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Abstract—The growing interest of Radar community in retrieving
the 3D reflectivity map makes both polarimetric SAR interferometry
and SAR tomography hot topics in recent years. It is expected
that combining these two techniques would provide much better
discriminating ability for scatterers lying in the same pixel. Generally,
this is about reconstruction of scattering profiles from limited and
irregular polarimetric measurements. As an emerging technique,
Compressive Sensing (CS) provides a powerful tool to achieve the
purpose. In this paper, we propose a `2,1 mixed norm sparse
reconstruction method for jointly processing multibaseline PolInSAR
data based on multiple measurement vector compressive sensing
(MMV-CS) model, and also address the signal leakage problem
with MMV-CS inversion by presenting a window based iterative
algorithm. The results obtained by processing simulated data show
that the proposed method possesses superior performance advantage
over existing methods.

1. INTRODUCTION

Synthetic Aperture Radar (SAR) systems provide the full ability
of acquiring high resolution radar images independent of sunlight
illumination and weather conditions [1–4]. Conventional SAR provides
the 2D projected scene reflectivity map. The unwelcome effects like
layover and foreshortening, induced by the projection from 3D space
to 2D plane, seriously handicap the understanding and interpretation
of SAR image, especially in the urban areas [4, 5]. Assuming the
scattering occurs only on the surface, interferometric SAR measures
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the ground height [6–10]. However, it can not resolve multiple
scatterers lying in single pixel. In addition, the interferometric quality
will be seriously deteriorated by volume scattering effect, and the phase
unwrapping techniques may not work for man made structures [11].
Polarimetric interferometric theory and the model based polarimetric
coherence tomography (PCT) technique have demonstrated their
discrimination ability for scatterers of different scattering mechanism
in the vegetation structure inversion application [12]. There still exist
no polarimetric interferometric techniques that can be applied in a
more general case, such as the reconstruction of man made target.

SAR tomography, first introduced in 1990s, is aimed to retrieve
the real 3D reflectivity distribution along range, azimuth and elevation
directions using multi-acquisition data [13], and have been inspired
by the new launched high resolution SAR satellites, e.g., TerraSAR,
COSMO-Skymed. Recent published studies demonstrate the great
potential of SAR tomography in urban infrastructure monitoring [14–
18], vehicle detection and reconstruction [19, 20], and forest structure
inversion [21, 22], etc.. Generally, SAR tomography can be formulated
as a 3D reconstruction problem in the wave number domain, or
factorized as a 2D conventional SAR processing scheme plus a following
1D parameter estimation stage. The latter strategy is more preferred
by researchers due to its superior efficiency, and we will concentrate on
it in this study.

Tomographic SAR data are usually characterized by small angular
diversity, limited acquisition number, and maybe irregular sensor
geometry. And practical systems are always forced to make a
compromise between the Fourier resolution (be determined by the
angular diversity) and the ambiguity height (be determined by the
sensor space). Therefore, the performance of inversion algorithm,
especially regarding the super resolution power and ambiguity
suppression ability, is of great significance. Various algorithms are
proposed for SAR tomography, e.g., Fourier beamforming, MUSIC,
ESPRIT, Capon, TSVD, and Compressive Sensing (CS) methods.
Without loss of generality, they can be recognized as methods with or
without multilook processing. When man made targets are confronted,
the latter kind techniques seem to be more attractive, since they
well preserve the radar resolution which is very important to the
understanding of the image of man made structures. The TSVD
and CS techniques all belong to this kind. Compared to TSVD, CS
methods exhibit much lower ambiguity level and significantly finer
super resolution ability [16, 17]. Nevertheless, CS techniques also show
some serious drawback like signal leakage problem (see, e.g., [23–26]
and our later discussion).
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Noting the discrimination ability of polarimetric information
itself, it is expected that polarimetric measurements would help
to refine tomographic results. In [21], the forest tomography
dependence on polarization is investigated. In [19], it is reported
that the reconstruction of a hidden truck beneath foliage is greatly
improved by utilizing multi-polarimetric data. Conventionally, data
for different polarimetric channels are processed separately, and then
fused together for more information. This processing scheme may
reduce the accuracy and robustness of the parameter estimation,
and poses another challenge, i.e., matching the scatterers in different
channels. In [18], some multilook data based algorithms, including
MUSIC and Capon, etc., are extended to polarimetric case. In [27],
distributed compressive sensing technique (DCS) is introduced in SAR
tomography, and the authors successfully realize the separation of two
corner reflectors in the height direction using multi-polarization data.

In this paper, we propose a tomography method for jointly
processing multibaseline PolInSAR data, following the idea of
compressive sensing. The technique consists of two major parts, which
are the `2,1 mixed norm sparse reconstruction method, and a window
based iterative signal leakage suppression algorithm, respectively. We
consider both the uniform and nonuniform baseline distribution in
such a way as to comprehensively evaluate the performance of the
proposed reconstruction algorithm, and the most relevant conclusion in
our paper is that the proposed method possesses superior performance
advantage over existing methods.

The paper is organized as follows: In Section 2, the principle of
SAR tomography is briefly recalled, and the polarimetric data model
is established; Section 3 formulates the PolSAR tomography problem
as a mixed norm minimization problem in the CS framework. Also a
window-based algorithm to suppress the signal leakage is introduced
and described; In Section 4, simulations are presented to verify the
effectiveness of our algorithm.

2. BASIC PRINCIPLE AND DATA MODEL

The basic idea of SAR tomography is to obtain the height resolution
by forming an additional aperture along the direction perpendicular
to the range and azimuth directions. Consider the data acquisition
geometry shown in Fig. 1. The SAR sensors illuminate the area of
interest from M slightly different looking angles, and receive the signal
scattered by the scene. In practice, these data can be provided by
either multipass system or multi-channels of single pass system. When
all acquisition data are focused into complex images and the images are
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Figure 1. The data acquisition geometry of tomography SAR. The
vertical synthetic aperture is formed by M tracks for multipass system
or M antennas for single pass system. The sensors are located in the
same plane perpendicular to the moving direction. However the sensor
separations are not necessarily uniform.

co-registered, SAR tomography can be reduced into a one dimensional
inversion problem in the elevation direction.

We denote with Pm, b
‖
m and b⊥m the mth sensor position, the space

between the mth sensor and the reference sensor along the LOS and
PLOS, respectively (see Fig. 2). Assuming a fixed range and azimuth
pixel, the signal in the image produced by the mth sensor is the
superstition of signals from multiple scatterers located in the pixel.
For the polarimetric case, this can be formulated as

gm
pq (r0, y) =

∫ L1/2

−L1/2
γpq (r0, y, s) exp (−j4πRm (s)/λ) ds (1)

where λ denotes the carrier wavelength; (r0, y, s) defines the fixed
target position in the range-azimuth-elevation coordinate system; L1

denotes the target extent along the PLOS direction; pq represents
the specific polarimetric choice from {HH, HV , V H, V V }; γ is the
reflectivity function. The path between the mth sensor and the target
is denoted with Rm(s) and can be approximated as (see Fig. 2 for the
geometry)

Rm (s) =

√(
r0 + b

‖
m

)2
+ (b⊥m − s)2 ∼= r0 + b‖m +

(
b⊥m − s

)2

2r0
(2)
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Figure 2. The geometry of SAR tomography with reduced
dimensions. PLOS and LOS refer to the directions perpendicular and
parallel to line of sight, respectively.

Hence, the phase term in (1) induced by the two way path travel is

ϕ=−4π

λ

(
r0+b‖m+

(
b⊥m−s

)2

2r0

)
=−4π

λ

(
r0+b‖m+

b⊥2
m

2r0
+

s2

2r0
− b⊥ms

r0

)
(3)

We note that the first three terms in bracket of (3) are target
independent and can be eliminated by a well-known technique named
deramping [4]. And the fourth term, known as residual phase, can
be absorbed into the reflectivity function. Thus, for a fixed pixel, the
signal after deramping can be modeled as

gm
pq =

∫ L1/2

−L1/2
γpq (s) exp (j2πωms) ds (4)

where ωm = 2b⊥m/(λr0). Eq. (4) shows that the signal gm
pq is the Fourier

Transform sample of the reflectivity function. It follows from (4) that,
when using FFT to recover γpq(s), the elevation resolution and the
ambiguity value are

ρe = λr0/2L (5)
he = λr0/2∆b (6)

where L denotes the total baseline span along the PLOS, and ∆b
denotes the sensor separation. The constraint on the sensor separation
are given by

|∆ωm| = |ωm − ωm−1| ≤ 1/La (7)



110 Xing et al.

Combining (5) and (7) tells the minimum acquisition number

Mmin = 2LLa/λr0 (8)

However, (5)–(8) can only serve as references for performance
comparison, since neither the resolution nor the sensor separation
requirement is imperative when we come to CS inversion technique.
Sampling γpq at N points sn (1 ≤ n ≤ N) equal spaced by
εs, rewriting (4) in the discrete form, and then taking noise into
consideration yields

g = Aγ + n (9)

where A is the partial Fourier transform operator (M × N) with
Amn = exp(j2πωmsn), and n is noise matrix (M × 4) with power
σ2. The other variables are defined as follows

g = [ gHH gHV gV H gV V ] (10)
γ = [ γHH γHV γV H γV V ] (11)

gpq =
[

g1
pq g2

pq . . . gM
pq

]T (12)

γpq =
[

γ1
pq γ2

pq . . . γN
pq

]T (13)

To allow super resolution performance, γpq is usually sampled very
densely, hence N À M in most cases, implying that (9) is under
determinate. Therefore, to find appropriate solution, additional
constraint should be applied. A widely used strategy is to find the
minimum energy solution (see the following discussion), but recent
studies show the largest sparsity criterion is more appropriate to SAR
tomography, and we will discuss it in the next section.

3. TOMOGRAPHIC METHOD

This section formulates the PolSAR tomography problem in the CS
framework, and investigates the choice of the mixed norm involved in
the CS inversion technique. The signal leakage problem is introduced
and then addressed with a window-based iterative algorithm.

3.1. PolSAR Tomography in CS Framework

The most attractive idea of CS is that it is very possible to recover a
signal sampled at a much lower rate than Nyquist rate, if it is sparse
in an apriori known basis [28, 29]. When we say a signal is sparse, it
means the signal can be represented as a linear combination of just
a few elements from a known basis Φ. The sparsity assumption is
well satisfied for SAR tomography, where the scattered signal can be
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approximated by several point-like scatterers’ responses (see, e.g., [15]
for more discussion). The basis matrix Φ in SAR tomography is
often chosen to be identity matrix I, which provides the best mutual
incoherence property (MIP) with the sensing matrix A.

In polarimetric case, it should be stressed that the signal are
jointly sparse in different channels, that is, the indices of the
nonzero entries are independent of the polarization. Mathematically,
the CS polarimetric tomography can be formulated as a multiple
measurements vector (MMV) problem [30], i.e.,

min ‖γ‖u,0 s.t. ‖vec (g −Aγ)‖2
2 ≤ ε2 (14)

where vec() denotes the vectorization operation, ε accounts for the
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Figure 3. The elevation profiles of a single scatterer obtained with
CS tomography techniques. Three cases are examined. Case 1: noise
free, and the scatterer lying exactly at the gridding point; Case 2: SNR
= 15dB and the scatterer lying exactly at the gridding point; Case 3:
noise free, but the scatterer is away from at the gridding point. (a) M-
OMP, case 1. (b) `1,1 norm, case 1. (c) `2,1 norm, case 1. (d) `2,1 norm
with SLS, case 1. (e) M-OMP, case 2. (f) `1,1 norm, case 2. (g) `2,1

norm, case 2. (h) `2,1 norm with SLS, case 2. (i) M-OMP, case 3.
(j) `1,1 norm, case 3. (k) `2,1 norm, case 3. (l) `2,1 norm with SLS,
case 3.
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noise, and the mixed norm `u,v is defined as

‖γ‖u,v = ‖β‖v , β =
( ∥∥γ1

∥∥
u
,

∥∥γ2
∥∥

u
, . . .

∥∥γN
∥∥

u

)T (15)

where γn denotes the nth row of γ. This formulation is equivalent to
finding the sparsest solution, whereas the well known TSVD method
tries to find the minimum energy solution (`2 norm minimization).
The former allows the signal energy to be sharply localized whereas
the latter makes the energy spatially spread out [31]. This is why CS
inversion techniques always exhibit finer super resolution power than
TSVD.

3.2. Computational Methods

Generally, the nonconvex `u,0 minimization is addressed with
some approximate techniques, e.g., greedy pursuit and `u,1 convex
relaxation, etc. [32]. A popular greedy pursuit method for MMV
problem is called modified orthogonal matching pursuit (M-OMP) [30],
or similarly, simultaneous orthogonal matching pursuit (S-OMP) [33].
The basic idea of M-OMP, which is quite similar to a well known super
resolution technique named RELAX [34], is to iteratively refine the
sparse solution along a local optimal path. One main drawback with
these greedy methods is the poor super resolving ability. Therefore,
we refer the readers to [30] and [33] for more details about M-OMP,
and focus our discussion on `u,1 relaxation method.

Rewriting (14) with a small revision on the objective function
yields

min ‖γ‖u,1 s.t. ‖vec (g −Aγ)‖2
2 ≤ ε2 (16)

This can be further regularized as

γ̃ = arg min
γ

(
‖γ‖u,1 +λ ‖vec (g −Aγ)‖2

2

)
(17)

Here the parameter λ > 0 is used to balance the two objectives and is
well studied in [31]. However, the choice for u seems to be more various
in literatures, e.g., u = 1 in [35], u = 2 in [30] and [36], and u = ∞
in [37] and [38]. We note that different selection usually produces
significantly different results. Although a rigorous theoretical analysis
of these choices is out of the scope of this paper, it is necessary for us
to make a short discussion on them. Consider two typical choices, i.e.,
u = 1 and u = 2, respectively.

When u = 1, expanding (17) gives a clear insight to the choice

γ̃ = arg min
γ

4∑

i=1

(
‖γi‖1 +λ ‖gi −Aγi‖2

2

)
(18)
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Here γi and gi denote the ith columns of γ and g, respectively.
Obviously, this is equivalent to applying CS inversion to each channel
independently without any regards to the joint sparsity requirement.

When u = 2, the mixed norm operates along different polarization
channels as `2 norm, and operates along different elevation position
as `1 norm. The objective function seems to place more emphasis
on the joint sparsity requirement. And this can be interpreted as
follows. When an individual scatterer is located at different positions
in different channels (for most cases, the differences are small, and
the quadratic error term in (17) will not be affected too much), then
the mixed norm term in (17) will be significantly increased from the
l2 norm to l1 norm. Thus, to minimize the objective function, `2,1

minimization tends to recover the signal with joint sparsity.
Therefore we prefer `2,1 norm in PolSAR tomography. However,

the results obtained with `1,1 norm and M-OMP method will also be
presented for comparison.

3.3. Performance Guarantees

Various criteria provide the guarantees for CS inversion performance,
e.g., the spark, the null space property (NSP), and the restricted
isometry property (RIP). For instance, the RIP theorem states that
the recovery will be very stable if the matrix A satisfies the following
condition

(1− δk) ‖x‖2
2 ≤ ‖Ax‖2

2 ≤ (1 + δk) ‖x‖2
2 , (19)

where x is a vector with only k nonzero elements, and δk is a small
value called restricted isometry constant (RIC). A smaller value of δk

usually implies more stable results.
However, verifying these conditions is usually computationally too

hard. And more seriously, due to the limited acquisition number in
SAR tomography, it is sometimes impossible to satisfy these conditions
(e.g., RIP). In such a case, the performance of these techniques is
still unavailable, especially with respect to super resolution power and
sidelobe suppression ability. As parts of this study, we will investigate
and examine the performance of `2,1 norm inversion technique through
numerical simulations in the cases where RIP is not satisfied.

3.4. Signal Leakage Suppression

The main drawback with CS tomography is that the energy of
individual scatterer may spill into the neighboring bins, resulting in
some so-called outliers [23]. We call this signal leakage, and note that
two main factors contribute to the problem:
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1) Firstly, when inappropriate noise tolerance is set, i.e., quadratic
error constraint is too strict, the measured data will be over fitted,
and the individual scatterer may be approximated by several
neighboring scatterers;

2) Secondly and more importantly, when the scatterer does not
lie exactly at the sample gridding point sn, i.e., there exists
basis mismatch, the signal is incompressible in the identity basis
matrix I (see, e.g., [24–26]), thus more than one coefficients in
the recovered signal vector are required to well approximate each
scatterer.

The analysis presented in [25] show that the error induced by
such basis mismatch is well bounded and numerical simulations show
2–3 coefficients are usually enough to well approximate each scatterer.
Hence, we propose here a window-based signal leakage suppression
(SLS) algorithm.

Our basic strategy is to iteratively merge the neighboring
coefficients. Firstly, we use the `2,1 norm inversion technique to obtain

Table 1. Signal leakage suppression algorithm.

Step (1) Apply the CS inversion to the polarimetric data according

to(14), producing the initial estimate for the reflectivity function γ̃;

Step (2) Calculate the span image γ̃span =
∣∣γ̃HH

∣∣2+
∣∣γ̃HV

∣∣2+
∣∣̃γVV

∣∣2,
and find the local maxima of the γ̃span. To suppress the small

maxima caused by the noise, a thresholding operation is

incorporated that only the maxima which exceed the threshold Th

are preserved. Next, Put all the elevation values corresponding to

the peaks, sk, into a set Ω.

Step (3) Apply a window of width nwin, centered at sk ∈ Ω, to γ̃

that all the coefficients out of the window are set to be zero,

producing γ̃′. Then, Synthesize a signal using γ̃′ as ei = Aγ̃′, and

approximate ei with single scatterer as s̃i = arg max
s
‖(x(s))Hei‖2,

where s̃i is the estimate for the scatterers’ position, and x(s) is the

steering vector of the scatterer with elevation value s.

Step (4) Upon all the scatterers’ positions are obtained, the

corresponding manifold A0 can be calculated, and the sparse

reflectivity function can be estimated using LS criterion,

γ̃ = (AH
0 A0)

−1AH
0 g. Finally, the set Ω is updated by clearing its

original elements and putting the updated elevation values into Ω.

Step (5) Repeat (3)–(4) until no change can be made.
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the initial estimate for the reflectivity function γ̃, and identify all the
peaks in the polarimetric span image. The elevation values of these
peaks are put into a set Ω. Then an iterative merging scheme begins:
for each element sk ∈ Ω, a window centered at sk, with a predefined
width, is applied to γ̃, and all the coefficients located in the window
are merged, producing the estimates for the scatters’ elevation values.
Next, both γ̃ and Ω are updated, and the iteration is repeated until
no change can be made.

We presented the detailed SLS method in Table 1.

4. PERFORMANCE ANALYSIS

This section presents the results obtained by processing the simulated
data to verify the effectiveness of the proposed CS tomography
technique, which we call `2,1-SLS method. Without loss of generality,
our study is focused on the airborne case. The relevant parameters for
the airborne are presented in Table 2. The radar system is assumed to
be reciprocal so that only HH, HV, and VV channels are considered
in the following simulations. All the data are supposed to be focused
and co-registered in the range-azimuth plane in prior.

The parameters involved in the implementation of `2,1-SLS are
determined as follows. We use the noise tolerance ε =

√
3Mσ in the

following simulations, as motivated by the investigation in [17] and [39].
However the original proposed value is multiplied by a factor

√
3, for

the consideration of multichannel case in this study. The threshold
involved in detecting the local maxima is −20 dB relative to the
largest local maximum, and the window size for SLS is nwin = 0.2ρe.
Although a larger window may suppress the signal leakage better, it
will reduce the super resolution power of the tomography technique
more, on the other hand.

4.1. Single Scatterer Case

Presently, uniform sensor geometry is assumed, that is, ten sensors
are uniformly distributed along the elevation direction with the sensor

Table 2. SAR platform parameters.

Parameters Values Unit

Carrier frequency 10 GHz

Slant range 8000 meters

Height 5000 meters
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separation ∆b = 3 m, forming an aperture of 30m. According to (5)
and (7), the Fourier resolution ρe and ambiguity value La are 4m and
40m, respectively. The unknown reflectivity functions are sampled
with εs = 0.3m(ρe/10), and the corresponding gridding points are
−20, −19.7, . . . 5.7, 6, . . . 19.9.

Consider a trihedral-like scatterer with unit amplitude located in
the pixel of interest, that is, the scattering vector k = [1 0 1]. Three
cases are examined. Case 1: noise is absent, and s = 6 m (gridding
point); Case 2: SNR = 15 dB, and s = 6m; Case 3: noise is absent,
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Figure 5. The elevation profiles of two closely separated scatterers
(∆s = 2 m). (a) FFT method; (b) TSVD method; (c) M-
OMP method; (d) M-OMP with signal leakage suppression; (e) `1,1

minimization; (f) `1,1 minimization with signal leakage suppression;
(g) `2,1 minimization; (h) `2,1 minimization with signal leakage
suppression.

but s = 5.8m (away from gridding point). Fig. 5 presents the results
obtained with CS techniques. It can be seen that all four algorithms
recover the signal perfectly in the first case. However, when noise
or basis mismatch exists, signal leakage effect is obvious for both `1,1

norm and `2,1 norm inversions, that is, the scatterer energy spills to the
neighboring bins, resulting in two scatterers. The M-OMP and `2,1-
SLS inversion algorithms both recover the scatterer quite accurately,
and no significant difference between them can be observed in this
single scatterer case.

4.2. Double Scatterers Case

We then study the double scatterers’ case. Two scatterers are assumed
to be separated in the elevation direction with the distance ∆s = 2m
(s1 = 5 m, s2 = 7 m), thus they can not be resolved with Fourier
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beamforming method (ρe = 4 m). The corresponding scattering
vectors are k1 = [1 0 1] and k2 = [1 0 −1], respectively. The
uniform sensor geometry is now relaxed by allowing a perturbation β
on the sensor’s position, β ∼ N (0, ∆b/4), as presented in Fig. 4. The
other parameters are the same as those in the previous simulations.
Tomographic results obtained with FFT, TSVD and CS techniques
are presented in Fig. 5. It can be seen that the FFT method and
TSVD method can not separate the two scatterers at all. Although
M-OMP method exhibits good performance in the single scatterer case,
it now detects only one scatterer, s̃ = 6 m, away from either of the two
scatterers, showing poor super resolution ability.

Both `1,1 norm and `2,1 norm methods succeed in resolving the
two scatterers, but the `2,1 norm method shows better joint sparsity
property than the `1,1 norm method, i.e., the nonzero entries are more
consistent in different channels for `2,1 norm method. Again, signal
leakage effect is observed for these two algorithms. After applying the
SLS algorithm to `2,1 norm, we obtain the results presented in Fig. 5(h),
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(∆s = 1.5m). (a) `1,1 minimization; (b) `1,1 minimization with signal
leakage suppression; (c) `2,1 minimization; (d) `2,1 minimization with
signal leakage suppression.
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that is, s̃1 = 4.8m and s̃2 = 7.2m. The results demonstrate the super
resolution ability of `2,1-SLS algorithm. Remember our discussion
in Section 3 that `1,1 norm method is equivalent to processing each
polarimetric channel data separately. Hence, one may be interested
in fusing the multichannel results together like the conventional
polarimetric processing scheme. One such attempt is to applying our
SLS algorithm to the `1,1 norm results. However, the results are quite
disappointing. Due to the poor joint sparsity property, the scatterer
s2 = 5 m is wrong recognized as two close scatterers.

Another case further checks the performance of `2,1-SLS algorithm
(Fig. 6). With the other configurations unchanged, the two scatterers
becomes even closer that ∆s = 1.5m (s1 = 5 m, s2 = 6.5m). In
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this case, for `1,1 norm method (independent processing), only one
scatterer is detected in HH channel whereas two scatterers, both
away from the true positions, are detected in V V channel. Fusing
the results of all channels produces three scatterers. However, for `2,1-
SLS algorithm (joint processing), two scatterers with relative accurate
estimate for the parameters are detected. The results verifies that
polarimetric information can enhance the super resolution power of
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the CS inversion, and joint processing scheme possesses better super
resolution power than the conventional polarimetric processing scheme.

We then investigate the performance of `2,1-SLS algorithm versus
∆s. Three typical SNR are considered, i.e., SNR = 10dB, 15 dB
and 20 dB. Two scatterers are assumed, s1 = 0 and s2 = ∆s, with
∆s ranging from 0.3ρe to 1.2ρe (∆s = 0.3ρe, 0.4ρe, . . .). For each
combination of ∆s and SNR, 500 Monte Carlo runs are carried out.
Fig. 7 presents the average and standard derivation of the number of
detected scatterers. And Fig. 8 presents the spatial distribution of the
detected scatterers. It can be seen that when SNR = 10 dB, ∆s ≥ 0.5ρe

is required to well resolve the two scatterers. When the SNR is greater
than 15 dB, even the scatterers with distance ∆s = 0.3ρe can be
separated with high probability. We note that although the RIC is
quite big for this case, RIC = 0.98 (see Fig. 9), the results are quite
satisfactory. It should be mentioned that the results don’t mean the
RIP theorem is violated, but show that RIC may not be appropriate to
predict the tomography performance. And this can be interpreted as
follows. The RIP theorem measures the estimating error by calculating
the difference between γ and γ̃ in element wise manner. So if you don’t
locate the scatter in the desired entry, the error will be quite serious,
implying the inversion is not “stable”. However, in SAR tomography,
we don’t need to locate the scatterer within the element precision. So
even if the total error predicted by the RIP theorem is quite serious,
the tomographic results may be satisfactory.
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4.3. Performance in the Case with Reduced Acquisition
Number

It highly concerns the community of SAR tomography that how many
acquisitions or tracks at least are required to achieve the desired
resolution without bringing serious sidelobe problem. When the
acquisition number is limited, a small sensor separation will produce
poor super resolving ability, while a large sensor separation may bring
serious sidelobe problem. In [40], the question is studied for the
MUSIC method by using the prolate spheroidal wave functions. In this
study, we show that, for the `2,1-SLS method, the minimum number
requirement (8) can be greatly reduced if appropriate data acquisition
geometry is designed. Also we will show that the uniform sampling is
generally not the best option for CS inversion technique.

Consider the situation that ten sensors are distributed along the
elevation direction with the sensor separation ∆b = 3m. Also a
perturbation, β ∼ N(0,∆b/4), is allowed for the antenna position. The
nominal resolution is ρe = 4 m, and the ambiguity value is La = 40 m,
with the unambiguous elevation value s ∈ [−20, 20). However we try to
reconstruct the elevation profile with only five sensors chosen from the
whole set, and three cases are studied. The first one is a nonuniform
sampling case with sensors {1, 2, 5, 7, 10}, and both the second and
the third are uniform sampling cases, with sensors {1, 2, 3, 4, 5} and
{1, 3, 5, 7, 9}, respectively. Fig. 10 presents the sensor distribution for
the three cases. Since it is expected that a serious ambiguity problem
would happen for a high elevation value, e.g., s = 15m, we assume the
scatterers are located around this position. The SNR is supposed to
be 15 dB.

Both single scatterer (s = 15 m, k = [1 0 1]) and double
scatterers case (s1 = 15 m, s2 = 13 m, ∆s = ρe/2, k1 = [1 0 1],
k2 = [1 0 −1]) are studied, and the results obtained with TSVD
and `2,1-SLS methods are presented in Fig. 11 and Fig. 12, where
100 Monte Carlo runs are carried out for each case. It can be
seen that `2,1-SLS method exhibits much lower ambiguity level and

Figure 10. The sensor distribution for the cases with reduced
acquisition number.
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Figure 11. The elevation profiles for single scatterer. For each case,
100 Monte Carlo runs are carried out. The image color is coded with
the span intensity of the detected scatterers (in decibel unit), and the
intensity is normalized by the maximum. SNR = 15dB. (a) TSVD
with ten sensors. (b) `2,1-SLS with ten sensors. (c) TSVD with sensors
{1, 2, 5, 7, 10}. (d) `2,1-SLS with sensors {1, 2, 5, 7, 10}. (e) `2,1-SLS
with sensors {1, 2, 3, 4, 5}. (f) `2,1-SLS with sensors {1, 3, 5, 7, 9}.
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Figure 12. The elevation profiles for two closely separated scatterers.
For each case, 100 Monte Carlo runs are carried out. The image color
is coded with the span intensity of the detected scatterers (in decibel
unit), and the intensity is normalized by the maximum. SNR = 15dB.
(a) TSVD with ten sensors. (b) `2,1-SLS with ten sensors. (c) TSVD
with sensors {1, 2, 5, 7, 10}. (d) `2,1-SLS with sensors {1, 2, 5, 7, 10}.
(e) `2,1-SLS with sensors {1, 2, 3, 4, 5}. (f) `2,1-SLS with sensors
{1, 3, 5, 7, 9}.
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finer super resolving ability than TSVD for both cases. When only
five sensors are used, the results with sensors {1, 2, 3, 4, 5} show
significantly reduced super resolution power [see Fig. 12(e)], and the
results with sensors {1, 3, 5, 7, 9} exhibit serious sidelobe or ambiguity
problem [see Fig. 11(f) and Fig. 12(f)]. It is interesting that no obvious
performance deterioration can be observed in the nonuniform sampling
case, compared to the results using all sensors. Its performance
superiority over the uniform sampling case can be interpreted as
follows: the small separation between some sensors helps to suppress
the sidelobe while the total long aperture length helps to improve the
super resolution power. And thanks to the sparsest solution pursuit
strategy in CS techniques, the above two advantages can be enjoyed
simultaneously.

Hence, for a practical system which wants to achieve a desired
resolution with limited acquisition number and without serious sidelobe
problem, nonuniform sensor geometry is a good choice, and it can be
designed as follows: we first design a uniform sensor array up to our
requirement, and then nonuniformly extract some sensors to form the
required sensor geometry. The most important thing is to keep several
sensors close enough to suppress the sidelobe and then to make the
total baseline span as long as possible.

5. CONCLUSION

In this paper, we propose a mixed norm sparse reconstruction method
for jointly processing multibaseline PolSAR data and propose a
window based iterative algorithm for signal leakage suppression. The
tomography technique based on these two algorithms is named `2,1-
SLS, and we examine its performance with exhaustive simulations.
The basic conclusions are presented as follows:

(1) Polarimetric measurements do help to improve the resolving
ability. Two scatterers, which can not be separated in single
polarization image, may be resolved in multi-polarimetric case,
if they possess significant difference in scattering mechanism;

(2) Compared to the results obtained by processing each polarimetric
channel data independently, the results obtained with joint
processing scheme (`2,1-SLS) show much better joint sparsity
property. And the joint sparsity property highly avoids the work
of matching the scatterers in different channels, and also reduce
the possibility of misestimating the scatterer number;

(3) Signal leakage will be obvious when basis mismatch exists or
the noise tolerance is inappropriately set. The proposed SLS
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algorithm works well for both single scatterer and two closely
separated scatterers situations;

(4) Generally, the `2,1-SLS method show better super resolution
power than TSVD, M-OMP, and the `1,1 relaxation method.
Monte Carlo Simulations show that when the acquisition number
M = 10, SNR = 15 dB, two scatterers with ∆s = 0.3ρe can be
resolved with high probability. RIC value may be not critical in
predicting the `2,1-SLS performance. Even with a big RIC value,
the tomography results obtained by `2,1-SLS may be satisfactory;

(5) The minimum acquisition number for `2,1-SLS can be greatly
reduced without obvious loss in super resolving ability or bringing
serious sidelobe problem, if appropriate sensor geometry is
designed. Nonuniform sensor geometry exhibits remarkable
superiority than uniform geometry, i.e., the former can enjoy
the super resolving ability and the low ambiguity level of CS
techniques simultaneously.
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