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Abstract—A novel synthesis method for a class of time-domain
passive filters that compensates for waveform distortion caused
by frequency dependencies of the transmission properties of signal
propagation paths, is formulated. The method is based on the linear
response theory and mathematical properties of scattering matrices for
passive circuits. This paper focuses on the formulation and theoretical
consistency of the method. The causal transfer functions for the filters
can be extracted by “regularizing” the inverse of a transfer function
of the path. To fulfill the necessary restrictions imposed on the causal
functions, regularization is realized by multiplying the function of
linear phase filters comprising a sufficient number of resonators by
the inverse. The filter circuits are easily derived from the regularized
transfer functions through numerical optimization techniques and the
coupling matrix synthesis method to determine transmission poles
and extract each lumped element value, respectively. The method is
then applied to practically designing a filter that compensates for the
frequency dependencies of a two-port radio propagation path having a
pair of wideband antennas. In addition, applications of the filter and
the scope of further developments of this technology are discussed.

1. INTRODUCTION

The demand for high data rates has increased rapidly for both wired
and wireless communication systems, which is a natural consequence
of the increasing volume of data to be transmitted. This trend has led
to increased bandwidths being assigned to authorized bands for these
systems, which is an inevitable consequence of Shannon’s theorem.
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In addition, to maximize the efficiency of frequency utilization, the
sequential data are usually parallel-spread in the frequency, time, and
code domains of the carrier signals. Therefore, the realization of greater
flatness for signal propagation properties within the authorized bands
has become an important requirement for front-end devices. From the
perspective of electromagnetic wave propagation, this means that the
signal path (which is defined as the pathway between a wave source
generating the modulated carriers and a receiver that demodulates
them) must always be considered when determining the flatness. This
point is considered to be an important practical and technical issue
that must be resolved when constructing high-bit-rate communication
systems.

One possible solution is to append to the transmitter and/or
receiver a filter that compensates for frequency dependencies of the
transmission properties of signal propagation paths. The conventional
method for doing this involves the application of common digital filter
technologies [1]. However, when much higher data transfer rates are
needed, it is difficult for this solution to reduce the power consumption
and its processing speed. Because the sampling rate of analog to
digital converters should be considerably higher than the data rate,
and because a fast calculation processor that does not affect the
speed of data flow is indispensable. In order to avert the issues of
realizing such a high-speed converter and processor with low power
consumption, it is proposed in this paper that a passive filter should be
used for the compensation, because the filter requires no power supply
and processes signals by physical manner, therefore, the previously
mentioned problems intrinsically never occur.

To compensate for the transmission properties of signal
propagation paths, the passive filters required for this purpose
must realize prescribed transmission properties in the time domain,
namely simultaneous realization of the prescribed amplitude and phase
responses in the frequency domain must be carried out. However,
to the best of the authors’ knowledge there is no general synthesis
method for passive filters in the time domain. This paper, therefore,
formulates an original synthesis method for such filters, based on
traditional passive filter synthesis algorithms known as the coupling
matrix synthesis method [5] and focusing on reconciling physical
restrictions originate from linear response theory and basic properties
of scattering matrices, where those restrictions must be satisfied in
order to make the filters passive. The resulting method is sufficiently
simple and flexible such that it can be applied to other areas such as
general synthesis methods of microwave filters.

First, physical restrictions that must be satisfied by two-port
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reciprocal passive circuits are presented in Section 2. Then, the basic
idea for reconciling the restrictions is proposed in Section 3. Section 4
describes in detail the steps for the developed synthesis algorithms.
Section 5 shows the concrete design of a filter compensating microwave
propagation properties by following the developed algorithms after
defining propagation path specifications. Future prospects for this
method are discussed in Section 6.

2. RESTRICTIONS ON TRANSFER FUNCTIONS FOR
TWO-PORT RECIPROCAL PASSIVE CIRCUITS

To explain the scope of the discussions developed later, some concepts
are defined here. We assume that two distinct loci are connected to
each other by some medium (wire or wireless) with a carrier of angular
frequency ω (i.e., ω = 2πf). For example, as shown in Fig. 1(a), in
case of wireless communication systems, it is appropriate to define the
signal propagation path (hereinafter “the path”) as the entire signal
path between a transmitter that generates modulated RF signals and
a demodulator in a receiver. In this case, it is important to focus
on frequency dependencies of the transmission properties of the path
because they cause waveform distortions that degrade the data transfer
rate. This is a consequence of overlapping of the tails of adjacent
symbols. Therefore, all elements of the path — such as propagation
paths, feed lines, antennas, and filters — should be considered.

In addition, it is also assumed that the linear and causal
relationships between the transmitted and received signals always hold
true. In other words, the path contains no other signal sources,
frequency conversion devices, or feedforward control options. However,
it may include amplifiers if its nonlinearity is negligible. With these
assumptions, signal propagation properties can be described by the
so-called classical control theory [2]. According to the theory, if input
signals with waveform I(t) emanating from one locus (i.e., the output
port of the modulator in Fig. 1(a)) propagate through a path having
transfer function h(t), and are observed as output signals with O(t) at
the other locus (i.e., the input port of the demodulator in Fig. 1(b)),
then O(t) is given by the convolution of h(t) and I(t). Using Laplace
transform, this can be described as O(s) = h(s)I(s), where s is the
complex angular frequency defined by Ims = ω.

It is observed that since h(s) is usually dependent on s (i.e., h(s) 6=
constant), O(s) 6∝ I(s). That is, waveform distortions are a natural
occurrence, and degradation in the quality of the communication
link is a direct result for wireless communication systems, although
this argument also holds for the wired case. Therefore, to resolve
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Figure 1. Compensation of frequency dependencies of the
transmission properties of signal propagation path by inserting a
particular passive filter. (a) Path in case of typical wireless
communication systems. (b) Compensation by inserting a filter in the
transmitter.

this problem without increasing energy consumption (mentioned in
Section 1), it may be preferable to insert a specific “passive” filter that
has the ability to eliminate the s dependency of h(s) on the path, as
shown in Fig. 1(b). As seen from the linearity of the system, one can
insert the filter at any point along the path.

To construct a synthesis method for such a filter, we must
first determine the properties of transfer functions for passive filters.
From the control theory, the path and passive filters are classified as
causal systems and the two-port transfer function H(s) must obey the
following four principal restrictions.

Restriction 1. H(s) must be described as a certain rational function
with finite polynomials for both its numerator and denominator.
In addition, if the degree of the rational function deg H(s)
is defined as the difference between the highest power of the
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numerator nn and that of the denominator nd,

deg H(s) ≡ nn − nd ≤ 0 (1)

must hold.
Restriction 2. The real and imaginary parts of H(s) must be related

to each other through the Hilbert transform.
Restriction 3. Every pole {αi} of H(s), namely solutions of an

equation where the denominator polynomials are set to equal zero,
must have a negative real part:

Reαi < 0, (i = 1, 2, . . . , nd). (2)

Restriction 4. If it is postulated that scattering parameters
(hereinafter S parameters) {Sij(s)} for a two-port reciprocal
circuit are extracted from H(s), the parameters must preserve
the following two conditions, as shown in Fig. 2.
(i) Cases 1 and 2: In the cases of S21(s) and S12(s) (in the

reciprocal case, S21(s) = S12(s) holds), transmission zeros,
which are defined as solutions of an equation where the
numerator polynomials of S21(s) are set to equal zero, must be
located on the imaginary axis of s or be mirror-symmetrically
distributed in the two regions Res < 0 and Res > 0 with
respect to the imaginary axes of s.

(ii) Cases A and B: Both sets of zeros for S11(s) and S22(s)
must appear at the same positions on the imaginary axis of
the s-plane or all the zeros for the parameters must be mirror-
symmetrically distributed with respect to the imaginary axis
and each pair of symmetrical points shared between the two
parameters.

Here we explain the source of these restrictions. Restriction 1 describes
a property of the so-called proper transfer functions [2], and ensures
that future information never influences the present. Also, note that
the reason for dealing with “proper” systems instead of “strictly
proper” systems, where deg H(s) = 0 is excluded, is that passive filters
with deg H(s) = deg S21(s) = 0 were actually constructed in [4, 6–
8]. Restriction 2 is also a well-known consequence that is deduced
from causality. The Hilbert transform can be described as the Laplace
transform of H(t) = θ(t)H(t), where θ(t) is a unit step function
defined as being equal to 1 if t ≥ 0, and 0 otherwise. This restriction,
therefore, requires that no output signal appears before the arrival of its
corresponding input signals. Restriction 3 then states that H(t) → 0
with a limit of t → ∞, namely a specific weak energy conservation
law. This basic understanding is derived from the pole analysis [9] for
general passive filter synthesis methods. The last two restrictions are
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Figure 2. Restrictions imposed on the zeros of the S parameters for a
two-port reciprocal passive circuit extracted from the transfer function.

indispensable for the construction of H(s) as a real passive circuit. If
the circuit is reciprocal, its S parameters must be a unitary matrix and
the restrictions can be mathematically derived from that fact [3, 4, 6].

3. RECONCILING THE RESTRICTIONS

To construct passive filters with a specific transfer function and exclude
any noncausal behavior, a synthesis method must be developed that
fulfills all previously stated restrictions. This task is currently quite
difficult because, from the viewpoint of the control theory, it can be
deduced that the complete removal of the frequency dependency of
proper systems equates to the construction of a time-reversing device.
From the perspective of this paper (Fig. 1(b)), the dispersion of h(s)
is compensated for by inserting a passive filter with transfer function
H(s) somewhere into the path. Because the complete transfer function
of the path shown in Fig. 1(b) is h(s)H(s), setting H(s) = 1/h(s)
therefore seems to be a plausible choice for realizing h(s)H(s) = 1.
However, such a H(s) cannot be constructed with passive circuits
because of Restriction 1, since the path must be a strictly proper
system and obey Restriction 1, deg h(s) < 0. Then, degH(s) =
−deg h(s) > 0 is deduced, showing that no passive circuit exists with
such H(s).
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In general, band limitations are imposed on most communication
systems. Therefore, we can relax the condition that uniformity of
the transfer function be realized only within authorized bands for the
system. To this end, if we are content with obtaining uniformity of
both amplitude and phase properties via passive linear phase bandpass
filters [10, 11] in the finite frequency band, we can fulfill almost all of
the stated restrictions. Namely, if we prepare a linear phase bandpass
filter L(s) and set

H(s) ∝ L(s)
h(s)

(where deg L(s) < deg h(s)), (3)

it can be seen that linear phase responses and uniform attenuations
in the authorized bands are realized. Also, since deg L(s) < deg h(s),
degH(s) < 0 is deduced, the first restriction is assured.

The second and third restrictions can be simultaneously resolved
by utilizing numerical approximation or fitting techniques for complex
functions in order to synthesize H(s) as a rational function. For
example, we previously obtained h(s) by, for example, measurements
of impulse response for the path, and assumed L(s) to meet the
specifications of the communication system to be established. In this
case, if we directly synthesize H(s) obtained by (3) as a rational
function satisfying the third restriction, then the second restriction is
automatically fulfilled through the general properties of inverse Laplace
transform. From the complex analysis, an inverse Laplace-transformed
H(t) can become zero in t < 0 only if it has poles with negative real
parts.

As shown in the next section, there are many candidates for the
optimization synthesis method that are thought to be suitable for this
purpose. However, it is difficult to impose conditions on the poles
for the rational functions that are set as a fitting function in the
approximation methods. Therefore, a type of nonlinear least square
method is applied in this paper, since the loci of the poles directly
become fitting parameters in this method, and the restrictions only
limit regions in which they can exist.

The fourth restriction must be followed to construct H(s) as a
passive filter. As can be easily seen, it is very difficult to reconcile the
conditions for the zeros and poles of the S parameters and the third
restriction. Because the two sets of points are strongly connected to
each other with respect to the partial fraction expansion of rational
functions, the simplest way to avoid this difficulty is to assume that
H(s) has no zeros. Accordingly, no transmission zero of H(s) is
assumed in this report.
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Table 1. Synthesis algorithms.

Step Content
1 Acquisition of transfer function h(s) of the path for a

prescribed communication system.
2 Determination of transfer function H(s) ∝ L(s)/h(s) to

compensate for h(s), where L(s) applies to a passive linear
phase bandpass filter.

3 Transformation of H(iω) into its low-pass prototype
HLP(iΩ) and normalization of HLP(iΩ) to yield Hnor(iΩ).

4 Optimization fitting of a rational function Hpol(iΩ)
with Hnor(iΩ) by applying a nonlinear least square method.

5 Synthesis of two-port S parameters {Sij(iΩ)} from
Hpol(iΩ) using the coupling matrix synthesis method.

6 Extracting a filter circuit from {Sij(iΩ)} according to
specifications.

4. FILTER SYNTHESIS METHOD

In this section, the algorithmic flow of the proposed synthesis method
for the previously mentioned filters is presented in detail, including
mathematical manipulations, according to the outlines stated in the
previous section. The algorithm is outlined in Table 1. Detailed
discussions for each step are shown in the following subsections.

4.1. Step 1: Acquiring h(s)

We can consider several ways to perform this step, for example,
the experimental observation of impulse responses or transmission
properties for a wide frequency range and numerical simulations.
Regardless of the method adopted, the raw data obtained usually
contain the transmission properties of the path without dispersion.
Therefore, it must be removed in order to subsequently use
conventional filter synthesizing techniques. This can be easily
accomplished by time shifting so that h(t) begins to have nonzero
values just at t = 0, as shown in Fig. 3. Assume that the observed
raw transfer function is described as a product of the linear phase part
and the remainder, namely e−t0sh(s), where t0 is a specific positive
real constant. On the basis of the linear response theory, e−t0sh(s) is
identified as h (t− t0) in the time domain if h(t) denotes the image of
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Figure 3. The linear term included in h(s) can be removed by time
shifting.

the inverse Laplace transform of h(s). That is, e−t0s indicates a time
delay of t0. Therefore, such a linear term can be correctly removed
only by redefining the origin of t in order to have a nonzero value at
t ≥ 0.

4.2. Step 2: Determining H(s)

In this step, our aim is to determine L(s) from the perspective of (3),
focusing on the following points.

I Passbands for the linear phase filter must cover authorized bands
for prescribed communication systems.

I L(s) must have sufficient phase linearity to prevent another oc-
currence of waveform distortion, and should have no transmission
zeros in order to satisfy Restriction 4 for S parameters.

I The degree of the filter must be determined so that the total phase
change of the transfer function HLP(iΩ) from Ω = −∞ to Ω = ∞
satisfies

∠HLP(+i∞)− ∠HLP(−i∞) < 0, (4)

where HLP(iΩ) is a low-pass prototype transfer function for H(iω)
defined by (3), and Ω is a low-pass (angular) frequency variable.

The first two points are trivial. However, the last point is explained
below. It has already been agreed that H(s) must satisfy the
restrictions stated above, particularly Restriction 3. We can, therefore,
transform H(s) into its low-pass prototype HLP(S) (using a simple
manipulation mentioned in the next subsection) and represent HLP(S)
as a rational function of degHLP(S) = −N , where N is a positive
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integer, with no transmission zeros and poles with negative real parts
(here S = iΩ; strict definitions are given below):

HLP(S) = c
N∏

i

1
S − (ai + ibi)

, (c ∈ C, ai < 0)

= c

(∏

j

rj

)
exp

(
i

N∑

i

θi

)
, (5)

where tan θi =
Ω− bi

ai
and rj =

1√
aj

2 + (Ω− bj)2
. It can be easily

recognized from (5) that

∠HLP(+i∞)− ∠HLP(−i∞) = −Nπ < 0. (6)

This is because, as shown in Fig. 4, since every θi asymptotically close
to ∓π/2 at the limit of Ω → ±∞, the net values of ∠HLP (±i∞) are
equal to∓(π/2) N . Therefore, the third point was derived. In addition,
note that N represents the number of resonators that comprise the
filter.

The negative definiteness of ∠HLP(iΩ) within its passbands
appears to be a sufficient but not necessary condition for practical
use in filter synthesis. In general, low-pass prototypes are usually
designed to have negative phase delay (which also means positive delay
time) throughout their passbands. This is because it is difficult to
construct actual filter circuits with positive phase delay. Such a delay
can be realized using, for example, weak couplings between adjacent
resonators in the main path and magnetic coupling structures [11].
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Figure 4. Asymptotic behavior of ∠HLP(iΩ).
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However, the former makes the filter unstable because it is easily
influenced by its surroundings (especially the fluctuation in loads
connected to filter ports), and the latter limits the magnification
options of coupling constants for physically small filters such as
microstrips. Following this line of reasoning, setting the strong
condition

∠HLP(iΩ) / 0 (within passbands) (7)

appears to be a sensible choice, in addition to (6). As deduced
from the previous discussion, (7) can be easily satisfied, and one can
“renormalize” the noncausal properties of 1/h(s) if one uses a linear
phase filter with a large enough number N of resonators. However, as
the size of the filter increases, a tradeoff is required to determine an
adequate N .

4.3. Step 3: Transforming H(iω) into a Low-pass Prototype
Transfer Function HLP(iΩ)

A low-pass prototype is usually defined as a bandpass filter with
cutoff Ω = ±1. To maximize the use of conventional filter synthesis
methods in the following steps, a low-pass transformation from H(iω)
to HLP(iΩ) is carried out. First, we obtain lower and higher cutoff
frequencies from amplitude behaviors H(iω). In this step, the precise
determination of passbands, such as the −3 dB bandwidth, is not
necessary, and all ambiguities are absorbed in the next step. Once
a higher cutoff ωH and a lower cutoff ωL have been determined, one
can obtain HLP(iΩ) by performing the following frequency variable
transformation,

ω → Ω∆ +
√

(Ω∆)2 + 4
2

ω̃0, (8)

where ω̃0 =
√

ωLωH and ∆ = (ωH − ωL)/ω̃0. Note that this is the
inverse of the usual bandpass transformation [11].

If the low-pass prototype can be expressed as a lossless circuit with
two ports having the same impedance, S21(iΩ) must be proportional to
HLP(iΩ), and should have an amplitude of less than one (|S21(iΩ)| 5
1) in the entire band, and a phase of zero for the limit Ω → 0
(∠S21(0) = 0, which means that the DC gain of a passive filter must be
a real number). Therefore, we must normalize the low-pass prototype
HLP(iΩ) by dividing its maximal value Hmax and its phase φ0 at Ω = 0
for HLP(iΩ) as follows:

Hnor(iΩ) =
1

Hmaxeiφ0
HLP(iΩ). (9)
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4.4. Step 4: Fitting a Rational Function to Hnor(iΩ)

After considerable preparations, a rational function that fulfilled the
restrictions stated in Section 2 can be generated by applying numerical
optimization techniques. In this paper, a type of nonlinear least square
methods is applied. To begin, we prepare a rational function as a fitting
function

Hpol(S) = c
N∏

i

1
S − αi

. (10)

Then, we define a specific positively defined function, for example,

∆(ααα, |c|) =
∫

dΩ|Hnor(S)−Hpol(S)|2, (11)

as a cost function for the numerical approximation, where ααα = {αi}.
To reduce the calculation cost, in practice, the integration in (11) may
be replaced by a finite sum for the prescribed sampling points.

Note that (11) can also be defined as an integration in the time
domain as opposed to the one in Ω. However, this frequently causes
many local minima to originate from the oscillatory behavior ofHnor(t)
and Hpol(t), and the stability of the optimization is greatly influenced
by the choice of the overall sign of Hpol(S). Optimization is realized
by finding the global minimum of ∆ (ααα, |c|). In general, since the
Hessian of the cost function does not always have positive eigenvalues
(especially in our problem), optimization algorithms that are not
significantly influenced by this (for example, the Levenberg-Marquardt
method [14]) are appropriate.

When carrying out optimization in the manner described
previously, a reduction in fitting parameters is required for the
computing speed. If ααα and c are selected and the number of real fitting
parameters is 2N +2, we can still reduce this number by one. Because
the phase of Hnor(S) at zero frequency was already set in a previous
step, ∠c can also be determined as

∠c =
N∑

i

∠αi −Nπ (12)

by using the result of (6). With regards to αi, they must be restricted
beforehand to take on the values of (2) in the approximation algorithm.

We should recall that N , which is the degree of Hpol(S) or the
number of resonators composing the filter, has not yet been set. This
is also determined using the result of (6). Namely, if one estimates the
total number of phase changes from ω = −∞ to ω = ∞, then N is
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simply

N = − 1
π
{Hnor(i∞)−Hnor(−i∞)}. (13)

Note that other approximation or interpolation techniques can be
applied to this step. Examples are the Remez algorithm [12, 13] (also
known as the osculatory interpolation method), rational interpolation
methods (including Padé approximations) [15, 16], and infinite product
expansion [17, 18]. However, the first two methods still have difficulties
incorporating (2). The third method appears to be a plausible
candidate because it has the potential to generate unique solutions,
automatically taking the form of (10) and reconciling the previously
noted restrictions via complex analysis.

4.5. Step 5: Synthesizing S Parameters {Sij (S)}
In this step, we reproduce two-port S parameters for the filter from
a previously obtained Hpol(S). First, we assume that the filter is a
lossless reciprocal passive circuit, and therefore, S21(S) ∝ Hpol(S).
With this assumption, we can approximate the representations for S
parameters as

S11(S) =
F (S)
E(S)

, S21(S) =
1
ε

P (S)
E(S)

, (14)

where ε = 1/
√

1− 10−RL/10, as shown in [5]. Our next task is to
determine the polynomials E(S), F (S), and P (S) and the parameter
RL according to the following procedures.
(i) RL is a free parameter that can be controlled by designers, and

which defines the maximal return loss (in decibels) for S11 in the
passband of the low-pass prototype. Therefore, one can specify
RL, for example, as 20 dB.

(ii) Since S21(S) ∝ Hpol(S), P (S) and E(S) can be easily identified
from the result of (10) as follows:

P (S) = c, E(S) =
N∏

i

(S − αi) (15)

(iii) To determine F (S), we utilize one of the unitary conditions
for the S parameters describing lossless passive circuits, that is,
|S11|2 + |S21|2 = 1. Inserting (14) into this formula, the following
polynomial can be derived:

|F (S)|2 = |E(S)|2 − 1
ε2
|P (S)|2 (16)
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The specific polynomial of |F (S)2| can be given by inserting the
preceding results (15) into the right-hand side of (16). |F (S)|2
is a real coefficient polynomial of degree 2N in terms of the real
variable Ω because of S = iΩ. Hence, if |F (S)|2 = 0, the equation
has a total of N pairs of complex solutions for Ω that are related to
each other by complex conjugation. We then denote the solutions
as {Ω+

i ,Ω−i } for i = 1, 2, . . . , N . Here Ω+
i indicates one of the i-th

pair of solutions with a positive imaginary part, namely ImΩ+
i ≥ 0

and Ω−i = Ω+
i . As shown in Restriction 4. (ii), one is free to choose

the solutions for constructing F (S). Therefore, if we decide to
select only those with negative real parts in terms of the Laplace
variable S, we finally reconstruct F (S) as follows:

F (S) =
N∏

i

(
S − iΩ+

i

)
(17)

Note that the choice of zeros for S22(S) is automatically set by
Restriction 4.(ii) once the ones for the construction of S11(S) are
chosen. We have finally completed the reconstruction of the S
parameters from Hpol(S).

4.6. Step 6: Extracting a Filter Circuit from S Parameters

The final step is performed simply by applying a general filter
synthesizing method known as the “coupling matrix synthesis
method” [4, 5]. The advantage of this method is its ability to determine
all of the lumped parameters for a generic equivalent circuit composed
of the multicoupled resonators from rational functions of {Sij(S)} in
terms of the so-called “coupling matrix” Mij . It is also able to provide
a systematic reduction procedure that reduces the identified circuit to
a specific filter configuration with prescribed circuit topologies. In the
present problem, a filter without transmission zeros was assumed, as
shown in (10). Therefore, the reduced circuit topology is expected to
be a simple ladder without couplings among nonadjacent resonators.
That is, nonzero elements of the matrix are only Mi,i and Mi,i±1 for
i = 1, 2, . . . , N . The translation of the matrix Mij into an actual filter
is yet to be completed, but can be accomplished in line with ordinal
filter synthesis, as shown in [11], for example.

5. PRACTICE OF SYNTHESIZING

In this section, the synthesis method proposed so far is demonstrated
by designing a filter (hereafter “propagation properties compensation
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filter” (PPCF)) for a specific signal propagation path. To begin
defining path configurations, the filter will be synthesized by following
the procedure proposed in Section 4.

5.1. Definition of a Signal Propagation Path and
Determination of Its Transfer Function

We begin by defining a signal propagation path to be compensated
for by a PPCF. As shown in Fig. 5, the path is a two-port radio
propagation path that is designated by two antenna ports placed at
a pair of identical oval-dipole antennas 6 m apart in free space, facing
each other. Since the boresight direction of the antenna is normal
to the substrate plane and the polarization direction of the emitted
waves is parallel to the major axis of the elliptical pattern composing
the antenna, Fig. 5 shows that both antennas are set up to maximize
the received power. Since this propagation system is in free space
and has no multipath signal, the nonuniformity of signal transmission
properties is only due to the antennas’ radiation dispersion and the
distance attenuation.

Details of the antennas are given in Fig. 6. The configuration
is the same as that originally shown in the manual for the Zeland
IE3D ver.11.20 electromagnetic simulator [19], was applied in later
calculations, and is suitable for an ultrawideband antenna. The
antenna is assumed to be constructed of copper foil with a conductivity

Oval-dipole Oval-dipole

6 m

Free space

( no multipath propagation )

Port

Port

Transfer function : h(t)

Figure 5. A signal propagation path composed of two identical oval-
dipole antennas 6m apart in free space and facing each other.
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15.1 mm

Metal patterns

Differential port

0.5 mm

0.64 mm

7.8 mm

1.0 mm

Figure 6. Detailed configuration of the oval-dipole antenna [19]
composing the signal propagation path.
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Figure 7. Frequency dependencies of h(f). (a) Amplitude and
(b) phase as calculated by the IE3D electromagnetic simulator. Note
that a nonessential linear phase portion originally included in h(f) has
already been eliminated by the time-shifting technique, as stated in
Section 4.1.

of 4.9 × 107 Sie/m and a thickness of 2µm bonded on a dielectric
substrate of permittivity 2.2, no loss tangent, and a thickness of
1.016mm. Each antenna works as a single dipole with directivity as
stated above. Therefore, its feeding port must be a differential input.

In this calculation, the transfer function of the path h(f) (where f
denotes frequency) is determined by applying numerical computations
using the previously mentioned electromagnetic simulator for this
system. The simulator can conveniently generate h(f) directly from
antenna properties obtained beforehand. Calculated results are shown
in Fig. 7. A PPCF will be designed here to compensate for frequency
dependencies of h(f) between 3 and 10GHz. Since the synthesis
method stated in Section 4 is based strongly on conventional methods
established for the narrow band theory, it might be not so rigorous to
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deal with such a wideband RF circuit within the scope of this method.
However, we will investigate this case as an example to illustrate
the method. Our goal is to realize ideal propagation properties,
namely uniform amplitudes and linear phase behaviors. Fig. 7 also
indicates, using thicker dotted lines, the cases for which the frequency
dependencies are perfectly compensated.

Note that an additional linear phase, which is caused by 6m of
nondispersive free space, and included in the original h(f), has already
been removed, and regulated results are shown in Fig. 7. This was
carried out by transforming the original data into the time domain,
time-shifting them so that the leading edge of h(t) is correctly placed
at the time origin, and then transforming them back into the frequency
domain, as stated in Section 4.1.

5.2. Determination of the Target Transfer Function H(f) for
a PPCF

In this step, we will determine a transfer function H(s) (where s =
2πfi = iω) to be obtained by an optimization-synthesized PPCF.
This task corresponds roughly to the determination of an appropriate
linear phase bandpass filter (LP BPF) that restricts the band for
an intrinsically noncausal 1/h(s) in order to restore causality. The
passband for the LP BPF is set as 3–10GHz, as has already been
stated. We must then set a filter order that is equal to the total
number of resonators composing the LP BPF. Denoting the transfer
function of the LP BPF as L(s) and H(s) ∝ L(s)/h(s), the order can
be determined such that it satisfies a (strong) condition of ∠H(s) / 0
that holds within the passband for the PPCF, as stated in Section 4.2.
However, we will attempt to slightly relax the condition and investigate
its influence on the results. Here we will apply an eighth-order,
maximally flat filter as the simplest choice. As long as such a BPF
is adopted for the LP BPF, the preceding condition is slightly relaxed
in a narrow band within the passband of the PPCF. This situation can
be seen in Fig. 8. The slope of the phase curve for H(s) (Fig. 8(b))
becomes positive between 11 and 13GHz, and the condition no longer
holds. However, note that the condition will hold if the LP BPF is
of sufficiently large order. Also, a real constant value is multiplied to
normalize H(f), so that |H(f)| correctly has a maximal value of 1 in
its passband.

It can also be seen that the amplitude of the resulting H(f)
has significant values in the higher stopband of the LP BPF, namely
between 10 and 15 GHz. This behavior results from small |h(s)| values
and insufficient attenuation of the LP BPF at its higher stopband.
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Figure 8. Frequency dependencies of the normalized transfer function
H(f) ∝ L(s)/h(s). (a) Amplitude and (b) phase of a PPCF. L(s)
represents the transfer function of an eighth-order, maximally flat filter
with a passband of between 3 and 10GHz.

5.3. Transformation of H(f) into Its Low-pass Prototype
HLP(Ω)

To synthesize the PPCF with the previously determined H(f) as a
rational polynomial, H(f) must first be transformed into its low-pass
prototype HLP(f) because of the subsequent use of conventional filter
synthesis methods that are based on low-pass circuits. Therefore,
we must begin to determine a passband from Fig. 8. Note that
the determination of the passband can be approximate because
such roughness can be well absorbed in the next step. Lower and
higher cutoff frequencies are approximated as ωL/2π = 2.65 GHz
and ωH/2π = 15.2GHz, respectively. Then, using the low-pass
transformation defined by (8), HLP(Ω) can be obtained. The frequency
dependencies are shown by the dotted curves in Fig. 9.

Figure 9 shows that the slope of the phase curve takes positive
values near Ω = 0.85, and that a sharp peak also exists in the
amplitude curve in close proximity to the higher cutoff of Ω = 1.
In addition, as seen from the fact that the zero intercept of the
phase of the HLP(Ω) curve is not zero, the phase of HLP(Ω) is not
renormalized. In Section 4, it was stated that this renormalization
should be performed to reduce the number of fitting parameters and
to reduce the calculation cost. However, in this paper, we will set
the phase as an overall constant in the next step because there are
relatively few parameters.
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Figure 9. Frequency dependencies of a low-pass prototype HLP (Ω)
(dotted line) and optimization-synthesized Hpol(S) (thick line) for the
PPCF: (a) amplitude and (b) phase. Approximate cutoffs are set at
Ω = ±1.

5.4. Optimization Fitting of a Rational Polynomial Hpol(S)
to HLP(Ω)

We now fit a rational polynomial Hpol(S), describing a corresponding
causal system to the previously obtained HLP(Ω) using numerical
optimization techniques. In this calculation, the Levenberg-Marquardt
method [14] is applied, with cost function ∆(ααα, c) defined by (10)
and (11). Optimization is carried out by minimizing ∆(ααα, c), altering
the loci of the transmission poles ααα = {αi}, and including the overall
complex constant c as one of the fitting parameters. Note that one of
the fitting parameters is chosen as c, and not as |c|, because to have
zero in the previous step, ∠HLP (0) was not fixed.

First, we change the variable Ω to S by inserting Ω = −iS of
the Laplace variable into HLP (Ω) in preparation of the optimization.
We must then determine a filter order N for the PPCF by using the
formula

N = − 1
π
{HLP(i∞)−HLP(−i∞)}. (18)

Figure 9(b) indicates that the total phase change of HLP(S) roughly
equals −6π. Therefore, one can conclude that N = 6, and we can
proceed to performing numerical optimization. After fitting Hpol(S)
to HLP(S), c and {αi} are determined as shown in Fig. 10. Note
that a sixth-order maximally flat filter and c = 1 are set as the
initial conditions for optimization. The frequency dependencies of the
resulting Hpol(Ω) are shown as thicker curves in Fig. 9.

As seen from Fig. 9, the optimization accuracy for both amplitude
and phase is acceptable within the passband. However, upon closer
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examination, it becomes worse in the neighborhood of a dimple close
to the higher cutoff Ω = 1 seen in Fig. 9(a). At these frequencies, it
can be seen that the positive definiteness of the slope for the phase
of Hpol(S) no longer holds, and both curves for the amplitude and
phase change sharply. Such behavior results mainly from a weakening
of the negative definiteness condition of the slope for the phase of
H(f). From this viewpoint, we should emphasize the conditions for
higher-accuracy approximations. Therefore, adoption of considerably
higher-order filters for the LP BPF is required.

Note also that the pole closest to the higher cutoff lies almost on
the imaginary axis of S, and is isolated from the other poles, as shown
in Fig. 10. This pole may be difficult to realize as a real filter circuit
because it denotes a resonator with a very small energy loss and very
weakly couples to other resonators. Therefore, this situation might be
easily influenced by the surroundings, and the entire filter circuit may
become unstable. This degradation is thought to occur because the
order of the LP BPF is too low to suppress large values of |1/h(f)|. In
addition to the utilization of higher-order LP BPFs, having |1/h(f)|
for the path not take on such large values is also an efficient way
of preventing the occurrence of such isolated poles. Consequently,
it can be deduced that antennas should have wideband frequency
dependencies with respect to the amplitude of their directivity.

 1.5  1  0. 5 0 0.5 1 1.5

 1.5

 1

 0.5

0

0. 5

1

1.5

Re S

Im S (= i  )S-plane

c = 0.054349   0.0115973 i

i

1

 i

 1 0

: poles

Ω

− − −

−

−

−

−

−

−

Figure 10. Transmission poles {αi} determined by optimization and
plotted on a complex S-plane with overall constant c for Hpol(S).
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5.5. Extraction of S Parameters from Hpol(S)

The next task is to extract S parameters {Sij(S)} as rational
polynomials for a two-port lossless reciprocal passive circuit from the
previously identified Hpol(S). As stated in Section 4.5, this can be
accomplished in a simple way using a conventional filter synthesis
technique known as the matrix synthesis method [4, 5], and its ability
to generate passive (or causal) circuits is guaranteed by the classical
control theory [2], once Hpol(S) is in the form of (10). Therefore, to
accomplish this step, we must first determine the maximal return loss
RL for S11 within the passband of the Hpol(S) obtained above. In this
calculation, it will be fixed at 20 dB. Then, following [4, 5], S11 and S21

can be extracted as follows:

S11(S) =
F (S)
E(S)

, S21(S) =
1
ε
· P (S)
E(S)

,

ε = 1.00504,

P (S) = 0.051831,
E(S) = {(0.0204514−0.960291i)+S} × {(0.097599+0.890906i)+S}

×{(0.21983−0.351433i)+S}×{(0.367012−0.0465859i)+ S}
×{(0.571256+0.637579i)+S}×{(0.595612+0.159844i)+S},

F (S) = {(0.00206941−0.958543i)+S}× {(0.0918567+0.885963i)+S}
×{(0.175858−0.28119i)+S}×{(0.294239−0.101028i)+S}
×{(0.571989+0.63446i)+S}×{(0.604558+0.150357i)+S},

where the polynomial F (S) is obtained by choosing solutions for the
algebraic equation |F (S)|2 = 0 in the second and third quadrants
of the complex S-plane, as stated in Section 4.5. Also, frequency
dependencies of |S11(Ω)| and |S21(Ω)| are shown in Fig. 11. As shown in
Fig. 11, |S11| correctly has −20 dB as its minimum in the neighborhood
of the higher cutoff, which corresponds to the isolated pole.

To confirm whether the frequency dependencies of the path are
sufficiently canceled by the extracted S parameters, h(f) (which
is the transfer function for the path), h(f)H(f) (which are ideally
compensated transmission responses which must equal that for the
LP BPF L(f)), and h(f)S21(f) (which are the actual responses
resulting from the insertion of the synthesized PPCF into the path), are
overplotted in Fig. 12. As seen from Fig. 12, in the prescribed frequency
range of 3–10 GHz, both frequency dependencies of amplitude and
nonlinearity of phase for h(s) are sufficiently improved, to the same
extent as those for L(f), as anticipated in Section 5.2. In addition, it
is observed that weakening the negative definiteness condition for the
phase of HLP(S) only affects the behaviors of the skirt at the higher
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Figure 11. Frequency dependency of the amplitude for S parameters
S11(Ω) and S21(Ω) synthesized from Hpol(S).
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cutoff band. Consequently, the PPCF is successfully synthesized and
the effectiveness of the synthesis method is demonstrated.

5.6. Extraction of Filter Circuits from Synthesized S
Parameters

The remaining tasks are to identify a coupling matrix M from the
synthesized S parameters and to reduce M to its corresponding value
for the prescribed circuit topology. Also, we need to determine two
loads that terminate both ports of the circuit according to the methods
shown in [4, 5].

In this case, since the PPCF is composed of six resonators, M
must be a six-dimensional square matrix. We will show only the final
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Table 2. Matrix elements of (M)ij (i, j = 1, . . . , 6).

No. 1 2 3 4 5 6

1 −0.16496 0.24595 −0.059488 −0.25744 0.27744 0

2 0.24595 0.072942 0.12396 0.46397 0.12027 −0.0083083

3 −0.059488 0.12396 −0.28897 −0.26422 0.60733 −0.21416

4 −0.25744 0.46397 −0.26422 0.61990 −0.099824 −0.74718

5 0.27744 0.12027 0.60733 −0.099824 −0.15428 −0.73189

6 0 −0.0083083 −0.21416 −0.74718 −0.73189 0.24539

Table 3. Matrix elements of (Mre)ij (i, j = 1, . . . , 6).

No. 1 2 3 4 5 6

1 −0.16496 0.45528 0 0 0 0

2 0.45528 −0.13147 0.64692 0 0 0

3 0 0.64692 0.018936 0.45818 0 0

4 0 0 0.45818 0.13885 0.51996 0

5 0 0 0 0.51996 0.22327 1.0677

6 0 0 0 0 1.0677 0.24539

outcome in Table 2 after performing the synthesis method. Table 2
clearly indicates that, since all matrix elements are nonzero, except
for M16 and M61, and since almost all resonators are correlated with
each other, a circuit represented by such M is not practical. Therefore,
we must reduce M to a simpler matrix according to [4, 5]. As stated
in Section 4.6, Hpol(S) having a transfer function of the same form
as (10), namely with no transmission zeros, must be represented by an
ordinal simple ladder circuit, that is, where each resonator is connected
only to its two adjacent resonators. Therefore, the above M must be
reduced to a matrix Mre that has nonzero diagonal elements and ones
on each side of the diagonal. The reduced matrix Mre obtained by
this method is shown in Table 3. Also, the loads R1 and R6, which
terminate ports that are connected to the first and last resonators,
respectively, are determined as follows:

R1 = 0.065596, R6 = 1.8062.

One can determine the actual filter circuit even further from Mre.
If one expects to obtain a circuit composed of only lumped elements,
as shown in Fig. 13, their parameters can be directly derived from each
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of the matrix elements mij = (Mre)ij through the following formulas:

R̃i = ω0Ri∆L (i = 1, N),

Lii =
(

1 +
1
2
mii∆

)
L (i = 1, . . . , N),

Cii =
(

1− 1
2
mii∆

)−1

C (i = 1, . . . , N),

Lij = −mij∆L (i, j = 1, . . . , N, i 6= j),

where ω0 =
√

ωLωH = 1/
√

LC and ∆ = (ωH − ωL)/ω0. Note that
all the lumped parameters can be calculated once a single parameter
L is set. These formulas can be derived by calculating the first-order
Taylor expansion of a loop equation [11] that represents the circuit
shown in Fig. 13 with respect to an expansion variable ω, and imposing
the condition that the approximated equation corresponds to the one
expressed by the coupling matrix Mre. This derivation indicates that
the equivalence of the generated lumped circuit to the corresponding
loop equation only holds in a neighborhood of the expansion point
ω0. Consequently, the coupling matrix synthesis method is originally
a narrowband theory. The one proposed here for PPCFs is based on
the method, and is also justified within narrow bands.

If Mre is to be defined as a distributed circuit, the important
parameters for this — namely, kij(i, j = 1, . . . , N, i 6= j), the coupling
coefficients between resonators, Qi(i = 1, N), the external Q, and
ωi (i = 1, . . . , N), the resonant frequencies for each resonator — are

R1

~

C11 L12

L11 L22 C22

LN-1,N-1 CN-1,N-1

LN-1,N CN,N

LN,N RN

~

Input Output

M11 M22 MN-1,N-1 MN,N

MN-1,NMN-2,N-1M23M12

Figure 13. Definition of a circuit topology and notations of each
element for synthesizing PPCF as a lumped filter.
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given by the following formulas [11]:

kij = mij∆ (i 6= j),

Qi =
1

Ri∆
(i = 1, N),

ωi =
(

1− 1
2
mii∆

)
ω0 (i, j = 1, 2, . . . , N).

6. DISCUSSION

The proposed synthesis method generates PPCFs that compensate for
frequency dependencies of a signal propagation path’s transmission
properties. This was fully illustrated by the practical design for an
actual path. However, as stated above, short pulses spread out widely
in the frequency domain, regardless of their waveform. Therefore,
the authorized bandwidth for high-bit rate communication systems
increases. The goal of the proposed synthesis method lies in the
supply of filters that suppress signal path dispersion in the entire band,
however, the method is based mainly on conventional filter synthesis
techniques in the frequency domain. Therefore, more developments
are needed to design such filters. Because the method applied in
Step 6 is justified for the limit of narrow bandwidths (that is, lumped
elements can be regarded as having no frequency dependency), if the
treatment of lumped elements showing dispersion can be developed and
subsequently incorporated into this method, the previously mentioned
problem will be resolved. Recent wideband equivalent circuit modeling
technique using circuit simulators and numerical fitting methods [20]
might work well for this issue, even though a considerable amount of
calculation must be required.

As seen from Fig. 12, the resulting phase behavior of the overall
transmission after insertion of the PPCF has the same linearity as that
of the LP BPF. Hence, phase behavior is dominated by the choice of
transfer function for the LP BPF. If a communication system requires
an even higher phase linearity, improvements in the properties of the
LP BPFs, as shown in [11], should be considered.

7. CONCLUSIONS

A novel synthesis method for a class of passive filters that compensates
for frequency dependencies of signal path transmission properties on
the basis of the linear response theory and general properties of
scattering matrices, was formulated. The method was successfully
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demonstrated by carrying out the practical design of an assumed path
composed of two oval-dipole antennas set 6 m apart in free space.

In the formulation of the method, restrictions for causal and
energy-conserving passive systems were first determined and itemized.
Then, to reconcile the restrictions, the regularization of the inverse
of the transfer function of the signal path by multiplying it with
a function of linear phase filters comprising a sufficient number of
resonators, was proposed. An outline of the synthesis method for
this idea was thoroughly discussed from the viewpoint of theoretical
consistency. Synthesis algorithms were then proposed according to
the considerations outlined, and the mathematical manipulations
involved at every step were stated in detail. In the algorithms, the
identification of the filter circuit from the determined functions can
be performed in a straightforward manner by applying conventional
numerical optimization techniques and the coupling matrix synthesis
method.

Following the proposed method, after a transfer function for a two-
port radio propagation path was calculated using an electromagnetic
simulator, the filter was determined as a sixth-order simple ladder
filter circuit through its reduced coupling matrix which is extracted
from the transfer function. This was done in order to improve the
uniformity of the path in the frequency range of 3–10 GHz. Finally,
it was confirmed that the resulting filter compensated for the original
transmission properties for the path to the same extent as the one for
the eighth-order linear phase bandpass filter, assumed for regularizing
the inverse of the transfer function for the path such that it is causal.
Also, future developments in this technology were discussed.
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