
frequency regimes up into the GHz range.

1. INTRODUCTION

Signal propagation along an electric transmission line (ELTL)
is achieved by employing a pair of parallel conductors of high
conductivity, immersed in a nonmagnetic insulating dielectric medium.
In an ideal ELTL, with perfect conductors (σ → ∞), the frequency-
domain (ejωt) transmission line equations read as [1, 2],




dV̄

dz
= −jωLĪ

dĪ

dz
= −jωCV̄

(1a)
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Figure 1. Cross-sectional view of the coaxial cable geometry and
associated transverse electromagnetic field. (a) ELTL. (b) MGTL.

where z is the longitudinal axis along which energy flows; V̄ and Ī are
the line voltage and current phasors; L and C are the per-unit-length
(pul) line inductance and capacitance, respectively.

When conductors imperfection is taken into account, a perturba-
tion term (the per-unit-length skin-effect impedance Z̄skin) must be
added to the top equation of (1a)





dV̄

dz
= − (

jωL + Z̄skin(ω)
)
Ī

dĪ

dz
= −jωCV̄

(1b)

Magnetic transmission lines (MGTL) are the dual counterpart
of ELTLs, where signal propagation is achieved by employing a
pair of parallel magnetic pieces of high permeability, immersed in a
nonmagnetic insulating dielectric medium. Fig. 1 exemplifies the idea,
considering the example of coaxial cable geometry.

If the reader makes a literature search on MGTLs very scarce
information will be gotten: a reference to an old patent dated of
1968 aimed at transient suppression in a 60 Hz transformer [3], and
a reference to a very recent pending patent claiming its application in
terahertz integrated circuits [4]. The concept, the underlying theory,
the fabrication, the technology, and the applications of MGTLs are
unchartered territory. At this stage, the impact of MGTLs in electrical
engineering is speculative, future will tell about MGTL developments.

The theoretical fundamentals of MGTLs have been put forward
in [5].

In an ideal MGTL, with perfect magnetic pieces (µ → ∞), the
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frequency-domain transmission line equations are similar to (1a):




dŪm

dz
= −jωL

1
R2

WD

ϕ̄

dϕ̄

dz
= −jωCR2

WD Ūm

(2a)

where, for the same geometrical configuration, C and L are computed
as they are for inclusion in (1a); RWD =

√
µ0/εD is the characteristic

wave resistance of the dielectric medium; Ūm is the transverse magnetic
voltage between magnetic pieces; ϕ̄ = jωφ̄, where φ̄ is the phasor
representation of the magnetic flux carried by the MGTL pieces.

When magnetic pieces imperfection is taken into account, a
perturbation term (the pul complex magnetic reluctance R̄m) must
be included in the top equation of (2a)





dŪm

dz
= −

(
jωL

1
R2

WD

+
R̄m(ω)

jω

)
ϕ̄

dϕ̄

dz
= −jωCR2

WD Ūm

(2b)

For high frequency regimes, the term Z̄skin(ω) in (1b) increases
with ω1/2 [1]. Therefore, from (2b), we can see that MGTLs can
possibly outperform ELTLs at high frequencies if the term R̄m(ω)
varies with ωn, with n < 3/2. If n < 1 one will have R̄m/ω → 0
for increasing frequencies. In conclusion: the calculation of the pul
complex reluctance of magnetic pieces is a critical topic for MGTL
analysis.

In this paper, we pay attention to a radially inhomogeneous
tubular ferrite piece and proceed to the evaluation of its pul complex
reluctance as a function of the frequency.

Soft ferrites are ferrimagnetic media oxides of iron combined with
divalent transition metals like manganese, nickel, cobalt, magnesium,
or zinc. The addition of such metals in various proportions and
combinations allows the creation of many different materials whose
properties can be tailored for a variety of uses. Ferrites are very poorly
conductive materials, and, as such, they combine the properties of a
magnetic material with that of an electric insulator [6]. Ferrite losses
result from several mechanisms: conduction losses, polarization losses,
and magnetization losses. For time harmonic regimes, losses can be
taken into account via the imaginary part of the complex permittivity
and complex permeability, that is:

ε̄ = ε0

(
ε′ − j(ε′′ + σ/ω)

)
, µ̄ = µ0

(
µ′ − jµ′′

)
(3)
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Figure 2. Tubular ferrite. (a) Transversal section. (b) Longitudinal
section.

In this paper, the radial dependence of ε̄(r) and µ̄(r) is such that
the material behaves as an Euler-Cauchy medium [7]. The advantage
of this type of medium is that the solution for the electric and magnetic
fields can expressed exactly in closed form involving a mere sum of two
powers of the radial distance.

Figure 2 depicts transversal and longitudinal sections of the
tubular ferrite to be analyzed.

2. ELECTROMAGNETIC FIELD EQUATIONS

2.1. Euler-Cauchy Tubular Conductor

In a recent paper [7], an Euler-Cauchy radially inhomogeneous tubular
conductor was analyzed in the frequency domain. Considering the case
of very good conductors the Maxwell curl equations

∇× H̄ = σĒ (4)
∇× Ē = −jωµH̄ (5)

were utilized to obtain the non-ordinary differential equation governing
the axial electric field

r2 d2Ē

dr2
+ r

dĒ

dr

(
1− r

µ

dµ

dr

)
+

(
r k̄(r)

)2
Ē = 0 (6)

where
k̄(r) =

√
−jωµ(r)σ(r) (7)

By enforcing the following radial variations for µ(r) and σ(r) in
the range r1 ≤ r ≤ r2

µ(r) = µ2

(
r

r2

)p

, σ(r) = σ2

(r2

r

)2+p
(8)
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it was shown that (6) could be transformed into a homogeneous second
order Euler-Cauchy equidimensional equation [8]:

r2 d2Ē

dr2
+ αr

dĒ

dr
+ β2Ē = 0 (9)

where

α=1− p = 1− r

µ(r)
dµ(r)

dr
= constant independent of r (10)

β2=−jωr2µ(r)σ(r)=
(
k̄2r2

)2=
(
k̄1r1

)2=constant independent of r (11)

where k̄1 = k̄(r1) and k̄2 = k̄(r2). The great advantage of (9) is that
it has an exact closed form solution, given by the sum of two terms
which are powers of the radial coordinate r

Ē(r) = E1 rm1 + E2 rm2 (12)

where E1 and E2 were obtained from boundary conditions, and where
m1 and m2 are such that





m1, 2 = p/2±
√

(p/2)2 − β2

m1 + m2 = p = 1− α

m1m2 = β2 =
(
k̄2r2

)2 =
(
k̄1r1

)2

(13)

The pul impedance Z̄(ω) of the Euler-Cauchy tubular conductor
was obtained dividing Ē(r2) by the current intensity Ī flowing in the
conductor, yielding

Z̄(ω) =
Ē(r2)

Ī
=

m2Q
m1 −m1Q

m2

2πr2
2σ2 (Qm2 −Qm1)

(14)

where Q is the radii ratio of the tubular conductor, Q = r2/r1.

2.2. Euler-Cauchy Tubular Ferrite

In this work we consider that the tubular ferrite (see Fig. 2) carries a
weak magnetic flux φ̄, so that a linear behavior can be assumed.

In the analysis of tubular ferrites (hollow rods), the equations in
(4) and (5) must change to

∇× H̄ = jωε̄Ē (15)
∇× Ē = −jωµ̄H̄ (16)

where the electric field is azimuthal, Ē = −Ē θ̂, and the magnetic field
is axial, H̄ = H̄ ẑ.
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Let us consider a inhomogeneous tubular ferrite where permeabil-
ity and permittivity are allowed to vary with the radial coordinate,
µ̄(r), ε̄(r).

The non-ordinary differential equation governing the axial
magnetic field is obtained from (15) and (16), yielding

r2 d2H̄

dr2
+ r

dH̄

dr

(
1− r

ε̄

dε̄

dr

)
+

(
r k̄(r)

)2
H̄ = 0 (17)

where
k̄(r) = ω

√
µ̄(r)ε̄(r) (18)

In order to transform (17) into an Euler-Cauchy equation, like
in (9), we must enforce

ε̄(r) = ε̄2

(
r

r2

)p

, µ̄(r) = µ̄2

(r2

r

)2+p
(19)

where p, the inhomogeneity parameter,

p =
r

ε̄

dε̄

dr
= constant independent of r (20)

can be arbitrarily chosen.
The exact closed form solution for the axial magnetic field is given

as in (12)
H̄(r) = H1 rm1 + H2 rm2 (21)

where m1 and m2 are given as in (13):




m1,2 = p/2±
√

(p/2)2 − β2

m1 + m2 = p = 1− α

m1m2 = β2 =
(
k̄2r2

)2 =
(
k̄1r1

)2

(22)

but, where,
k̄1 = ω

√
µ̄1ε̄1, and k̄2 = ω

√
µ̄2ε̄2 (23)

In the above expressions we have: µ̄1 = µ̄(r1), µ̄2 = µ̄(r2), ε̄1 =
ε̄(r1), and ε̄2 = ε̄(r2).

3. FIELD SOLUTION OF THE EULER-CAUCHY
TUBULAR FERRITE

In order to determine the constants H1 and H2 in (21) we must
first evaluate the azimuthal electric field inside the tubular conductor.
From (15)

Ē = −Ē θ̂ =
∇× H̄

jωε̄
= − 1

jωε̄

dH̄

dr
θ̂
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and from (21) we find

Ē(r) =
1

jωrε̄(r)
(H1m1r

m1 + H2m2r
m2) (24)

Taking into account that the tubular ferrite carries a z-oriented
magnetic flux φ̄, and that B ≈ 0 for 0 < r < r1, the constants H1 and
H2 can be obtained by application of Faraday’s induction law [1], to
circumferential paths of radii r1 and r2,{

Ē(r1) = 0

2πr2Ē(r2) = jωφ̄
(25)

Substituting (25) into (24) we find for H1 and H2



H1 = ξ × m2 r
−m1
1

Qm2−Qm1

H2 = ξ × m1 r
−m2
1

Qm1−Qm2

where

{
Q = r2

r1

ξ = φ̄
2πr2

2µ̄2

(26)

Plugging (26) into (21) leads to

H̄(r) =
φ̄

2πµ̄2r2
2 (Qm2 −Qm1)

(
m2

(
r

r1

)m1

−m1

(
r

r1

)m2
)

(27)

4. PER UNIT LENGTH COMPLEX MAGNETIC
RELUCTANCE

The pul complex reluctance of the tubular ferrite is obtained from the
ordinary definition [1],

Ūm = R̄m φ̄ (28)

where Ūm = H̄(r2) is the pul magnetic voltage along z on the outer
surface of the tubular piece. From (27) we find

R̄m(ω) =
m2Q

m1 −m1Q
m2

2πr2
2µ̄2 (Qm2 −Qm1)

(29)

The striking similarity between the formula of the complex
reluctance in (29) and the formula of the complex impedance in (14)
is worth noting; the role played by σ2 in (14) is played by µ̄2 in (29).
Note, however, that the roots m1 and m2 in (14) and (29) are not the
same, because of the definition of k̄ in (7) and (18).

To gain more physical insight about the meaning of the pul
reluctance in (28) we can use the complex Poynting vector and the
complex Poynting theorem [1]. The complex Poynting vector is S̄(r) =
1
2Ē× H̄∗ = −1

2Ē(r)H̄∗(r) r̂. The inward flux of the complex Poynting
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vector across the lateral surfaces of the tubular ferrite gives the complex
power

P̄ =
∫

Slat

S̄· nidS = 1
2

∫
Sr=r2

Ē(r2)H̄∗(r2)dS− 1
2

∫
Sr=r1

�̄E(r1)H̄∗(r1)dS (30)

where, from (25), Ē(r1) = 0 and Ē(r2) = jωφ̄/(2πr2).
Taking into account that H̄(r2) = Ūm = R̄m φ̄, and that Sr=r2 =

1× 2πr2, Equation (30) leads to

P̄ = jωR̄∗
m φ2

rms (31)

Breaking R̄m into its real and imaginary parts, R̄m =
(
R̄m

)
R

+
j
(
R̄m

)
I
, and interpreting the complex power via the complex Poynting

theorem we find

P̄ = ω
(
R̄m

)
I
φ2

rms + jω
(
R̄m

)
R

φ2
rms = Ploss + j2ω ((Wm)av − (We)av)

From where we conclude



(R̄m)R = 2
(Wm)av − (We)av

φ2
rms

(R̄m)I =
Ploss

ωφ2
rms

(32)

where Ploss denotes the time-averaged ferrite power losses.
According to (32), the reluctance imaginary part

(
R̄m

)
I

is always
positive. Conversely, the reluctance real part

(
R̄m

)
R

can be either
positive or negative; positive when (Wm)av > (We)av, negative when
(We)av > (Wm)av.

4.1. Low-frequency Approximation

From (22), considering the limit case ω → 0, (β = 0), we have m1 = p
and m2 = 0. Also, in that case, magnetization losses are absent, µ̄ = µ.
Therefore, from (29) we get

(
R̄m

)
ω=0
p6=0

=
p

2πr2
2µ2 (Qp − 1)

(33)

The particular situation p = 0 leads to an indetermination, which
is easily solved by taking into account that

lim
p→0

Qp → 1 + p ln Q

from where we find
(
R̄m

)
ω=0
p=0

=
1

2πr2
2µ2 ln(Q)

(34)
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4.2. High-frequency Approximation and Case p = 0

The case p = 0 and the high-frequency situations are described by the
same condition: β À p. From (22), it results m1 ≈ jβ and m2 ≈ −jβ.
Therefore, from (29) we get

(
R̄m

)
HF

=
jω

2πr2

√
ε̄2

µ̄2

(
Qjβ + Q−jβ

Qjβ −Q−jβ

)
(35a)

where, we recall that β is a dimensionless complex given by β =
ωr2

√
µ̄2ε̄2, and and Q = r2/r1. Equation (35a) can be given a different

look by defining the radii ratio as Q = eq, where

q = ln(r2/r1)

Substituting Q = eq into (35a) one obtains

(
R̄m

)
HF

=
ω

2πr2 tan(qβ)

√
ε̄2

µ̄2
(35b)

which allow us to foresee that resonance phenomena are certain to
occur at periodically spaced frequencies (whenever the time-averaged
electric and magnetic energies stored in the tubular ferrite became
equal). Resonance peaks do not go to infinity because of the presence
of ferrite losses.

4.3. Results Validation

Euler-Cauchy tubular ferrites are not a familiar topic to the literature.
Comparison of our results with results already published by other
authors is not viable. One simple thing that we can do is to compare
the results developed in this paper with already known theoretical
results — which is easy for stationary regimes (ω = 0).

For stationary regimes, the azimuthal electric induction field E
originated by dφ/dt vanishes. Therefore, from (15), the axial magnetic
field must obey ∇ ×H = 0, which implies that H = Hz cannot vary
with r. Thus we write H(r) = H2 = constant. However, the magnetic
induction field may vary with r because B(r) = µ(r)H2.

If we take the inhomogeneity parameter p = −2, we conclude from
(19) that µ(r) is also r-invariant, µ(r) = µ2, and, consequently the
magnetic induction field is uniformly distributed in the cross-section
of the tubular ferrite, B(r) = B = µ2H2. In this case, the magnetic
flux carried by the ferrite piece is φ = BS = µ2H2 × π(r2

2 − r2
1).

Hence, the magnetic reluctance is

Rm =
H2

φ
=

1
µ2S

=
1

µ2 π(r2
2 − r2

1)
(36)



80 Brandão Faria

Now, if we go back to (29) and make p = −2, we find

(
R̄m

)
ω=0
p6=0

=
−2

2πr2
2µ2 (Q−2 − 1)

=
1

µ2 π(r2
2 − r2

1)

which exactly confirms the result in (36).
Another stationary field case that can be validated corresponds

to p = 0. According to (19), the magnetic permeability depends
on r through µ(r) = µ2 (r2/r)2. The magnetic induction field is
not uniformly distributed in the cross section of the piece: B(r) =
µ2H2 (r2/r)2. The magnetic flux is evaluated via

φ =
∫

S

B(r) dS =

r2∫

r1

µ2H2

(r2

r

)2
2πrdr = 2πµ2H2r

2
2 ln

(
r2

r1

)

and the corresponding magnetic reluctance is

Rm =
H2

φ
=

1
2πr2

2µ2 ln (r2/r1)
(37)

Now, if we go back to (34), we find, for p = 0
(
R̄m

)
ω=0
p 6=0

=
1

2πr2
2µ2 ln (Q)

, with Q = r2/r1

which clearly agrees with (37).
In Section 5, dedicated to numerical computations, results will also

be validated by resorting to the software code MLCS (Multi-Layered
Cylindrical Structures) that was developed in [9] for impedance
calculations, and that has suffered minor modifications in order to
permit reluctance calculations.

5. NUMERICAL RESULTS AND DISCUSSION

As referred to in Section 1, our focus of attention is on high frequency
regimes where MGTLs may possibly find future application. Therefore,
as far as simulation results are concerned, attention is only paid to the
results developed in Subsection 4.2. In other words, only the case p = 0
is addressed.

In this numerical application the following simplifying assump-
tions are considered. As a poorly conductive material, the ferrite con-
ductivity is neglected. The complex permittivity is assumed to negli-
gibly depend on the frequency, polarization losses being neglected.

On the contrary, the complex magnetic permeability is considered
to depend strongly on the frequency, magnetization losses being
accounted.
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Figure 3. Real and imaginary parts of the relative permeability
against frequency. The solid lines describe the complex function
in (38). Circle marks correspond to fitting points extracted from
Ref. [10].

A MnZn ferrite medium, characterized in a commercial data
sheet [10], is employed for exemplification purposes. In [10], a
logarithmic plot of the real and imaginary parts of the relative complex
permeability is offered in the range 1 kHz to 1 MHz.

Figure 3 depicts a graphical attempt to reproduce the curves
shown in [10] capturing their most important features, namely:

Maximum relative permeability: (µr)max = (µr)ω=0 = 104.
Real and imaginary parts of the relative permeability equal to

1
2 (µr)max at f = f0 = 0.2MHz.

Imaginary part of the relative permeability equal to 5
100 (µr)max

at f = 10 kHz, and equal to 1
5 (µr)max at f = 1 MHz.

The curves in Fig. 3 were obtained using the following fitting
function

µ̄f (f)
µ0

=
(

(µr)∞ +
(µr)max

1 + (f/f0)2

)

︸ ︷︷ ︸
µ′

−j

(
(µr)max

1 + (f/f0)2

(
f

f0

))

︸ ︷︷ ︸
µ′′

(38)

where (µr)∞ ¿ (µr)max. We will assume that (µr)∞ = 1.
The following parameters, r2 = 5 mm and Q =

√
2, are assigned

to the tubular geometry.
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For the case p = 0, according to (19), we must have

ε̄(r) = ε2 = ε = constant, µ̄(r) = µ̄2

(r2

r

)2

For simulation purposes we considered ε = 10ε0 and, from (38),

µ̄2 = µ̄(r2) = µ0 + µ0

(
1
2 (µr)max

1 + (f/f0)2

)(
1− j

f

f0

)
(39)

µ̄1 = µ̄(r1) = Q2µ̄(r2) = 2µ̄2

To start with, we evaluated from (34) the tubular ferrite pul
reluctance at f = 0, yielding

(Rm)ω=0 = 2.924× 106 H−1m−1

Next, from (35), we computed the normalized reluctance

(
R̄m(f)

)
N

=

(
R̄m

)
HF(

R̄m

)
ω=0

(40)

in the range 1Hz to 1 MHz. Results obtained for the real an imaginary
parts of

(
R̄m

)
N

are shown in Fig. 4. From where we see that the real
part remains practically invariant, while the imaginary part starts from
zero and increases linearly with f . Note, in addition, that the crossing
of the two curves occurs at f = f0 = 0.2MHz, i.e., when µ′ = µ′′.

In order to interpret and discuss the results obtained one should
bear in mind that, in the range 1 Hz to 1 MHz, the β factor in (35)
is quite small, β = ωr2

√
µ̄2ε ¿ 1, and in that case tan(qβ) ≈ qβ.

Therefore, from (35b) and (39) it results
(
R̄m

)
HF

≈ 1
2πr2

2 ln (Q) µ̄2
≈ 1 + j (f/f0)

2πr2
2 ln (Q) (µ2)ω=0

(41a)

It is worth mentioning that the result in (41a) is totally
independent of the conductive and dielectric properties of the ferrite.
Even if a complex permittivity ε̄ = ε0 (ε′ − j(ε′′ + σ/ω)) had been
enforced, it would play no role at all, insofar β ¿ 1.

By using (41a), the normalized reluctance is obtained
(
R̄m

)
N
≈ 1 + j (f/f0) (41b)

which clearly justifies the computation results offered in Fig. 4.
We run MLCS for f = 1 Hz, 1 kHz, and 1MHz. The circle marks

superposed to the solid lines in Fig. 4 correspond to output results
from MLCS. The agreement is remarkable.

Let us now explore the frequency window from 20MHz to 20GHz,
where f À f0. The computation of the normalized reluctance in (40)
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Figure 4. Real and imaginary parts of the normalized complex
reluctance against frequency in the range 1Hz to 1MHz. Solid lines
were obtained from (40), (35) and (39). Circle marks were obtained
using MLCS algorithm [9].

produces the graphic plot shown in Fig. 5, with huge values for both
the real and imaginary parts, with the real part changing from positive
to negative values. We are observing the first resonance phenomenon
we alluded to at the end of Subsection 4.2.

For f À f0 the complex permeability µ̄2 in (39) simplifies to

µ̄2 ≈ µ0 (1− jκ/2) , κ = (µr)maxf0/f (42)

where κ is about 10−1 at 10 GHz. Consequently,
(
R̄m

)
HF

in (35)
transforms into

(
R̄m

)
HF

≈ ω(1 + jκ/2)
2πr2 tan(ϑ(1− jκ/2))

√
ε

µ0
, ϑ = qr2ω

√
εµ0 (43)

The first resonance event occurs when the tangent function in
the denominator approaches zero, that is, when ϑ ≈ π/2. The
corresponding resonance frequency is

fr =
1

4qr2
√

εµ0
≈ 15GHz

which is confirmed in Fig. 5.
Note that, contrary to the case β ¿ 1, here, the behavior of the

complex reluctance does depend on the ferrite dielectric properties.
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Figure 5. Real and imaginary parts of the normalized complex
reluctance against frequency in the range 20 MHz to 20 GHz. Solid lines
were obtained from (40), (35) and (39). Circle marks were obtained
using MLCS algorithm [9].

For validation purposes we rerun MLCS for f = 0.1GHz, 1 GHz,
and 10GHz. The circle marks superposed to the solid lines in Fig. 5
correspond to output results from MLCS. Again, the agreement is quite
good.

6. CONCLUSION

Magnetic transmission lines (MGTL) are an open field of research;
they can guide an electromagnetic wave by using a pair of parallel
ferrimagnetic pieces carrying a magnetic flux. Preliminary studies on
MGTLs have raised the possibility that MGTLs can perform better
than ordinary electric transmission lines at very high frequencies.
However, such a possibility is critically dependent on the longitudinal
magnetic voltage drop along the two pieces, that is to say that MGTL
performance requires a detailed knowledge of the per unit length
complex reluctance of its component pieces.

This paper addressed the theoretical analysis, and the computa-
tion, of the per unit length complex reluctance of an inhomogeneous
Euler-Cauchy tubular ferrite, where the frequency-dependent features
of the complex magnetic permeability are taken into account. Com-
putation results covering the range 1 Hz to 20GHz were obtained and
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validated. For frequencies up to 1MHz the real part of the complex
reluctance remains practically independent of the frequency, whereas
the imaginary part increases linearly. However, in the gigahertz band,
a remarkable resonance effect, with very large values of the complex
reluctance, showed up.

Results obtained were based on data pertaining to a particular
ferrite specimen, and cannot be generalized; in fact, ferrite behavior is
strongly dependent on its chemical composition, which may vary a lot
among specimens.
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