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Abstract—In this paper, novel space-time adaptive processing
algorithms based on sparse recovery (SR-STAP) that utilize weighted
[i-norm penalty are proposed to further enforce the sparsity and
approximate the original [g-norm. Because the amplitudes of the
clutter components from different snapshots are random variables,
we design the corresponding weights according to two different ways,
i.e., the Capon’s spectrum using limited snapshots and the Fourier
spectrum using the current snapshot. Moreover, we apply the
weighted idea to both the direct data domain (D3) SR-STAP and SR-
STAP using multiple snapshots from adjacent target-free range bins.
Simulation results illustrate that our proposed algorithms outperform
the existing SR-STAP and D3SR-STAP algorithms.

1. INTRODUCTION

By performing a joint-domain optimization of the spatial and temporal
degrees-of-freedom (DOFs), space-time adaptive processing (STAP)
can improve small target detection in strong ground clutter returns [1-
3]. However, there are many practical limitations preventing the use
of the optimum STAP processor. One of them is the requirement of a
large number of independent and identically distributed (IID) training
samples to estimate the interference covariance matrix, which becomes
even more serious in non-stationary and nonhomogeneous interference
environments [2—4].

Recently, motivated by sparse representaton /sparse recovery (SR)
techniques used in radar [5-8], several authors have considered SR
ideas for moving target indication (MTI) and STAP problems, such
as sparse-recovery-based STAP type (SR-STAP) algorithms in [9-15],
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L1-regularized STAP filters in [16,17], etc.. The basic idea of SR-
STAP type algorithms is to regularize a linear inverse problem by
including prior knowledge that the clutter spectrum is sparse in the
angle-Doppler plane. A global matched filter (GMF) is applied to
the basic STAP problem, which points out that it has the advantage
of being able to work on a single snapshot without prior estimation
of the interference matrix since the GMF identifies both the targets
and a model of the clutter [9]. Under the assumption of the known
clutter ridge in angle-Doppler plane, the authors in [10] imposed a
sparse regularization based on /;-norm penalty to estimate the clutter
covariance by excluding the clutter ridge. In [11], the authors presented
a post-processing step after clutter whitening using a standard STAP
technique by applying sparse regularization. To reduce the need for
secondary data or for accurate prior knowledge of the clutter statistics,
an iterative adaptive approach (IAA) is presented to compute the
clutter covariance matrix in [12]. Unlike the above approaches
to directly form the angle-Doppler imaging, the authors in [13-15]
tried to estimate the interference covariance matrix using the SR
techniques first. The Capon’s optimal filter was then constructed with
the estimated interference covariance matrix to suppress the clutter.
Compared with conventional STAP algorithms, the SR-STAP type
algorithms provide high-resolution of the clutter spectrum estimate
and exhibit significantly better performance in a very small number of
snapshots.

In this paper, we propose a new SR-STAP algorithm that utilizes
weighted [;-norm penalty to obtain a better approximation of Iy-
norm and further enforce the sparsity. Motivated by designing the
penalty weights using the Capon spectrum to estimate the target’s
DOA in [19] and considering the situation of IID samples limited
in the nonhomogeneous environments, we first simply modify this
idea using the diagonal loading technique to estimate the Capon’s
spectrum, use that to form the [j-norm penalty weights and apply
it to the STAP problem. But this kind of approach requires a matrix
inverse resulting in a high computational complexity to form the [;-
norm penalty weights. Thus, we design the corresponding weights for
each snapshot according to its own Fourier spectrum calculated by
the current snapshot instead of the Capon’s spectrum, which results
in a lower computational complexity. Furthermore, we apply the
weighted idea to both the direct data domain (D3) SR-STAP and SR-
STAP using multiple snapshots from adjacent range bins. Numerical
simulations are performed to evaluate the performance of our proposed
algorithms. The following parts of this paper are organized as: the
signal model of STAP in airborne radar systems is first introduced
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in Section 2. Section 3 details the proposed weighted SR-STAP
algorithms. Section 4 accesses the performance of the proposed
algorithms by showing the signal-to-interference ratio (SINR), and
detection performance with simulated data. Section 5 provides the
summary and conclusions.

2. SIGNAL MODEL

In airborne radar systems, a general model for the space-time clutter
plus noise snapshot x is given by [1]

Ng Nc

X=X.+n= Z Z Um,nv(¢m,na fm,n) +n, (1)

m=1n=1

where n is the Gaussian white thermal noise vector with the noise
power 2 on each channel and pulse; N, is the number of range
ambiguities; N, is the number of independent clutter patches over the
iso-range of interest; ¢, is the angle-of-arrival (AOA) of the mnth
clutter patch; fy, . is the corresponding Doppler frequency; oy, is
the complex amplitude for the mnth clutter patch with each element
proportional to the square-root of the clutter patches’ clutter-noise-
ratio (CNR); and v(¢mn, fmn) is the NM x 1 space-time steering
vector for the clutter patch with the AOA ¢,,, and the Doppler
frequency fy, . Here, N is the number of pulses in a coherent process
interval (CPI) and M is the number of array channels.

The space-time steering vector is given as a Kronecker product of
the temporal and spatial steering vectors, denoted as v(¢m.n, fm.n) =
Vi(frmn) @ Vs(dmpn). Ignoring the impact of range ambiguities and
considering a uniform linear array (ULA) with inner spacing d,, the
temporal and spatial steering vectors of the nth clutter patch are given

by [1]

vi(fn)=[1,exp(j27 fn), ..., exp(j2m(N — 1) f)]", (2)
. . T
Vs(dn)= {1,exp<72;\rda sind)n> e expW)\_l)da sin ¢n>] . (3)

where ()7 denotes the transposition operation, and ). is the operate
wavelength. If we stack all clutter patches’ amplitudes into a vector
o =[o1,...,0n.]7, then the clutter component in (1) can be rewritten
as

X, = Vo, (4)

where V = [v(f1,¢1),...,V(fn,, ®n,)] denotes the clutter space-time
steering matrix. Herein, the clutter covariance matrix based on (4) can
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be expressed as
R, = E[xx] = vV (5)

where ()7 denotes the conjugate transposition operation and ¥ =
E[oo™]. Under the condition that the clutter patches are independent
from each other, ¥ = diag(a), a = [a1,...,an.]” and a, = E||o,|?],
n=1,..., N, for the statistics of the clutter patches [1,2].

3. PROPOSED WSR-STAP ALGORITHM

In this section, we first provide an alternative method to describe the
received signal. Since the clutter return is a function of the Doppler
frequency and the AOA, we discretize the whole angle-Doppler plane
into Ng = pgN, Ny = psM (pg, ps > 1) grids, where Nz and Ny are the
number of Doppler bins and the number of angle bins, respectively [10].
Then the clutter component in (4) can be rewritten as [10]

X, = P, (6)

where v = [y1,1,71,2, - - - ,’yNd’NS]T denotes the NyN; x 1 angle-Doppler
profile with non-zero elements representing the clutter spectrum, and
the NM x NygNg; matrix ® is the space-time steering dictionary, as
given by

P = [V(fb ¢1)7 cee 7v(f17 ¢Ns)> s 7V(de7 ¢Ns)] (7)

Thus, the clutter covariance matrix can be rewritten as
R, = ®X®7 (8)
where 3 = diag(a), a = [a11,812,--.,an,n,]T and aj = EH%‘,HQ]»

1=1,2,...,Ng, kK = 1,2,..., Ns. The received signal in the target
range bin can be reformulated as

X =as+ Py +n, 9)

where « is the target complex gain and s the NM x 1 space-time
steering vector in the target look-direction with similar formulation as
v. From (8), we observe that we can estimate the clutter covariance
matrix R, by estimating the statistics a first, which can be calculated
via two approaches, i.e., using the snapshot in the test range bin and
using snapshots from adjacent target-free range bins.

Nonetheless, both approaches can be converted into the following
optimization problem known as the least absolute shrinkage and
selection operator (LASSO) [13-15]

4 =argmin|ly[i subject to [x — @[3 <, (10)
Y
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or the basis pursuit denoising (BPDN) [9-11, 14], given as

. .1
3= argmin {5 @1+ sl }. (1)

where ||-]|, (p = 1, 2) denotes the [,-norm,  the positive regularization
parameter that provides a tradeoff between the [;-norm and ls-norm,
and € the noise error allowance.

By inspecting (10) and (11), there are two aspects should be
noted. One is that the entries in « usually do not satisfy |v; x| < 1,
1=1,2,...,Ng, k=1,2,..., Ng, which means that the /;-norm is not
the convex envelope of the lp-norm function. In another word, the I;-
norm is not a good convex approximation of lyj-norm. The other aspect
is that the nonzero entries of the angle-Doppler profile v are random
variables, which results in different values of the same nonzero entry
from different snapshots.

With regard to the above two aspects, motivated by the work
in [18], we can employ a weighted /;-norm penalty to counteract the
influence of the signal magnitude on the /; penalty function. Thus, we
have the following optimizations

4 = argmin |[W+l||; subject to [x — @[3 <, (12)
¥

or
. . J1
= arguin {5 x — @[3+ WAl | (13

where W is a diagonal matrix with positive elements Wi 1, Wi,
..., Wn,.n, on the diagonal and zeros elsewhere. The question that
arises is how to design the weight matrix W. Intuitively, the weights
should change with the signal environments. Moreover, they should
be inversely proportional to the true signal magnitude. However, it
is hard to obtain the exact values of the true signal magnitude and
should be estimated from the received snapshots. Several authors
in [19] try to design the penalty weights using the Capon spectrum
estimated from the snapshots to estimate the target’s DOA. In this
paper, we can simply modified this idea and apply that to the STAP
applications. Since the snapshots are limited for STAP problem,
especially in nonhomogeneous environments, we estimate the Capon’s
spectrum using the diagonal loading technique, as given by

O — 1
"V (fns 00)H RGabonV (frns dn)|

where m=1,2,...,Ng,n=1,2,..., N, ficapon = % ZZLZ/I xlel + 41,
L' is the number of snapshots to estimate the Capon’s spectrum and ¢ is

(14)
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the diagonal loading factor. Then the penalty weights can be designed
as Wi = 1/Qmn. But this kind approach requires a large number
of snapshots to obtain a good Capon spectrum and the accuracy will
degrade when the snapshots do not satisfy IID condition. Furthermore,
the Capon spectrum needs a matrix inverse resulting in expensive
computational complexity. To overcome the above problems, we devise
the l;-norm penalty weights for each snapshot using its own Fourier
spectrum computed by the current snapshot, which is given by

1

[V (fo &) x|
where m = 1,2,...,Ng, n = 1,2,...,N;. It is seen that the
proposed algorithm can be applied to arbitrary situations, unlike the
approach in [10] requiring to know the exact clutter bridge in the angle-
Doppler plane. The above optimization problems can directly use an
optimization toolbox called CVX Matlab Toolbox provided by [20].

For the weighted D3SR-STAP using the snapshot only in the test

range bin, we can estimate the angle-Doppler profile by solving (12)
or (13) with the Fourier spectrum or the Capon’s spectrum. Then the

clutter covariance matrix R, is computed according to the approach
in [15] after excluding the signal components by using some prior
knowledge of the signal under detection. Specially, it first determines
the signal of interest area 2 in the anlge-Doppler plane using the prior
knowledge of the target signal (it is usually assumed known in STAP
problem) [15]. And then the clutter covariance matrix can be estimated
by

Win = (15)

NdaNs
Re= Y aixv(fai ou)v (faidr), ik ¢ Q. (16)
i=1,k=1
Finally, the STAP filter weights can be calculated via the Capon’s
optimal filter, as given by

W = p[Re+621] s, (17)
2
n

where p is a constant which does not affect the SINR performance, &
is the estimated noise power level, and I denotes the identity matrix.
For the weighted SR-STAP using multiple snapshots from adjacent
range bins, we can also estimate the angle-Doppler profile by
solving (12) or (13) with the Fourier spectrum or the Capon’s

spectrum. Then the parameter a; can be calculated by

L

2 1 Z .

a; = Z ‘Vl;i‘zu = 1727 o 7L7 (18)
=1
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where L is the number of training snapshots and 4; the estimated
angle-Doppler profile for the Ith snapshot. Substituting the estimated
parameter a into (8), we can obtain the estimated clutter covariance
matrix. At last, the STAP filter weights can also be computed by (17).

4. NUMERICAL EXAMPLES

We assess the weighted SR-STAP and D3SR-STAP algorithms
by showing the SINR performance and probability of detection
performance using simulated radar data. The weighted SR-STAP and
D3SR-STAP using the Capon’s spectrum are shortened as CWSR-
STAP and D3CWSR-STAP, and the weighted SR-STAP and D3SR-
STAP using the Fourier spectrum are shortened as FWSR-STAP and
D3FWSR-STAP. If there are no special illustrations, the simulated
scenarios are supposed with the following parameters: side-looking
ULA with half length inner spacing, uniform transmit pattern, M = 8,
N = 8, carrier frequency of f. = 450 MHz, pulse repetition frequency
(PRF) of f, = 300Hz, platform velocity of v, = 50m/s, platform
height of h, = 9000m, clutter-to-noise ratio (CNR) of 50dB, and
unitary thermal noise power. For all algorithms, the noise allowance
parameter €, the diagonal loading factor § and 62 are both set to the
thermal noise power level. The selection of the size of the discretized
angle-Doppler grids NyNg plays an important role in the proposed
technique. The details of the discretization is discussed in [14].
Generally, the larger the size of discretized angle-Doppler grids, the
better the accuracy of the model x. = ®~ to represent x. = Vo. But
because of the existence of the noise and the high correlation of the
columns of space-time steering dictionary ®, the recovered accuracy
will not improve much when the size of discretized angle-Doppler grids
is over some value. While the computational complexity will become
higher with the increase of the size of the discretized angle-Doppler
grids. Thus it is a trade-off to select a suitable size of the discretized
angle-Doppler grids to obtain both good performance and acceptable
computational complexity. It is concluded that p; = ps = 4 is a good
choice for the scenarios above [14].

4.1. Performance of Proposed Weighted SR-STAP
Algorithms

In the first example, we access the SINR performance against the
snapshots of the CWSR-STAP algorithm, the FWSR-STAP algorithm
and the conventional SR-STAP algorithm. The algorithms are
simulated over 10 snapshots and the target is located at boresight (0°)
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Figure 1. SINR performance against the number of snapshots of the
FWSR-STAP, CWSR-STAP and SR-STAP algorithms.

with Doppler frequency of 100 Hz and the signal-to-noise ratio (SNR)
of 0dB. The output SINR is defined by

~H 12
SINR — 10logyy 105
0 WwHRw|
where R is the true clutter plus noise covariance matrix. Here, 100
independent Monte Carlo simulations are carried out to obtain the
average performance. The Capon’s spectrum is estimated using L' = 4
snapshots for the CWSR-STAP algorithm. The curves in Figure 1
show that the weighted SR-STAP algorithms have a faster convergence
and a better steady-state performance than the conventional SR-STAP
algorithm. This is because this kind of algorithms can provide a
better clutter covariance matrix estimate through the weighted [;-
norm penalty scheme. Although the FWSR-STAP algorithm has a
lower steady-state performance than the CWSR-STAP algorithm, it
should be noted that we use only the current snapshot to design the
penalty weights in the FWSR-STAP algorithm, while in the CWSR-
STAP algorithm it requires multiple snapshots and a good diagonal
loading factor. Furthermore, the [{-norm penalty weights in the
FWSR-STAP algorithm has a much lower complexity than the CWSR-

STAP algorithm, which requires a matrix inverse operation in (14).
In the second example, we evaluate the SINR performance against
the Doppler frequency of the weighted SR-STAP algorithms. The
potential target Doppler frequency space from —150 to 150 Hz is
examined and other target’s parameters are the same as the first
example. We consider three different scenarios: (i) the ideal case where
the space-time clutter plus noise snapshots are generated through (1)
with no range ambiguity; (ii) the temporal decorrelation case where we

(19)
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consider the inner clutter motion (ICM); (iii) the spatial decorrelation
case where we consider the channel mismatch. The ICM can be
formulated as a general model that proposed by J. Ward in [1], which
is suitable over the water scenario. The temporal autocorrelation of
the fluctuations is Gaussian in shape with the form:
2 272
ctm) = exp { -T2
C

where T, is the the pulse repetition interval and o, the velocity
standard deviation (in the example. We set o, = 0.5 corresponding
to a serious clutter Doppler spreading situation). With regard to the
channel mismatch, we only consider the angle-independent array errors
described in [13], i.e., the amplitude and phase errors are modeled as
a narrowband case as follows:

(20)

L for 0<6. < Aec
D Jiv S Ocg = A€
p(e.) {0 elsewhere ’ (21)
and
L for -8z <5 <A
5c.) = { Be 2 =0 =" 29
P(%,) {0 * elsewhere (22)

where p(dc,) and p(d,) are the pdfs (uniform) associated with the
amplitude and phase errors respectively. In the example, we set
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decorrelation case; (iii) the spatial CWSR-STAP and SR-STAP
decorrelation case. algorithms with three different
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temporal decorrelation case; (iii)
the spatial decorrelation case.
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A€, = 0.01 and Ae, = 1°. The clutter eigenspectrum (which is
computed by taking an eigenvalue decomposition to the true clutter-
noise covariance matrix) about these three cases are depicted in
Figure 2. It is illustrated that the spatial and temporal decorrelation
will lead to the increase of clutter rank.

As shown in Figure 3, we set the number of the training
snapshots 4 for the FWSR-STAP algorithm, the CWSR-STAP
algorithm and the SR-STAP algorithm, and the clairvoyant SINR
performance is computed using the true clutter plus noise covariance
matrix under the ideal case [2]. The plots illustrate that the
weighted SR-STAP algorithms provide a narrower clutter notch and
a better SINR performance compared with the conventional SR-STAP
algorithm in all three cases. One also notes that the FWSR-STAP
provides a worse performance than the CWSR-STAP in both ideal
and spatial decorrelation cases, but obtains a better performance in
temporal decorrelation case. For better understanding of these results,
we take the estimated Fourier spectrum, estimated Capon’s spectrum
and estimated angle-Doppler profiles of one snapshot for example in
Figure 4 and Figure 5 (here, we focus on the results of the ideal
case and the temporal decorrelation case). Figure 4 shows that the
Capon’s spectrum exhibits a much better estimation than the Fourier
spectrum resulting in a better penalty weights designing. That is why
the CWSR-STAP can obtain a better performance than the FWSR-
STAP algorithm in the ideal case. For the temporal decorrelation
case, the true clutter spectrum becomes much broader due to the
Doppler spreading of the clutter, e.g., Figure 5(c). In this case, the
Capon’s spectrum estimated only by 4 snapshots, e.g., Figure 5(b),
is less sufficient even compared with the Fourier spectrum estimated
by the current snapshots, e.g., Figure 5(a). Thus, the performance of
the CWSR-STAP is worse than that of the FWSR-STAP algorithm.
Above conclusions are also can be observed by Figures 4(c)—(e) and
Figures 5(c)—(e).

From Figure 3, we also note that the performance of the algorithms
degrades when in presence of spatial or temporal decorrelations. That
is because the spatial or temporal decorrelations will lead to the clutter
rank increase, e.g., Figure 2. Herein, it requires a wider clutter
notch or, equivalently, more adaptive degrees of freedom for effective
cancelation [1].

In the third example, we present the probability of detection
performance (Py) versus the target SNR for the CWSR-STAP, the
FWSR-STAP and the SR-STAP algorithms. The false alarm rate Py,

is set to 107 and for simulation purposes threshold and P, estimates
are based on 5,000 samples from the target absence and presence
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respectively. We suppose the target is injected in the boresight (0°)
with Doppler frequency 100 Hz (the normalized Doppler frequency is
0.33). The other parameters are the same as those in the second
example. The curves plotted in Figure 6 illustrate that the weighted
SR-STAP algorithms provide suboptimal detection performance, but
remarkably, obtain a higher detection rate than the conventional SR-
STAP at an SNR level from —8dB to 0dB. It is also seen that the
performance of the FWSR-STAP algorithm is worse than that of the
CWSR-STAP algorithm in both ideal case and spatial decorrelation
case, but better than it in the temporal decorrelation case.

4.2. Performance of Proposed Weighted D3SR-STAP
Algorithms

In this subsection, we focus on the performance evaluation of the
weighted D3SR-STAP algorithms. Firstly, like the second example
in the Section 4.1, it plots the SINR performance against the target
Doppler frequency in Figure 7 (the simulation scenarios are the same
as those in the second example in the Section 4.1). Traditional
measurement (e.g., SINR in (19)) needs to know the true clutter
statistical information to evaluate this metric, which is unknown in
the D3 case. Thus, we simply calculate the output SINR as [15]

Nnmc
SINR = 10log; — 2p?i
>

N 27
o7 |WH (% p + 1p) |

wi's|

(23)
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Figure 7. SINR performance against the Doppler frequency of the
D3FWSR-STAP, D3CWSR-STAP and D3SR-STAP algorithms with
three different cases: (i) the ideal case; (ii) the temporal decorrelation
case; (iii) the spatial decorrelation case.

where Ny is the number of independent Monte Carlo runs (here,
Npme = 1000), s the space-time steering vector of the moving target,
and X, + ny, the clutter plus noise return in the test range bin. From
the figure, the similar conclusions as those in Section 4.1 the second and
third examples can also be obtained, i.e., (i) the weighted D3SR-STAP
algorithms outperform the conventional D3SR-STAP algorithm; (ii)
the D3FWSR-STAP provides worse performance than the D3CWSR-
STAP algorithm in both ideal case and spatial decorrelation case, but
better than it in the temporal decorrelation case. One note that the
improvement of SINR performance between the weighted D3SR-STAP
algorithms and conventional D3SR-STAP algorithm is greater than
that between the weighted D3SR-STAP algorithms and conventional
SR-STAP algorithm. That is why the weighted algorithms can obtain
a faster convergence than the conventional algorithm. Moreover,
it should point out that the performance of the D3FWSR-STAP,
D3CWSR-STAP or D3SR-STAP is better than that of the FWSR-
STAP, CWSR-STAP or SR-STAP using only one snapshot, which
can be observed from the Figure 1 and Figure 7 (where 18.6dB
in the D3FWSR-STAP, 19.0dB in the D3CWSR-STAP and 17.2dB
in the D3SR-STAP beat 12dB in the FWSR-STAP, 13.8dB in the
CWSR-STAP and 8.3dB in the SR-STAP when the target Doppler
frequency is 100 Hz in the ideal case). This is because the weighted
SR-STAP algorithms and the SR-STAP belong to a class of stochastic
methods which rely on training data to estimate the statistics of the
interference in order to null interferers, while the weighted D3SR-
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Figure 8. P; versus SNR with Py, = 1073 of the D3FWSR-STAP,
D3CWSR-STAP and D3SR-STAP algorithms with three different
cases: (i) the ideal case; (ii) the temporal decorrelation case; (iii) the
spatial decorrelation case.

Table 1. Average running time (s) for recovering one angle-doppler
profile.

Temporal Spatial
Schemes Ideal case | decorrelation decorrelation
case case
SR Scheme 7.1402 7.0182 7.0952
FWSR Scheme 7.1160 6.8539 6.8597
CWSR Scheme 7.5347 7.4607 7.5204

STAP algorithms and the D3SR-STAP algorithm belong to a class
of deterministic methods, which operate on a snapshot-by-snapshot
basis to determine the adaptive weights [2]. It is hard to obtain a good
statistics of the interference using only one snapshot from the adjacent
range bins even though the interference satisfies the IID condition
in the weighted SR-STAP algorithms or the SR-STAP algorithms.
However, in the weighted D3SR-STAP algorithms and the D3SR-STAP
algorithm, a deterministic method provides an estimate which comes
closer to the Cramer-Rao bound than do the results provided by a
stochastic methodology (see [2], Chapter 12).

Figure 8 illustrates the P; versus the SNR performance for the
weighted D3SR-STAP algorithms and the conventional D3SR-STAP
algorithm. The scenario parameters are the same as those in the
third example in the Section 4.1. The figure shows that the D3FWSR-
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STAP algorithm provides approximately detection performance as the
D3CWSR-STAP algorithm, but obtains a much higher detection rate
than the D3SR-STAP algorithm at an SNR from —6dB to 1dB.
Furthermore, compared with the results in Figure 7 and Figure 8,
we observe that the performance degradation of the D3SR-STAP
algorithm is larger than those of the weighted D3SR-STAP algorithms
when in presence of temporal decorrelation. Thus, from this point of
view, the weighted D3SR-STAP algorithms exhibit a better robustness
to the ICM than the conventional algorithm.

To provide a further investigation of the performance of the the
[1-norm penalty weighted scheme, we depict the average running time
(second, s) for recovering one angle-Doppler profile in Table 1. Here,
our simulations are operated on a standard desktop computer with
a 2.60 GHz CPU and 2GB of memory. It is seen that the CWSR
scheme has the highest computational complexity compared with the
FWSR scheme and SR scheme. One should also note that the FWSR
scheme even has a lower computational complexity compared with the
SR scheme, why this happens requiring a further investigation. In
addition, the average running time for recovering one angle-Doppler
profile using CVX toolbox is very high in airborne radar applications,
which makes this kind of algorithms hard to realization. Thus, to
exploit the advantages, i.e., the fast convergence and high performance
of weighted type algorithms, it is worthy designing fast weighted SR
algorithms in the future work.

5. CONCLUSION AND DISCUSSION

In this paper, we have presented novel weighted SR-STAP and D3SR-
STAP algorithms for airborne radar applications. The proposed
algorithms utilize a weighted /1-norm penalty based on the Capon’s
spectrum and the Fourier spectrum to further enforce the sparsity
and approximate the original [p-norm.  Simulation results have
shown that the FWSR-STAP and D3FWSR-STAP algorithms provide
approximately performance and lower computational complexity
compared with the CWSR-STAP and D3CWSR-STAP algorithms,
but remarkably outperform the conventional SR-STAP and D3SR-
STAP algorithms in terms of the SINR steady-state performance, the
convergence speed and the detection performance.

Further investigation is required on several issues: (i) it needs
to devise the fast weighted SR algorithms; (ii) the effect of
nonhomogeneous factors to the proposed methods (iii) the testing of
the proposed methods on real radar data.
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