
Progress In Electromagnetics Research, Vol. 129, 485–515, 2012

FIELD APPROACH IN THE TRANSFORMATION
OPTICS CONCEPT

A. V. Novitsky1, *, S. V. Zhukovsky2, L. M. Barkovsky3, and
A. V. Lavrinenko1

1DTU Fotonik, Department of Photonics Engineering, Technical
University of Denmark, Ørsteds pl. 343, Kgs. Lyngby DK-2800,
Denmark
2Department of Physics, Institute for Optical Sciences, University of
Toronto, 60 St. George Street, Toronto, Ontario M5S 1A7, Canada
3Department of Theoretical Physics, Belarusian State University,
Nezavisimosti Ave. 4, Minsk 220030, Belarus

Abstract—An alternative, field-based formulation of transformation
optics is proposed. Field transformations are expressed in the language
of boundary conditions for the electromagnetic fields facilitated
through the introduction of generalized potential functions. It is
shown that the field-based approach is equivalent to the conventional
coordinate-transformation approach but is preferable when looking
for specific field distribution. A set of example devices such as
invisibility cloaks, concentrators, rotators, and transformation optics
lenses capable of creating light beams with predetermined field
distribution (e.g., Gaussian and sinusoidal) is studied to validate the
effectiveness of the field-based formulation. As for the boundary
conditions for the cloaked region the absence of the normal component
of the Poynting vector is justified. In the frames of the field-
based approach the physical reasons behind infinite components
(singularities) of the material parameters of transformation optics
devices are straightforwardly revealed.

1. INTRODUCTION

Transformation optics (TO) is based on a beautiful idea: the
invariance of Maxwell’s equations with respect to the coordinate
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transformation [1–7]. If one knows electric and magnetic fields
as solutions of Maxwell’s equations in some original medium, then
any coordinate transformation will alter the spatial dependencies
for both material parameters and electromagnetic fields — yet
the transformed fields will still obey Maxwell’s equations in the
transformed medium. The transformed fields are constructed in
such manner that allows to exclude the incident fields from the
boundary conditions. This prominent property provides a number
of exciting applications like invisibility cloaking [8–24], optical
concentrators [19, 25], rotators [19, 26], illusion optics devices [27–
32], and cylindrical to plane wave converters [33]. Transformation of
the fields and material parameters can be applied in computational
photonics, too [2, 34–38].

Specifically, the invisibility cloaking has received considerable
attention recently. A “cloak” is a device, which guides radiation around
a region in space in such way that this region irrespectively to what it
contains would appear nonexistent to an outside observer [13, 14]. Such
cloaks were proposed for different kinds of waves, i.e., optical [10, 21],
plasmonic [39–43], and acoustic [44–47], as well as for different
geometries: cylindrical, spherical, carpet-like (so-called ground cloaks),
and even arbitrary. It is not just a theoretical concept, because
its performance has been validated in several experiments with
cylindrical [5, 48, 49] and carpet/ground cloaks [47, 50–56].

A cylindrical cloak (often distinguished because of its symmetry)
has singularities in the material parameters, i.e., it requires infinite
values of azimuthal components of the dielectric permittivity and
magnetic permeability tensors. To avoid infinite values, a simplified
set of parameters has been proposed [57–59]. However, in this case the
cloak ceases to be truly invisible [60]. Another type of a non-singular
cloak is proposed in the “ground cloak” geometry [61]. It is easier in
realization [50, 51] and has the potential to hide relatively large objects
in the visible wavelength range [52, 53].

All transformation optics devices are inherently magnetic
materials; however, a cloak can be made non-magnetic for some special
cases [14, 62, 63]. In Ref. [64] it is proved that invisibility is equivalent
to the absence of scattered fields. This enabled far-field investigations
of a cloak by simply calculating its scattering cross-section [65, 66].
It should also be noted that there is another approach to achieve
invisibility, using radiation cancelation with the dipole radiation of the
cloaked object [67, 68]. It can be applied to cloak, e.g., a sensor [69].

Conventionally, TO principles are introduced geometrically, i.e.,
by specifying the desired coordinate transformation. This approach
is extremely illustrative, easy to understand, and useful. However,
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another possible approach is to start from a predetermined form of
the fields in a transformation medium and apply proper boundary
conditions on its interfaces. Indeed, the knowledge of the field solutions
from the outset can be a great advantage in TO. When several
transformation media are stacked, the problem becomes analogous to
that of multilayered media: in both cases, known general solutions in
several layers need to be matched by means of boundary conditions.

In this paper, we present a systematic formulation of the
alternative approach to TO, which is grounded on the use of boundary
conditions and, therefore, can be called field-based transformation
optics. There have been earlier attempts on such field-based
approaches [70–72]. In Ref. [70], the general form of transformation
fields is applied to classify the media and discuss the properties of
reciprocity, chirality, and bi-anisotropy. Another variant of the field-
based approach is developed in Ref. [71], where the TO devices are
considered in details. Starting from the general formulation, Yaghjian
and Maci introduce the boundary conditions for a cloak as vanishing
of the normal components of the field inductions at the inner interface.
The Maxwell equations are solved for every particular problem, what
requires much efforts.

In our paper, we apply the invariance of Maxwell’s equations
to construct general solutions for the fields in different media and
then stitch them at interfaces. In contrary to the Yaghjian and Maci
approach, we use the flux boundary conditions: the normal component
of the Poynting vector is equal to zero at the inner interface. We do not
employ coordinate transformations (only for demonstration purposes),
but introduce general potential functions. By revisiting the common
TO problems (e.g., invisibility cloaking and optical concentrator),
we show that the field-based approach is mostly equivalent to the
conventional geometric formulation. However, some cases are identified
where the field-based approach provides additional insight into the
physics of the transformation media, such as the problem of material
parameter singularities of invisibility cloaks. We show that these
singularities result from the field discontinuities at the boundaries, and
offer a means to circumvent this problem and design a singularity-
free cloak. Using the same principles we propose the design of a
non-magnetic cloak that can have invisibility without requiring any
magnetic materials. We also show how the field-based TO can be
helpful in designing devices producing predetermined electromagnetic
field distribution, e.g., lenses (plates) capable of converting plane waves
into Gaussian beams. This method can be further used to calculate
metamaterial’s parameters generating non-diffracting (e.g., Bessel [73])
or accelerating (e.g., Airy [74]) light beams.
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The rest of the paper is organized as follows. In Section 2,
the principles of field-based transformation optics approach are put
forth, and the basic set of boundary conditions for the fields is
revealed. In Section 3, examples of the transformation optics
devices (cloak, concentrator, rotator, lens) are analyzed using
the field boundary conditions, i.e., electrodynamically rather than
geometrically. Section 4 follows with the analysis of material parameter
singularities (infinite values) that can arise during transformation.
Electromagnetic fields near the singularity are considered, and finite
material parameters for a cloak are derived. Section 5 deals with a
specific case of a non-magnetic cloak. Finally, Section 6 summarizes
the paper.

2. FIELD TRANSFORMATION OPTICS

2.1. Concept

Conventional TO deals with the transformation of the three-
dimensional space (usual electrodynamic applications) or four-
dimensional space (space-time cloaking [75–77]). It is extremely
convenient, when we intuitively understand how the space should be
transformed to get an expectable result, for example, to concentrate
electromagnetic energy. The genuine triumph of this approach is
an invisibility cloak. It is natural to squeeze the region of the
virtual (electromagnetic) space r̄′ to get an invisible cavity in the
physical space r̄ (Appendix A). However, it is not obvious, which
space transformations should be applied to receive a prescribed field
distribution in the region.

We propose to look at TO from another perspective. Instead
of geometrical definitions of devices with squeezing and stretching
of space we put forward the requirement of the special field in a
spatial region, which can be achieved through the boundary conditions
the fields obey at the interfaces. Strictly speaking, both approaches
(conventional and field-based) at the end are equivalent, but we
expect our approach to be more convenient for working with the field
transformation.

TO equations for material parameters and fields follow from
the invariance of the Maxwell equations with respect to coordinate
transformations (see Appendix A). The inverse Jacobian matrix J−1 =
∇ ⊗ r̄′(r̄) (see Appendix B for details) can be presented in terms of
potential functions ψi(r̄) = (n̄ir̄

′), i = 1, 2, 3:

J−1 = ∇ψ1 ⊗ n̄1 +∇ψ2 ⊗ n̄2 +∇ψ3 ⊗ n̄3, (1)



Progress In Electromagnetics Research, Vol. 129, 2012 489

where ā ⊗ b̄ is a dyad, and ⊗ stands for the dyadic (tensor or outer)
product of vectors ā and b̄; n̄1, n̄2, and n̄3 are a triple of unit orthogonal
vectors. The set of arbitrary orthogonal vectors n̄i is important for
presenting electric field Ē′ in an arbitrary way, so that we are not
limited by the choice of a special coordinate system. At the same
time, in many situations it can be beneficial to specify n̄i as Cartesian
basis vectors. Functions ψi can be complex functions dependent on
parameters, e.g., frequency ω, thus differing in the general case from
the usual coordinates in the electromagnetic space.

Starting from conventional equations of TO (2)–(5), we will
interpret them in another way and thus introduce the concept of field
transformation optics. Electric Ē(r̄) and magnetic H̄(r̄) fields in the
physical space are transformed from fields Ē′(r̄′) and H̄ ′(r̄′) in the
electromagnetic space by means of the inverse Jacobian matrix:

Ē(r̄) = J−1Ē′ (r̄′) =
3∑

i=1

∇ψi

(
n̄iĒ

′) ,

H̄(r̄) = J−1H̄ ′ (r̄′) =
3∑

i=1

∇ψi

(
n̄iH̄

′) .

(2)

Looking for the Jacobian matrix in the form J = n̄1 ⊗ ā′1 + n̄2 ⊗
ā′2 + n̄3 ⊗ ā′3 and using the identity JJ−1 = 1, we further derive

J =
∑3

i=1 n̄i ⊗ āi

∇ψ1(∇ψ2 ×∇ψ3)
, (3)

where solenoidal vectors ā1 = ∇ψ2 × ∇ψ3 = ∇ × (ψ2∇ψ3), ā2 =
∇ψ3×∇ψ1 = ∇× (ψ3∇ψ1), and ā3 = ∇ψ1×∇ψ2 = ∇× (ψ1∇ψ2) are
introduced. The permittivity and permeability tensors in the physical
space take the usual form

ε =
JT ε′J
det(J)

=

∑3
i,j=1 ε′ij āi ⊗ āj

∇ψ1(∇ψ2 ×∇ψ3)
,

µ =
JT µ′J
det(J)

=

∑3
i,j=1 µ′ij āi ⊗ āj

∇ψ1(∇ψ2 ×∇ψ3)
,

(4)

where det(J) = 1/∇ψ1(∇ψ2 × ∇ψ3) and ε′ij = n̄iε
′n̄j are the

components of the permittivity tensor ε′ in the electromagnetic space.
The inductions of the electric and magnetic fields easily follow up:

D̄ = εĒ =




3∑

i,j=1

ε′ij āi ⊗ n̄j


Ē′, B̄ = µH̄ =




3∑

i,j=1

µ′ij āi ⊗ n̄j


H̄ ′. (5)
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The formulae demonstrated in this subsection is just a paraphrase
of the well-known relations. Nevertheless, they have a different
meaning now. We deal with the fields in different media, but not
with the fields in the physical and electromagnetic space. So, Ē′ and
H̄ ′ are an arbitrary pair of fields satisfying the Maxwell equations
in the medium with ε′ and µ′. In general, these fields and material
parameters do not coincide with incident fields Ē(inc), H̄(inc) and
material tensors ε(0), µ(0) in the surrounding space. Potential functions
ψi are not associated with a coordinate transformation. They are
arbitrary functions, which introduce the general solution Ē and H̄ of
the Maxwell equations in the transformation media with ε, µ. These
general solutions can be used now to construct TO devices using
boundary conditions.

2.2. Boundary Conditions

2.2.1. Transparency

Continuity of the tangential components of the sum of incident
(Ē(inc) and H̄(inc)) and scattered (rEĒ(inc) and rHH̄(inc)) fields,
and transformed (Ē and H̄) fields at the outer boundary of the
transformation medium S results in

Ēt|S = (1 + rE)Ē(inc)
t |S , H̄t|S = (1 + rH)H̄(inc)

t |S , (6)

where rE,H are the local reflection coefficients (matrices in general),
the subscript t denotes the tangential components of the vectors.

Transparency means the absence of the scattered field (rE,H = 0),
i.e.,

Ēt|S = Ē
(inc)
t |S , H̄t|S = H̄

(inc)
t |S , (7)

We refer a reader to Section 3.1 for the detailed discussion of the
transparency condition (7).

2.2.2. Illusion

When one looks at object A, but sees object B, it is called an
illusion [27–32]. It can be achieved using the advanced boundary
conditions

Ēt|S = Ē
(inc)
t |S + Ē

(sc)
t |S , H̄t|S = H̄

(inc)
t |S + H̄

(sc)
t |S , (8)

where the superscript (sc) means “scattering”. To obtain the illusion
application, one needs to put scattered fields Ē

(r)
t and H̄

(r)
t of object

B at boundary S in expression (8). Then an observer will see exactly
object B instead of A.
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2.2.3. Absence of Penetration

The energy flux in the transformation medium does not penetrate
through the boundary S, when

Re
[
Ē × H̄∗]

n
|S = 0, (9)

where the subscript n stands for the normal component of the vector
with respect to surface S. Boundary condition (9) describes the inner
boundary of an invisibility cloak.

It should be noted that Equation (9) is stricter than the condition
for evanescent waves arising on the total internal reflection. The
evanescent waves do not carry the energy as well, but it is not for
any incident wave and not at every point of surface S. In spite of that
the total energy flux is equal to zero for the evanescent waves, the local
energy flux can exist for electromagnetic beams.

By substituting the fields in the form of expression (2) and
assuming potential functions ψi being complex-valued, we derive the
Poynting vector

S̄ = (c/8π)Re
[ (

E′
1H

′∗
2 −E′∗

2 H ′
1

)
(∇ψ1 ×∇ψ∗2)

+
(
E′

1H
′∗
3 −E′∗

3 H ′
1

)
(∇ψ1 ×∇ψ∗3)

+
(
E′

2H
′∗
3 −E′∗

3 H ′
2

)
(∇ψ2 ×∇ψ∗3)

]
, (10)

where E′
i = n̄iĒ

′ and H ′
i = n̄iH̄

′. This equation should hold true
for arbitrary fields Ē′ and H̄ ′. Therefore, we get the following three
equations:

(∇ψ1×∇ψ∗2)n|S = 0, (∇ψ1×∇ψ∗3)n|S = 0, (∇ψ2×∇ψ∗3)n|S = 0. (11)

Specifically for real potential functions ψi we can recall the connection
of potential functions with vectors āi. Then conditions (11) can be
rewritten as (āi)n|S = 0 (i = 1, 2, 3) or, according to Equation (5), as
D̄n|S = 0 and B̄n|S = 0 [71].

It should be stressed that condition (9) should be distinguished
from the ordinary total internal reflection. The latter also exhibits zero
energy flux, but not locally (only as an integral characteristic over the
interface). So, evanescent field penetrates into the medium from which
reflection occurs. Conditions (11) provide that any incident field does
not exist in the cavity.

2.2.4. Predetermined Electromagnetic Field

The continuity conditions at boundary S for fields Ē(in) and H̄(in) and
fields in the transformation medium Ē and H̄ reads as

Ēt|S = Ē
(in)
t |S , H̄t|S = H̄

(in)
t |S . (12)
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Equation (12) has a similar structure to Equation (7) for transparency.
Boundary conditions (12) are applicable at the inner boundaries of
concentrators, rotators, and TO lenses.

2.2.5. Junction of Transformation Media

When two transformation media border each other, the usual boundary
conditions of continuity of the tangential components should hold:

Ē
(1)
t |S = Ē

(2)
t |S , H̄

(1)
t |S = H̄

(2)
t |S , (13)

where S is the interface between media 1 and 2. Assuming that Ē(1) =∑3
i=1∇ψ

(1)
i (n̄iĒ

′) and Ē(2) =
∑3

i=1∇ψ
(2)
i (n̄iĒ

′) (see Equation (2)),
we can rewrite Equation (13) in terms of potential functions as

∇tψ
(1)
i |S = ∇tψ

(2)
i |S , (14)

where ∇t stands for the tangential components of the nabla operator.

3. EXAMPLES

3.1. Transparency in General

Let’s test our approach on some examples. The first trial is to impose
transparency conditions on a certain space, e.g., on an infinitely long
cylinder S in the three-dimensional physical space (see Figure 1).
According to Equation (7) we claim continuity of the tangential fields,
which can be rewritten in the form

3∑

i=1

∇tψi

(
n̄iĒ

′) |S =
3∑

i=1

(
n̄i)t(n̄iĒ

(inc)
)
|S , (15)

where Equation (2) is applied. To provide transparency for arbitrary
incident fields Ē(inc) and H̄(inc), the material tensors defined by
potential functions ψi should not depend on the incident fields. This
is possible, if fields Ē′ and H̄ ′ are expressed in terms of the incident
fields. Equation (15) is split into two equations and we derive

∇tψi|S = βi(r̄)(n̄i)t|S ,

βi(r̄)
(
n̄iĒ

′) |S =
(
n̄iĒ

(inc)
)
|S ,

βi(r̄)
(
n̄iH̄

′) |S =
(
n̄iH̄

(inc)
)
|S ,

(16)

where βi (i = 1, 2, 3) are some scalar functions. If βi = 1, one gets
conventional TO expressions:

Ē′(ψ1, ψ2, ψ3)|S = Ē(inc)(x1, x2, x3)|S ,

H̄ ′(ψ1, ψ2, ψ3)|S = H̄(inc)(x1, x2, x3)|S ,
(17)
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that is equality of ψi and xi at boundary S,

ψi|S = xi|S . (18)

Equation (18) means that potential functions ψi become the ordinary
coordinates at boundary S and equations ∇tψi|S = (n̄i)t|S are fulfilled
identically. The example of an invisible region in an arbitrary ambient
medium ε(0), µ(0), is shown in Figure 1. A field mapping picture
in Figure 1(b) is the same as for propagation of a plane wave in a
homogeneous medium (Figure 1(a)).

Through the whole paper, commercial software COMSOL
Multiphysics based on the Finite-Element Method (FEM) is used for
simulations [78]. We specify the scattering boundary conditions or
a perfect electric conductor for each of four sides of the numerical
domain. Because of the numerical inaccuracies the plane wave front is
distorted as one can observe in Figure 1. Nevertheless, the interaction
of this distorted field with the transformation medium is small and the
transparency phenomenon can be identified.

In Appendix C, the illustration of more general condition βi 6= 1
is provided. In this case Equation (18) is violated, and full expressions
for tensors ε and µ can differ from those of conventional TO.
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Figure 1. (a) Original (ε′, µ′) and (b) ψi-generated (ε, µ) media
are invisible. In COMSOL simulation a plane wave is incident and
the cylindrical transformation medium embedded into vacuum ε(0) =
µ(0) = 1 is characterized by the functions f(r) = g(r) = r exp(r − b)
and h = 1 (definitions of f , g, and h are given in Section 3.2.2),
ε = µ = (1 + r)−1ēr ⊗ ēr + (1 + r)ēϕ⊗ ēϕ + (1 + r) exp(2r− 2b)ēz ⊗ ēz,
where ēr, ēϕ, and ēz are the basis vectors of the cylindrical coordinates.
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3.2. Invisibility Cloak

An invisibility cloak is the combination of transparency at outer
interface S1 (Section 2.2.1) and absence of penetration through inner
interface S2 (Section 2.2.3):

Ēt|S1 = Ē
(inc)
t |S1 , H̄t|S1 = H̄

(inc)
t |S1 , Re

[
Ē × H̄∗]

n
|S2 = 0. (19)

We further demonstrate the cloak in two well-studied examples.

3.2.1. Spherical Cloak a ≤ r ≤ b.

Transparency conditions (18) at the outer boundary r = b requires
ψ1(b, θ, ϕ) = b sin θ cosϕ, ψ2(b, θ, ϕ) = b sin θ sinϕ, and ψ3(b, θ, ϕ) =
b cos θ. From the variety of forms for the potential functions we choose

ψ1(r̄)=f(r) sin θ cosϕ, ψ2(r̄)=g(r) sin θ sinϕ, ψ3(r̄)=h(r) cos θ, (20)

where f(b) = g(b) = h(b) = b. The energy flux will not penetrate
through the inner boundary r = a, if Equation (11) holds true:

f(a)g(a) = 0, f(a)h(a) = 0, g(a)h(a) = 0. (21)

Thus, the invisibility cloak is realized if f(a) = g(a) = 0, f(a) =
h(a) = 0, or g(a) = h(a) = 0. The material tensors can be calculated
using Equation (4). The parameters of a conventional spherical cloak
are recovered if f = g = h.

3.2.2. Cylindrical Cloak a ≤ r ≤ b

Potential functions

ψ1(r̄) = f(r) cos ϕ, ψ2(r̄) = g(r) sin ϕ, ψ3(r̄) = h(r)z (22)

meet transparency conditions f(b) = g(b) = b and h(b) = 1. Then at
the inner interface we derive

f(a)h(a) = 0, g(a)h(a) = 0. (23)

Invisibility cloaking appears for f(a) = g(a) = 0, or h(a) = 0, and
the ordinary cylindrical cloak parameters are restored within the case
f = g and h = 1.

3.3. Two-shell Cloak

With this example we demonstrate both the invisibility cloak and
connection of two transformation media (see Section 2.2.5). Let the
external transformation medium occupies cylindrical layer c ≤ r ≤ b.
It can be characterized by functions f1(r) = g1(r) = r2/b and h = 1,
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or material parameters ε = µ = 0.5ēr⊗ ēr +2ēϕ⊗ ēϕ +2(r2/b2)ēz⊗ ēz.
The external layer serves only for the transparency purposes. The
internal transformation medium is in region a < r ≤ c and has
f2(r) = (c2/b)(r−a)/(c−a), which provides continuity of the potential
functions at the interface as f2(c) = f1(c) = c2/b and absence of
the energy flux through the inner interface via f2(a) = 0. The
dielectric permittivity and magnetic permeability corresponding to
such potential functions are ε = µ = r−1(r−a)ēr⊗ ēr +r(r−a)−1ēϕ⊗
ēϕ + (c4(r − a)/rb2(c − a)2)ēz ⊗ ēz. The described two-shell device is
the invisibility cloak. Electric field |Ē| (Figure 2(a)) is discontinuous
at the boundaries, but the cloak can be recognized due to absence of
the scattered field and field in the inner cavity r < a.

3.4. Concentrator and Rotator

We consider a cylindrical concentrator-rotator in layer a < r < b [79].
At the outer interface of the device we put the transparency conditions,
i.e., the potentials can be chosen similarly to those of the cylindrical
cloak:

ψ1 = f(r) cos(ϕ−φ(r)), ψ2 = f(r) sin(ϕ−φ(r)), ψ3 = z. (24)

Conditions of transparency at the outer interface are f(b) = b and
φ(b) = 0. In the inner cavity incident fields should be rotated and
amplified: Ē(in)(r, ϕ, z) = AĒ(inc)(r, ϕ − ϕ0, z) and H̄(in)(r, ϕ, z) =

(a) (b)
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Figure 2. (a) Electric field |Ē| in the two-shell cloak. Plane waves
from the left and from the right form the incident standing wave. (b)
Magnetic field Hz for the concentrator-rotator application (A = 3,
ϕ0 = π/3). Incident plane wave goes from left to right.
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AH̄(inc)(r, ϕ−ϕ0, z). So, the boundary conditions at the inner interface
are similar to those at the outer interface, if we replace f with f/A
and φ with φ−ϕ0. This means we get f(a) = Aa and φ(a) = ϕ0. Now
we can easily choose functions f(r) and φ(r), e.g., as linear functions
f(r) = b(r− a)/(b− a) + Aa(b− r)/(b− a) and φ = ϕ0(b− r)/(b− a).
Then we derive

ε = µ =
p(r)

(aA− b)r
ēr ⊗ ēr +

ϕ0p(r)
(a− b)(aA− b)

(ēr ⊗ ēϕ + ēϕ ⊗ ēr)

+
r
(
(a−b)2(aA−b)2+p(r)2ϕ2

0

)

p(r)(a− b)2(aA− b)
ēϕ⊗ēϕ+

(aA−b)p(r)
(a− b)2r

ēz⊗ēz. (25)

where p(r) = (aA − b)r − a(A − 1)b. The magnetic field in the
concentrator-rotator is shown in Figure 2(b). One observes the
simultaneous rotation and amplification of the field in the inner cavity.
To selectively amplify either electric or magnetic field, one can tune
the permittivity and permeability of the inner-cavity medium while
keeping its refractive index unchanged.

In the concentrator/rotator application we are lucky to have the
field inside the cavity in a similar form to the incident field. The
conventional transformation optics well handles such cases. In general,
fields Ē(inc), H̄(inc) and Ē(in), H̄(in) can be substantially different.
In the following section we deal with the TO lensing allowing to get
arbitrary field distributions transforming a plane wave.

3.5. Transformation-optics Lenses

The objective of transformation optics is to manipulate light in the
desired manner. One of the most potentially-useful examples of such
light manipulation is the design of a planar lens capable of creating
a spatial beam with predefined properties. In terms of TO the
transformation optics, the problem is to obtain the prescribed field
mapping after the lens for a known incident field.

We start with the planar lens geometry as an infinite slab
occupying space between x = 0 and x = a in vacuum. The incident
wave is not reflected at the first boundary and converted by the lens
into fields Ē(out) and H̄(out). We apply the transparency boundary
conditions at x = 0 (Section 2.2.1) and conditions of predetermined
electromagnetic fields at x = a (Section 2.2.4),

Ē|x=0 = Ē(inc)|x=0, Ē|x=a = Ē(out)|x=a,

H̄|x=0 = H̄(inc)|x=0, H̄|x=a = H̄(out)|x=a.
(26)

Transparency conditions (18) are met automatically for potential
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functions

ψ1(r̄) = x + xf1(r̄), ψ2(r̄) = y + xf2(r̄), ψ3(r̄) = z + xf3(r̄). (27)

Let us shape the fields in y-direction taking the potential functions
in the form: ψ1 = x, ψ2 = y + xη(y), and ψ3 = z + xζ(y)z. Then for
the y-polarized incident plane wave, the electric and magnetic fields in
the transformation medium are

Ē(x, y) = eik0x

[
ηēx +

(
1 + x

∂η

∂y

)
ēy

]
,

H̄(x, y, z) = eik0x

[
zζēx + xz

∂ζ

∂y
ēy + (1 + xζ)ēz

]
.

(28)

Requirement for z-independent fields (z = 0) reduces the magnetic
field to H̄(x, y) = eik0x(1 + xζ)ēz. In this case the permittivity and
permeability tensors of the lens take the form

ε = µ =




(
1 + x

∂η

∂y

)
(1 + xζ) −η(1 + xζ) 0

−η(1 + xζ)
1 + xζ

1 + x
∂η

∂y

(1 + η2) 0

0 0
1 + x

∂η

∂y

1 + xζ




.(29)

Using the boundary conditions at the second interface (x = a) we
derive the fields transmitted by the lens: Ē(out)(a, y) = eik0a(1+a∂η

∂y )ēy

and H̄(out)(a, y) = eik0a(1 + aζ)ēz, where E
(out)
x = 0 follows from the

continuity of the normal component of the displacement vector. Since
Ē(out) and H̄(out) are defined by different functions η and ζ, it is feasible
to create the desired beam satisfying Maxwell’s equations in the semi-
space after the lens.

For instance, paraxial beams can be described as E(out) ≈ H(out) =
eik0xf(x, y), where function f is a solution of a diffraction equation. As
a specific example, we consider generation of spatial Gaussian beam

E(out) = A
w0

w(x)
eik0x−i arctan(x/L)−y2/w(x)2 , (30)

where w(x) = w0

√
1 + x2/L2 is the beam width and L = k0w

2
0/2.

Equating this field at the interface with that expressed via functions η



498 Novitsky et al.

and ζ we derive

ζ =
∂η

∂y
=

(
A

w0

w(a)
e−i arctan(a/L)−y2/w(a)2 − 1

)
/a,

η =
(

A

√
πw0

2
e−i arctan(a/L)erf(y/w(a))− y

)
/a.

(31)

Choosing A = ei arctan(a/L)/w0 and w0 = 1, we calculate
wavenumber k0, length L, and width w(a) for simulations, the results of
which are shown in Figure 3(a). Distributions of electric and magnetic
fields are similar to those required by paraxial approximation. The
output field is large until |k0y| = 1 (the point where the fields decay by
e times). For greater values of y the transmitted field is rather small.
As we designed the lens with transparent boundary at x = 0, we have
only the incident field before the lens.

The transformation-optics lensing application does not suffer
much from loss and dispersion in this case, because the incident wave
can be highly monochromatic and we can choose optimal parameters
of the transformation medium. Generation of another beam is
demonstrated in Figure 3(b), where E(out)(a, y) = eik0a(1 + a cos(y)).
The outgoing energy flux is redistributed, concentrating in periodically
arranged maxima. This is unlike the case for the Gaussian beam, where
energy is seen to escape out of the lens through the slab itself (see
Figure 3(a)).
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Figure 3. Transformation-optics lenses forming output (a) Gaussian
beam and (b) cos-beam. The distributions of electric field Ey, magnetic
field Hz and energy flux density |S| are depicted. The lens thickness
is k0a = 1, a plane wave is incident from the left-hand side.
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4. MATERIAL PARAMETER SINGULARITIES AND
FIELD DISCONTINUITIES

In the frames of the proposed field-based TO approach the notorious
problem of TO singularities can be treated consistently. By
singularities we mean mostly infinite values of material parameters.
The explicit link between fields (potential functions) and material
parameters offers a simple way to eliminate such infinite values. Below
we demonstrate such approach on a couple of simple examples with
plane and cylindrical geometries.

4.1. Invisible Curtain

As a good illustrative example we begin with a planar invisibility
“curtain”, that is a slab of thickness a infinite in y and z directions
(Figure 4(a)). Such curtain being invisible will hide semi-space x ≥ a
behind it from an external observer positioned in any point within
x < 0 semi-space. In terms of the scattering problem, there are
no both reflected and transmitted waves, energy of an incident wave
must be transmitted outwards within the slab. Applying transparency
condition (7) at interface x = 0, we choose potential functions

ψ1(r̄) = x, ψ2(r̄) = f(x)y, ψ3(r̄) = g(x)z, (32)

where f(0) = g(0) = 1. The energy flux through interface x = a
(see Equation (11)) nullifies if ēx(∇ψ2 × ∇ψ3) = f(a)g(a) = 0 with

(a) (b)
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Figure 4. (a) Sketch of the planar cloak generating electric current j̄ in
y-direction to make magnetic field equal zero after the transformation
slab. (b) Magnetic field Hz for the non-singular cylindrical cloak, when
a plane wave is incident.
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two remaining conditions hold identically. Simplifying the case we can
choose one trivial function g(x) = 1, which requires f(a) = 0.

For y-polarized incident plane wave Ē(inc) = exp(ik0x)ēy and
H̄(inc) = exp(ik0x)ēz, the tangential component of transformed electric
field Ē = exp(ik0x)(fēy + df

dxyēx) at interface x = a equals zero.
However, the tangential component of magnetic field H̄ = exp(ik0x)ēz

does not. Since both electric and magnetic fields behind the slab should
be zero, there is discontinuity of the magnetic field at the interface.

The physical reason of discontinuity can be revealed in the
following way. Material tensors (4) of the curtain slab are

ε = µ = f(ēx ⊗ ēx + ēz ⊗ ēz) +

(
df
dxy

)2
+ 1

f
ēy ⊗ ēy

−y
df

dx
(ēx ⊗ ēy + ēy ⊗ ēx). (33)

One of tensors components tends to infinity at the interface:
εyy(a, y, z) = µyy(a, y, z) = ∞. This infinite permittivity value
reproduces a perfect electric conductor in the y-direction, while infinite
permeability does not affect the z-polarized magnetic field. So y-
directed electric current j̄ = (iω)/(4π) exp(ik0a)ēy appears at the
interface. It generates a z-directed magnetic field, which compensates
tangential magnetic field exp(ik0a)ēz behind the cloaking slab.

The explicit link between fields (scalar function f(x)) and infinite
material parameter εyy proposes the clear recipe to eliminate such
singularities. Both electric and magnetic fields have to vanish at
interface x = a. For example, taking f(x) = g(x) results in f(a) =
g(a) = 0, so the tangential components of both fields turn to zero. The
material tensors no longer have infinite components:

ε = µ =
(

y
df

dx
ēy + z

df

dx
ēz − fēx

)
⊗

(
y

df

dx
ēy + z

df

dx
ēz − fēx

)

+ēz ⊗ ēz + ēy ⊗ ēy. (34)

These material tensors still possess the zero eigenvalues at interface x =
a. This means the presence of infinite phase velocities. Nevertheless,
we consider the nulls of the material tensors as a minor by-effect of the
approach.

4.2. Cylindrical Cloak

A similar reasoning is valid for better-studied cylindrical invisibility
cloaks. It is easy to check for a TM -polarized wave incident on a
cylindrical cloak that functions f = g and h = 1 (see Equation (22))
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lead to the infinite azimuthal components of the material tensors and
discontinuity of magnetic field Hz at the inner boundary r = a. Hence,
the electric current appearing at this interface is directed azimuthally,
along ēϕ. To avoid the singular values, we can try f = g and h 6= 1.
In this case, all components of the tensors are finite for the price that
the material tensors are not diagonal in the cylindrical coordinates:

ε = µ =




fh

r
df

dr

0 −
zf

dh

dr
r df

dr

0
r
df

dr
h

f
0

−
zf

dh

dr

r
df

dr

0

f

((
dh

dr

)2

z2 +
(

df

dr

)2
)

rh
df

dr




. (35)

A similar introduction of non-singular parameters has been recently
made by conformal transformations [80]. It is evident that a
nonsingular tensor is achievable when f and h simultaneously go to
zero at r = a. So, in order to get non-singular parameters, we can
replace Equation (9) with boundary conditions

Ēt|S2 = 0, H̄t|S2 = 0, (36)

or in terms of the potential functions:

∇tψi|S2 = 0. (37)

One particular illustration of such cylindrical cloak is shown in
Figure 4(b). To satisfy requirement (36) we choose the simple variant
with f(r) = bh(r), and consider an incident wave in the z = 0 cross-
section of the cylinder. Then tensors ε and µ are diagonal and non-
singular, and f(r) = g(r) = bh(r) = b(r− a)/(b− a). The permittivity
and permeability straightforwardly follow from Equation (35).

5. NON-MAGNETIC CLOAK

Typically, invisible cloaks are designed with equal dielectric
permittivity and magnetic permeability tensors. However, a non-
magnetic cloak is preferable in optics to mitigate material parameters
requirements. For the sake of simplicity we consider that a TM -
polarized incident wave with Ex, Ey, Hz field components propagates
in the z = 0 cross-section of the singularity-free cloak (35).
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Figure 5. (a) The original TM-polarized field as superposition of two
plane waves from left and from bottom. (b) Non-magnetic cloak.

The problem is to get the unit value of µzz component of the
magnetic permeability tensor. This is feasible if we assume h(r) =
( df

drf)/r. Then the boundary conditions for the cloaking potential
functions are satisfied if f(a) = 0, f(b) = b, and df

dr |r=b = 1. Thus, the
required components of the non-singular material tensors are

εrr =
f2

r2
, εϕϕ =

(
df

dr

)2

, µzz = 1. (38)

The proposed non-magnetic cloak is indeed functional, as
demonstrated in Figure 5 with f(r) = (r−a)[a(2b−a−r)/(b−a)2 +1]
satisfying the required boundary conditions.

Note that the chosen combination of geometry and incident wave
polarization allows ignoring other (non-z) components of the magnetic
permeability tensor. For this reason, a non-magnetic cloak in the
cylindrical geometry is possible only for the TM polarized incident
wave.

6. CONCLUSION

In this paper, we have interpreted transformation optics from the
point of view of the field rather than geometrical transformations.
We keep the central idea of the invariance of the Maxwell equations
with respect to coordinate transformations. However, we replace the
coordinates with generalized potential functions, which can be complex
and parameter (e.g., frequency) dependent. The potential functions
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serve to construct the general solutions of the Maxwell equations with
the need of properly assigned field boundary conditions. For example,
absence of fields inside the hidden region of a cloak is formulated in
terms of nullifying the energy flux through the cloak inner interface.
Considering several well-known examples (cylindrical cloaks, spherical
cloaks, non-magnetic cloaks, concentrators, rotators) we have proved
that both geometric and electrodynamic definitions of the TO devices
are at the end equivalent. However, the field-based approach is superior
in problems, where predetermined field configuration needs to be
achieved. Among such problems are designing of transformation optics
lenses capable of shaping a plane wave into beams with an arbitrary
spatial profile. The case of a Gaussian beam has been demonstrated,
and more complicated beams (e.g., Bessel or Airy) are contemplated
for further studies.

We have also discussed the field structure of planar and cylindrical
invisibility cloaks with singularities (infinite components) of the
permittivity/permeability tensors. The explicit links between the
potential functions and material parameters allow us to reveal that
these singularities appear due to discontinuities in the tangential
components of magnetic (electric) fields at the cloak boundaries. In
presence of field discontinuity, material singularity creates a current
compensating the fields inside the cloaked region. Therefore, a simple
approach to avoid singularity has been proposed, by nullifying both
electric and magnetic fields at the boundary.
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APPENDIX A. BI-ANISOTROPIC TRANSFORMATION
MEDIA

We are looking for the relations between fields and material parameters
in the Maxwell equations before and after transformation. Let
quantities before transformation [“original” quantities, expressed
in coordinates r̄′ = (x′1, x

′
2, x

′
3) in the original (electromagnetic,

virtual) space] be denoted by symbols with a prime. Likewise, let
quantities after transformation [“transformed” quantities, expressed
in coordinates r̄ = (x1, x2, x3) in the transformed (physical) space] be
denoted by symbols without a prime. Using an orthonormal basis, we
do not distinguish covariant and contravariant quantities in the three-
dimensional Euclidean space [81–83].

Constitutive relations for a bi-anisotropic medium [82]
D̄′ = ε′Ē′ + α′H̄ ′, B̄′ = µ′H̄ ′ + κ′Ē′ (A1)

connect monochromatic electric and magnetic fields Ē′ and H̄ ′ with
inductions D̄′ and B̄′ via dielectric permittivity tensor ε′, magnetic
permeability tensor µ′, and gyration pseudotensors α′ and κ′. The
notation for the contraction of a tensor and vector as εĒ (in index
form (εĒ)i =

∑3
j=1 εijEj) can be referred as Fedorov’s form [81–83].

Such notation is used, e.g., in [15, 89].
Out of four Maxwell’s equations, we consider one curl equation

and one divergence equation. The two remaining equations are treated
in the same way. Let us start with the curl equation (we adopt the
Gaussian system of units)

∇′ × Ē′ = −1
c

∂
(
µ′H̄ ′ + κ′Ē′)

∂t
(A2)

and find its transformed analogue. Using the link between coordinates
r̄ = r̄(r̄′) we write straightforwardly

∇′i =
∂

∂x′i
=

∂xj

∂x′i

∂

∂xj
. (A3)

Hereafter in this Appendix we assume the Einstein summation rule
over repeated indices whenever they show up in vector and tensor
components. The coefficients in front of derivatives ∇j = ∂

∂xj
form

Jacobian matrix Jij = ∂xj

∂x′i
. According to [90], the invariance holds

only for proper transformations det(J) > 0 (in the case of improper
transformations det(J) < 0, one should use the absolute value of the
Jacobian). In the index-free notations, contraction of matrix J with
vector operator ∇ can be written as

∇′ = J∇. (A4)
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Introducing unit matrices 1 = JJ−1 before and after the curl operator,
one gets to

(
JT

)−1
JT (J∇)×(JJ−1Ē′) = −1

c

∂
(
µ′H̄ ′ + κ′Ē′)

∂t
, (A5)

where JT is the transposed Jacobian matrix, and ā× = (J∇)× is the
tensor dual to vector ā = J∇. The tensor dual to vector ā is defined as
(ā×)ik = εijkaj (εijk is the antisymmetric Levi-Civita’s pseudotensor,
which should be distinguished from permittivity εij ) [81–83]. The
Jacobian matrix meets the identity relation

(∇′ × J
)
im

= εijk
∂

∂x′j
Jkm = εijk

∂2xm

∂x′j∂x′k
= 0, (A6)

which permits us to take J out of the curl. We then present the curl
Maxwell equation in the form

(
JT

)−1
Â

(
J−1Ē′) = −1

c

∂
(
µ′H̄ ′ + κ′Ē′)

∂t
, (A7)

where Â = JT (J∇)×J is the matrix differential operator (remember
that ∇′× does not act on the Jacobian matrix on the right-hand side).
We use a hat ˆ designation to stress that operator Â is differential.
Using the index form of Â and mathematical relation εjmnJjiJmlJnk =
(detJ)εilk, we derive

Âik = εjmnJjiJmlJnk∇l = (det J)εilk∇l = (det J)(∇×)ik. (A8)

In formula εjmnJjiJmlJnk = (detJ)εilk, quantities (ui)j = Jji can
be treated as components of vectors ui. When two indices are equal,
e.g., i = l, εiik = 0 and εjmnJjiJmiJnk = (ui × ui)uk = 0. If three
indices are different, e.g., i = 1, l = 2, and k = 3, we arrive at the
Jacobian determinant detJ = εjmnJj1Jm2Jn3 = (u1 × u2)u3.

So, the Maxwell equation becomes

(detJ)
(
JT

)−1∇×(J−1Ē′) = −1
c

∂
(
µ′H̄ ′ + κ′Ē′)

∂t
(A9)

or

∇× Ē = −1
c

∂(µH̄ + κĒ)
∂t

, (A10)

where the transformed fields and material parameters are

Ē = J−1Ē′, H̄ = J−1H̄ ′, µ =
JT µ′J
detJ

, κ =
JT κ′J
det J

. (A11)
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From the second curl Maxwell equation, the transformation
relations for the current and two remaining material tensors are
derived:

ε =
JT ε′J
detJ

, α =
JT α′J
detJ

, j̄ =
1

detJ
JT j̄′. (A12)

In the index form, the transformation rule can be presented in the form
εij = (det J)−1Jkiε

′
klJlj .

To transform the divergence equation
∇′ (ε′Ē′ + α′H̄ ′) = 4πρ′ (A13)

or
J∇

(
(detJ)

(
JT

)−1 (
εĒ + αH̄

))
= 4πρ′ (A14)

it is necessary to prove that

∇′
(
(detJ)

(
JT

)−1
)

= 0. (A15)

To prove this relation we write the gradient of the determinant as

∇′l det J =
∂ det J

∂x′l
=εijk

(
∂Ji1

∂x′l
Jj2Jk3+Ji1

∂Jj2

∂x′l
Jk3+Ji1Jj2

∂Jk3

∂x′l

)
, (A16)

and rearrange its first term as

εijk
∂Ji1

∂x′l
Jj2Jk3 = εijkJimJ−1

mn

∂Jn1

∂x′l
Jj2Jk3

= (detJ)εm23J
−1
mn

∂Jn1

∂x′l
= (detJ)J̃−1

n1

∂JT
1n

∂x′l
. (A17)

We can then use the identity ∂JT
mn

∂x′l
= ∂2xm

∂x′l∂x′n
= ∂JT

ml
∂x′n

to arrive at

∇′l det J = (det J)J̃−1
nm

∂JT
mn

∂x′l
= (detJ)

(
JT

)−1

nm

∂
(
JT

)
ml

∂x′n
, (A18)

Finally for the divergence we get
(
∇′

(
(detJ)

(
JT

)−1
))

k
=

∂ det J

∂x′l

(
JT

)−1

lk
+ detJ

∂
(
JT

)−1

lk

∂x′l

= detJ

(
(
JT

)−1

nm

∂JT
ml

∂x′n

(
JT

)−1

lk
+

∂
(
JT

)−1

lk

∂x′l

)

= detJ

(
(
JT

)−1

nm

∂JT
ml

∂x′n
+

∂
(
JT

)−1

nm

∂x′n
JT

ml

)
(
JT

)−1

lk

= (detJ)
∂

(
JT

)−1

nm
JT

ml

∂x′n

(
JT

)−1

lk
= (detJ)

∂δnl

∂x′n

(
JT

)−1

lk
= 0, (A19)
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where δnl is the Kronecker delta.
Expression (detJ)

(
JT

)−1 can then be taken out of the derivative
∇′:

J∇
(
(detJ)

(
JT

)−1
εĒ

)
= Jij∇j

(
(detJ)

((
JT

)−1
)

im

(
εĒ

)
m

)

= (detJ)
(
JT

)
ji

((
JT

)−1
)

im
∇j

((
εĒ

)
m

)

= (detJ)∇m

(
(εĒ)m

)
= (det J)∇ (

εĒ
)
. (A20)

Thus the Gauss law in the transformed coordinates is

∇ (
εĒ + αH̄

)
= 4πρ, (A21)

where

ρ =
ρ′

det J
. (A22)

Gyration pseudotensors α′ and κ′ are transformed in the same way
as permittivity and permeability tensors. The transformed medium is
bi-anisotropic only if the original medium possesses nonzero α′ and κ′.

APPENDIX B. INDEX-FREE FORM OF A JACOBIAN
MATRIX

Assuming the same Cartesian basis ēi = n̄i for two coordinate systems
r̄ =

∑3
i=1 xiēi and r̄′ =

∑3
i=1 x′in̄i, the Jacobian matrix Jij = ∂xj/∂x′i

can be presented in the index-free (coordinate-free) form:

J =
3∑

i,j=1

Jij ēi ⊗ ēj =
3∑

i=1

ēi
∂

∂x′i
⊗

3∑

j=1

xj ēj = ∇′ ⊗ r̄. (B1)

If we perform the inverse coordinate transformation, the Jacobian
matrix takes a similar form: J ′ = ∇⊗ r̄′. When the direct and inverse
transformations are made one by one, we will arrive at the trivial
Jacobian matrix, i.e., J ′J = 1. So, we conclude that J ′ = J−1 = ∇⊗r̄′.

APPENDIX C. EXAMPLE OF GENERAL CONDITIONS
OF THE TRANSPARENCY

In Section 3.1, we have introduced the general conditions of the
transparency (16). In the special situation of βi = 1 we have the
ordinary Equation (18) posed in TO. However, if parameters of the
surrounding medium ε(0) and µ(0) do not coincide with ε′ and µ′, then
βi 6= 1 and incident fields Ē(inc) and H̄(inc) are no more fields Ē′ and
H̄ ′. The case βi 6= 1 is demonstrated below.
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Let an incident wave in the medium ε(0), µ(0) has the TM
polarization and illuminates a cylindrical transformation medium (with
the axis pointing in the y-direction). Then its fields can be represented
as

Ē(inc)(x, z) = Exn̄1 + Ezn̄3, H̄(inc)(x, z) = Hyn̄2. (C1)
From the boundary conditions (16) we can derive three equations:

β1E
′
x

(
r̄′

) |S1 = E(inc)
x (r̄)|S1 , β3E

′
z

(
r̄′

) |S1 = E(inc)
z (r̄)|S1 ,

β2H
′
y

(
r̄′

) |S1 = H(inc)
y (r̄)|S1 .

(C2)

Due to the TM polarization coefficients β1 and β3 connect only electric
fields, while β2 connects magnetic fields. Magnetic fields H

(inc)
y (r̄) =

H
(inc)
y (x, y, z) and H ′

y(r̄
′) = H ′

y(ψ1, ψ2, ψ3) as a superposition of the
plane waves result in

β2

∫
H ′

y(kx, kz)ein′(kxψ1+kzψ3)dkxdkz|S1

=
∫

H(inc)
y (kx, kz)ein(0)(kxx+kzz)dkxdkz|S1 , (C3)

where n(0) =
√

ε(0)µ(0) and n′ =
√

ε′µ′ are refractive indices of the
media. So we derive
β2H

′
y(kx, kz)=H(inc)

y (kx, kz), n′ψ1|S1 =n(0)x|S1 , n′ψ3|S1 =n(0)z|S1 .
(C4)

Performing similar calculus for incident electric field

Ē(inc)(x, z) =
γ(0)

k0

∫
(n̄1kz − n̄3kx)H(inc)

y (kx, kz)ein(0)(kxx+kzz)dkxdkz,

(C5)
we have two more equations

β1γ
′H ′

y(kx, kz) = γ(0)H(inc)
y (kx, kz),

β3γ
′H ′

y(kx, kz) = γ(0)H(inc)
y (kx, kz),

(C6)

where γ(0) =
√

µ(0)/ε(0) and γ′ =
√

µ′/ε′ are impedances. The
solution of the above equations gives β1 = β3 = β2γ

(0)/γ′. To satisfy
equations ∇tψi|S1 = βi(n̄i)t|S1 and Equation (C4) simultaneously, we
specify β1 = β3 = n(0)/n′ and, then, β2 = γ′n(0)/γ(0)n′.

In contrary to Equation (18) coordinates xi and potential
functions ψi do not need to coincide at boundary S1, as they are
connected by means of expressions

ψ1|S1 =
n(0)

n′
x|S1 , ψ2|S1 =

ε(0)

ε′
y|S1 , ψ3|S1 =

n(0)

n′
z|S1 . (C7)
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The dielectric permittivity and magnetic permeability tensors
restored from of expressions (C7)

ε =
ε(0) (ā1 ⊗ ā1 + ā3 ⊗ ā3) +

(
µ(0)/µ′

)
ā2 ⊗ ā2

∇ψ1(∇ψ2 ×∇ψ3)
,

µ =

(
ε(0)µ′/ε′

)
(ā1 ⊗ ā1 + ā3 ⊗ ā3) + µ(0)ā2 ⊗ ā2

∇ψ1(∇ψ2 ×∇ψ3)

(C8)

do not coincide with those following from Equation (18),

ε = ε(0) ā1 ⊗ ā1 + ā3 ⊗ ā3 + ā2 ⊗ ā2

∇ψ1(∇ψ2 ×∇ψ3)
,

µ = µ(0) ā1 ⊗ ā1 + ā3 ⊗ ā3 + ā2 ⊗ ā2

∇ψ1(∇ψ2 ×∇ψ3)
.

(C9)

Nevertheless, the tensors components responsible for the propagation
of the TM wave are the same in both cases.
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