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Abstract—In the field of automatic target recognition and tracking,
traditional image metrics focus on single images, ignoring the sequence
information of multiple images. We show that measures extracted from
image sequences are highly relevant concerning the performances of
automatic target tracking algorithms. To compensate the current lack
of image sequence characterization systems from the perspective of
the target tracking difficulties, this paper proposes three new metrics
for measuring image sequences: inter-frame change degree of texture,
inter-frame change degree of target size and inter-frame change degree
of target location. All are based on the fact that inter-frame change is
the main cause interfering with target tracking in an image sequence.
As image sequences are an important type of data in the field of
automatic target recognition and tracking, it can be concluded that
the work in this paper is a necessary supplement for the existing image
measurement systems. Experimental results reported show that the
proposed metrics are valid and useful.

1. INTRODUCTION

An automatic target recognition (ATR) system needs to detect,
track and recognize many different military objects. Numerous
algorithms [1–4] have been proposed to achieve application-specific
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performance requirements. It is well known that performance
evaluation is an indispensable part for an effective algorithm. While
target detection [5, 6], recognition [7, 8] and tracking algorithms [9, 10]
are used under a variety of military tasking scenarios such as air-to-air,
air-to-ground, ground-to-ground, etc., extensive testing is particularly
important. However, in most cases, algorithm testing is usually
performed over a limited set of scenarios and the images database
generally only includes a small set of collected images or artificially
generated images [11–15]. The limited variability of experimental
images leads to the question of how robust the algorithm performance
is for all scenario conditions of practical relevance. One way to solve
the problem is to correlate the image characteristics with the algorithm
performance and measure the images using quantitative metrics.

The image measure methods in the field of automatic target
recognition and tracking have different characteristics, in comparison
with other image measure algorithms: they are conceived to describe
the information interfering with the target in the images. Such
characteristics are: target to background contrast (TBC ), signal-to-
noise ratio (SNR), signal-to-clutter ratio (SCR) and probability of
edge (POE ). These metrics are based on various theories. However,
nearly all of them apply to single images. Since the characteristics
of a single image and the characteristics of an image sequence are
different, it is not surprising that the metrics for single images
are not best suited for measuring image sequences. The existing
image sequence measure methods, such as peak signal-to-noise ratio
(PSNR) [16, 17], mean square errors (MSE) [18–20], mean structural
similarity (MSSM) [21], have been proposed in the fields of image
coding and image communication. These metrics, different from that in
the field of automatic target tracking, focus on measuring information
losses in video compression, therefore they have not been applied to
evaluate the performance of automatic target tracking algorithms in
image sequences.

Among mathematicians, physicists, and computer scientists, there
is a general consensus that the complexity of an object or a system is
a measure of the inherent difficulty of performing the tasks associated
with it [22]. Thus, in the context of ATR performance, the image
measure has to be a description of the inherent difficulty of fulfilling
an ATR task for a given image sequence. Based on the above ideas,
this paper proposes and evaluates several measures of image sequence
characteristics, in view of describing the degree of difficulty of tracking
targets in image sequences.

The structure of this paper is as follows. Traditional image metrics
are listed and discussed firstly. Then the characteristics of image
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sequences and the deficiency of existing metrics are analyzed. Based on
the results of this analysis, new metrics suitable for measuring image
sequences are proposed. To our best knowledge, it is the first time
that inter-frame change of texture, of target size and of target location
information are used to characterize image sequences. The proposed
metrics are validated by experiments in the next section. Finally, the
conclusions are drawn.

2. IMAGE MEASURES

In order to design the performance evaluation system, we need to know
how to characterize the image inputted into the ATR system, so that
we can relate these characteristics to the performance of the target
recognition or the tracking algorithm. So far, many image metrics
have been proposed. This paper classifies the current image metrics
into two categories in terms of their definition principles: one is based
on statistical information, while the other is based on “clutter” theory.
In the next two sections, we review some commonly used image metrics.
Statistical metrics are reviewed in Section 2.1, while “clutter” metrics
are reviewed in Section 2.2.

2.1. Image Measures Based on Statistical Information

Statistical metrics are functions of gray level information in a
monochromatic image. Among the ones we have found, some depend
on all pixel values in the image, some on local pixel values and others
only on pixel values in the target region. Table 1 lists these statistical
metrics.

2.1.1. Global Metrics

Some researchers assume that a target recognition algorithm performs
best when presented with a highly contrasting target against a uniform,
untextured, background. Many of the global gray-level metrics in
the literature seem to be designed with that in mind. The standard
deviation of an image and the entropy of its histogram are two of the
simplest measures of an image [17–19].

Beard et al. [23] defined TBC to be an image metric:

TBC = |µT − µB| (1)

where µT is the mean of the target and µB the mean of the background.
The author supposes that the bigger the contrast between the target
and the background, the easier is to find the true target in the image.
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Table 1. Statistical metrics.

Global metrics

Image gray-level standard deviation

Image gray-level entropy

TBC = |µT − µB | Target to background contrast

SNR = (It − IB)/CB Signal-to-noise ratio

DTC Degree of target being confused

DTS Degree of target being shielded

TIR = (µT − µB)/(σT + σB)1/2 Target interference ratio

TBIR = (µT − µB)/(σT σB)1/2 Target background interference ratio

TIR2 = (µT − µB)2/(σT + σB) TIR squared

TBIR2 = (µT − µB)2/σT σB TBIR squared

C =
∫

. . .
∫

min{fT (x1, . . . , xn),

fB(x1, . . . , xn)}dx1, . . . , dxn

ETB = |E(T )− E(B)| Target versus background entropy

KSZ Kolmogorov-Smirnov statistic

Local metrics

LTBC Local target to background contrast

LTIR Local target interference ratio

LSNR Local signal-to-noise ratio

LETB Local target versus background entropy

LKSZ Local Kolmogorov-Smirnov statistic

Target specific metrics

TSD Target standard deviation

ENT Target entropy

POT Pixels on target

P2/A Perimeter squared over area

ATES Average target edge strength

ESD Target edge standard deviation

A classical method to estimate the quality of infrared small target
images [24, 25] is to calculate the signal-to-noise ratio (SNR):

SNR =
IT − IB

CB
(2)

where IT is the mean gray value of the target region, IB the mean
gray value of background, and CB the background standard deviation.
Small target images are defined as images in which the targets’ sizes
are less than 0.15% of the whole image [26]. According to Equation (2),
SNR mainly reflects the information of background standard deviation
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and the contrast between target and background. In addition, for this
type of images, Mao and Diao proposed two image metrics in view of
quantifying the difficulty degree of infrared small target detection [27].
One is the degree of target being confused (DTC ), which quantifies
the odds of infrared small target images to provide fake targets. The
other one is the degree of target being shielded (DTS ), which reflects
the contribution of the image to shield the target. It has been proved
that DTC and DTS are valid and robust for measuring small target
images.

Let µT and σT be the mean and standard deviation of the gray-
levels inside the minimum covering rectangle of the target and let µB

and σB be the mean and standard deviation of the gray-level in the
background region. Based on these parameters, M. Lahart et al. [28]
and F. Sadjadi [29] developed an image metric called target interference
ratio (TIR),

TIR = (µT − µB)/(σT + σB)1/2 (3)

and a metric called target-background interference ratio (TBIR),

TBIR = (µT − µB)/(σT σB)1/2 (4)

which favors uniform targets against uniform backgrounds and varies
inversely in the standard deviation of both target and background.
Based on TIR and TBIR, two new measures: TIR squared (TIR2)
and TBIR squared (TBIR2) are developed respectively in [22].

Garlson et al. [30] observed that there must be measureable
differences between the feature distributions of the target areas and
of the background areas when a feature-based target recognizer works
well. The author posited that the extent to which the distributions are
not different, determines the complexity of the task. In other words,
the area of overlap in the target and background feature distributions
is a probabilistic measure of the complexity. The proposed measure is

C =
∫

. . .

∫
min{fT (x1, . . . , xn), fB(x1, . . . , xn)}dx1, . . . , dxn (5)

where fT and fB are the target and background distributions
respectively. In addition, Beard et al. [23] suggested the use of a
Kolmogorov-Smirnov statistic (KSZ ), since it is a widely used measure
of the difference between two distributions. They also suggested
the ratio of target entropy to background entropy (ETB), since
high entropy targets should be easily distinguished from low entropy
background.
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2.1.2. Local Metrics

Considering that not all the pixels in the background will interfere with
the target, some local metrics are defined based on the theories of global
metrics. The valid background region in local metrics is a rectangular
annulus whose inner border coincides with the target rectangle and
whose outside rectangle area is twice the area of the target rectangle.
Some local metrics are also used commonly, such as LTBC, LTIR,
LSNR, LETB, and LKSZ. The definitions of these metrics are similar
with the corresponding global metrics, but with different background
region sizes.

2.1.3. Target Specific Metrics

The third category of statistical image metrics are target specific
metrics which focus on the target region only. Target standard
deviation (TSD) is used in [31, 32]. This measure simply computes
the standard deviation of the pixel intensity values in the target region
and can be denoted by σT . Being similar with TSD, target entropy
(ENT ) [23] is the entropy of the pixel intensity values in the target
region.

Some of the target specific metrics depend on the shape or size
of targets in the image. The simplest size measure is pixels on target
(POT ) [32], which could be obtained by counting the number of pixels
in a target region. Perimeter squared over area (P 2/A) [32, 33] is the
squared value of the target perimeter, divided by the total number
of POT. The perimeter is computed as the sum of the arc lengths in
terms of number of equivalent unit pixels in length.

In addition, some metrics are based on the edges of targets in the
image, such as average target edge strength (ATES ) [34] and target
edge standard deviation (ESD) [32]. ATES characterizes the average
magnitudes of target edge gradients. To calculate this feature, the
Sobel operator is used to generate the edge map and the average of
all edge magnitudes above a minimum threshold is used to compute
the average edge magnitude of the target. ESD is simply the standard
deviation of the edge magnitudes in the target region.

2.2. Image Measures Based on “Clutter” Theory

Researchers made much effort on enhancing target or reducing
clutter [35], which is an important preprocessing procedure for
automatic target tracking. In fact, tracking a specific target in an
image sequence can be viewed as searching a target in clutter. When
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Table 2. “Clutter” metrics.

Target independent metrics

C =

[
N∑

i=1

σ2
i /N

]1/2

Statistical variance

POE = 1
N

N∑
i=1

POE2
i,T Probability of edge

WPOE =

(
1
N

N∑
i=1

l∑
j=1

WPOE2
i,T,j

)1/2

Multiresolution POE

Target dependent metrics

COM Co-occurrence matrix

ICOM Improved co-occurrence matrix

TIC Texture-based Image Clutter

CRLB Cramer-Rao Lower Bound

DOY LE = [(µT − µB)2 + k(σT − σB)2]
1
2 Metric proposed by L. Doyle

TSSIM Target structure similarity

SCR Signal-to-clutter ratio

dealing with the proposal of parameters to characterize automatic
target tracking in image sequence, it is important to define “clutter”.

In recent years, some researchers suggested that only the
information interfering with the target is needed to be measured
in images and the mentioned information is usually called clutter
information. By removing the target and the system noise, the
remaining part of a given image can be broadly called the clutter.
A relatively widely accepted definition is that “clutter” is the scenario
of image content similar to the target, yet not in the target region [36].
Researchers have considered several approaches to modeling the clutter
in an image. We divide them into two categories: target independent
metrics and target dependent metrics. Table 2 lists these “clutter”
metrics.

2.2.1. Target Independent Metrics

Schmieder and Weathersby considered a metric C for clutter [37]. They
proposed to divide the scene into N blocks, where the length of the
block in each dimension is twice the size of the target. Then the
variance within the block is measured and we can easily get the square
root of the average of all the block variances in the image. Hence the
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clutter measure is

C =

[
N∑

i=1

σ2
i /N

]1/2

(6)

where σ2
i is the variance within the i-th block and N the number of

the blocks.
The probability of edge metric (POE ) [38–40] is designed to

imitate the human visual system, which is basically a band-pass filter
and highly sensitive to image edges. The technical details of this metric
are as follows: the given image is divided into blocks twice the size of
the target in each dimension firstly; then a DOOG (Difference of Offset
Gaussian) [41] operator is applied to each block to simulate one of the
channels in preattentive human vision; after that, the net effect is used
to enhance the edges; then, the resulting histogram of the processed
scene is normalized to values between 0 and 255 for each scene, while
the threshold is chosen empirically; finally, the fraction of points which
pass the threshold T in the i-th block is computed as POEi,T . The
probability of the edge metric, POE, is then calculated as

POE =

(
1
N

N∑

i=1

POE2
i,T

) 1
2

(7)

In an application of wavelet technology in signal processing,
Meitzler et al. proposed a wavelet-based multiresolution POE, namely
WPOE [42]. In order to evaluate the visual system more completely,
this metric includes multiresolution levels of the edge point pictures
computed from wavelets. The wavelet-based POE is defined as:

WPOE =


1
N

N∑

i=1

l∑

j=1

WPOE2
i,T,j




1/2

=


1
N

N∑

i=1

l∑

j=1

ep2
i,T,j

cellpixi,j




1/2

(8)

where epi,T,j is the number of edge points above a certain threshold at
a certain level and cellpix the number of pixels in a cell at a certain
level.

2.2.2. Target Dependent Metrics

Some target dependent metrics mainly consider the texture of the
target. One of the best way to measure the texture of a defined image
area is by calculating its Markov co-occurrence matrix (COM ) [43, 44],
which contains information about the intensity-value distribution and
the possible transitions among neighbor pixels in the examined image
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Figure 1. Calculation instance of gray-level co-occurrence matrix.

area. In order to illustrate how the COM is calculated, let us look at
an example as shown in Fig. 1.

The COM is a square (N ×N) matrix, where N is the number of
possible pixel intensity values that occur in the image. In this example,
N = 3 and the intensities of the pixels are shown in image (a). Each
image pixel contributes to the COM according to its neighbor pixels’
intensity distribution. For example, considering the center pixel, it
has one 1, three 2’s, and four 3’s as neighbors. Its contribution to the
COM can be described as image (b). Following the above rules, the
overall COM of this image area (image (a)) is a 3×3 matrix as shown
in image (c).

Based on the theory of COM, Aviram and Rotman developed
a new texture metric which is called improved co-occurrence matrix
(ICOM ) [45]. This metric incorporates the attributes of global texture
matching and of local texture distinctness, by analyzing the texture
differences between the target and suspected target areas and also
between suspected target areas and their local background. The
technical details of the ICOM are somewhat complicated and can be
found in reference [45].

An image measure that considers both the clutter and the size
of target is derived in [46]. It is named texture-based image clutter
(TIC ), and defined as

TIC =
I(∆)
∆

(9)

where ∆ is the length of the object side and I the inertia measure,
defined as

I(∆) =
G−1∑

i=0

G−1∑

j=0

(i− j)2P∆(i, j) (10)

In Equation (10), i, j represent the image gray level, P∆(i, j) is the (i,
j)th element of P∆ which is the location operator [43, 47].

Li and Zhang proposed a new TIC measure in [48]. This measure
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can be calculated as

TIC =
I(∆)∑

PT (i, j)×∆
(11)

where PT is the COM of the target region.
He et al. developed a background clutter measure for automatic

target recognition, based on the theory of Cramer-Rao lower bound
(CRLB) [49]. This metric defines the potential of false alarms by
determining the correspondence level between a target and background
through the application of the CRLB.

In addition, some local contrast metrics are usually designed to
measure the target’s distinctness from its background, assuming that
high-contrast values relate to a more detectable target. One typical
metric is the DOYLE metric (named after L. Doyle) [45], which
combines target and background means and variances of pixel values.
The basic form of the DOYLE metric is

DOY LE =
[
(µT − µB)2 + k(σT − σB)2

] 1
2 (12)

where µT and µB are target and background means; σT and σB are
target and background standard deviations; k is a weighting coefficient.
The other derivatives of the basic metric are the log DOYLE metric,

DOY LElog =
[
(log µT − log µB)2 + k(log σT − log σB)2

] 1
2 (13)

and the hybrid DOYLE metric,

DOY LEhyb =
[
(log µT − log µB)2 + k(σT − σB)2

] 1
2 (14)

Chang and Zhang [50, 51] developed a metric which is suitable
for electro-optical images and named it target structure similarity
(TSSIM ). This measure estimates the degree of clutter in an image by
a simple comparison of luminance, contrast and structure between the
target and the background areas. Technical details of the TSSIM are
rather complicated and can be seen in Chang and Zhang’s published
papers.

Signal-to-clutter ratio (SCR), which describes the effects of
clutter on target acquisition, is a very important concept for image
measurement. This metric has been defined in several ways. For
example, Wu et al. [52] defined the SCR as

SCR = 10 log
a2

σ2
(15)

where a2 is the intensity of target and σ2 the variance of local
background. Meanwhile, Aviram and Rotam [45, 53] defined the SCR
as

SCR =
DOY LE

POE
(16)
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2.3. Defects of Traditional Metrics for Image Sequences

After investigating the existing image metrics, we find that all
these metrics focus on single image and do not take account of the
characteristics of image sequences. This paper summarizes the defects
of traditional metrics for measuring image sequences as follows.

(1) Traditional metrics mainly describe the information of target,
background, noise, or the relationship among them in a single image.
However, they do not consider the sequence information between
different image frames and this will inevitably result in loss of
information.

(2) The aim of traditional metrics is to measure the difficulty
degree of target detection or recognition in images, while image
sequences are generally used for target tracking. Therefore, measuring
image sequences using the traditional intra-frame metrics inevitably
leads to inaccuracy.

Since the existing metrics are not designed to measure image
sequences which are currently used in ATR systems, it can be
concluded that the current image measurement systems have an
obvious drawback. Therefore, to establish a complete image
measurement system, it is necessary to propose new metrics, suitable
for image sequence characterization. Generally speaking, the purpose
of processing image sequences is to track the target. Hence, quality
measurement results of image sequences should reflect the difficulty
degree of target tracking. This paper firstly studies the factors
interfering with target tracking and then develops three new image
sequence metrics.

3. IMAGE SEQUENCE MEASURES

In the process of studying target tracking algorithms, we found that the
difficulty of target tracking is mainly caused by the inter-frame image
changes, while the complexity within a single image disturbs target
tracking only a little. See Fig. 2 for an illustration of the situation.
Image (a) shows a real image sequence, while image (b) shows an
artificial image sequence. In the first sequence, although the target and
background are both very complicated, there is no significant change
between different image frames. Experiments have proved that it is
very easy to track the target in this image sequence. From the second
sequence, we can see that each single image in this image sequence is
simple, but inter-frame changes are acute. The textures of background
and target, the target size and the target location all vary greatly in
different image frames. We utilize several tracking algorithms to track
the target in this image sequence, including the Kalman filter, the



458 Diao et al.

(b)

Frame 1

(a)

Frame 5 Frame 10 Frame 20

Frame 1 Frame 5 Frame 10 Frame 20

Figure 2. Two groups of image sequences.

Camshift tracker and the Particle filter. The tracking results of the
three algorithms are all target loss. This experiment shows that target
tracking in this sequence is very difficult.

Based on the above analysis, this paper concludes that inter-frame
change is the main factor interfering with target tracking in image
sequences. Therefore, it is necessary to exploit the inter-frame change
information to measure image sequences. Further investigation finds
that the regions far from the target can be neglected when measuring
the image sequence, as these regions have little interference on target
tracking. For example, the woods in the upper left corner of Fig. 2(a)
are rather complicated, but they cannot interfere with the tracking
task for most tracking algorithms. This article summarizes the factors
that affect target tracking into 3 categories, namely:
(1) Inter-frame change of texture (the goal region includes the target

and local background only).
(2) Inter-frame change of target size.
(3) Inter-frame change of target location.

The image sequences metrics proposed in this paper are calculated
by quantitatively describing the above three factors, and the technical
details of them are introduced in following parts.

3.1. Inter-frame Change Degree of Texture (IFCDT)

Image texture is assumed to be one of the main perceptual cues that
dominate visual performance and the term “texture” generally refers
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to a repetition of basic texture elements. It is widely accepted that
a texture element contains several pixels, whose placement can be
periodic, quasiperiodic, or random. Texture characterization methods
can be broadly classified into two main categories: statistical and
structural. Textures which are random in nature are well suited for
statistical characterization, while periodic or deterministic textures are
better described using placement rules, which define the adjacency and
periodicity of the pixels in the texture elements. As the targets are
random and the scenarios are generally natural in the images used for
ATR, a natural texture will be more appropriately described using the
statistical approach.

As mentioned in Section 2.2.2, the co-occurrence matrix (COM )
is a good way to measure the statistical properties of a texture in a
defined image area. We utilize this method to describe the texture
information of a single image in image sequence. The valid region for
calculating inter-frame change of texture includes target region and
local background surrounding the target. Specifically, the region is
defined as the rectangle which area is twice the target area according
to [45, 53] and [54], as shown in Fig. 3.

Further, this paper utilizes the ratio
∑ |CMi−CMj |∑ |CMi+CMj | to describe the

change degree of texture between two different image frames in the
same sequence, where CMi is the COM of the i-th image frame and
CMj is the COM of the j-th image frame. We can see that the above
ratio equals to 0 when the two images are exactly the same, while it
can equal 1, when the COM s of the two images are totally different.

The rectangle which area is  

twice the target area

The smallest rectangle 

that contains the target

Target

Figure 3. Valid region for calculating inter-frame change degree of
texture.
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Then we define the IFCDT measure of an image sequence as follows:

IFCDT =
1

N − 1

N∑

i=2

(∑ |CMi − CMi−1|∑ |CMi + CMi−1|
)

(17)

where N is the number of images in given image sequence and∑
(Matrix) the sum of all the elements in the Matrix.

Considering that the normalized (to 1) value is usually easier to
be accepted and understood than non-normalized values and since the
possibility of IFCDT to be greater than 1 is very small, this new metric
is redefined as:

IFCDT = min

(
1

N − 1

N∑

i=2

(∑ |CMi − CMi−1|∑ |CMi + CMi−1|
)

, 1

)
(18)

3.2. Inter-frame Change Degree of Target Size (IFCDTS)

In general, the shape of the target is irregular. Therefore, this article
describes the target size using the length and width of the smallest
rectangle which contains the target, as shown in Fig. 3. An image
sequence metric focuses on measuring the change degree of target size
is developed in this section, and it is calculated as follows:

IFCDTS =
1

N − 1

N∑

i=2

( |li − li−1|
li−1

+
|wi − wi−1|

wi−1

)
(19)

where N is the number of images in the given image sequence, and li
and wi are the length and width of the smallest rectangle containing
a target in the i-th image frame, respectively. This definition makes
sure that the IFCDTS equals 0 when the target size between adjacent
frames is constant, and equals 1 as the target size change range
between adjacent frames is equal to the target size itself. Being similar
with IFCDT, we force IFCDTS values between 0 and 1 and modify
Equation (19) to

IFCDTS = min

(
1

N − 1

N∑

i=2

( |li − li−1|
li−1

+
|wi − wi−1|

wi−1

)
, 1

)
(20)

3.3. Inter-frame Change Degree of Target Location
(IFCDTL)

In this section, an image sequence metric for describing the change
degree of target location is proposed. In our experiments, we have
found that it is not true that target tracking will always be disturbed
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Figure 4. Three cases of target location changes in image sequences.
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Figure 5. Two groups of image sequences with the same target
displacement but different target sizes.

when target location changes in the sequence. See Fig. 4 for an
illustration. Image (a) illustrates a scenario where the target location
has no change in the whole image sequence; in image (b), the inter-
frame change of the target location is regular, namely, uniform linear
motion; in image (c), the target location in different image frames
does not change regularly, showing irregular trajectories. We have
found that, for most tracking algorithms, target location changes as
shown in Figs. 4(a) and (b) have little influence on target tracking
and tracking accuracy is high. However, when the image sequences
meet the condition in Fig. 4(c), target tracking is more difficult, and
tracking accuracy is low. Therefore, this paper concludes that the
changes of target location do not interfere with target tracking if the
target locations in different image frames is static or has uniform, linear
motion trajectory. In this case, this new metric should be set to be 0.

In addition, for different image sequences with the same target
location change conditions, the target size also has influence on the
target tracking result. For example, as shown in Fig. 5, the target
displacements in the two groups of image sequences are the same,
while the target sizes are different. It is evident that tracking target
in sequence Fig. 5(b) is easier than in sequence Fig. 5(a). Hence, this
paper adds the target size as a factor for calculating IFCDTL.

Let N denote the number of images in a given image sequence, let
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vector di be the target displacement from frame i− 1 to frame i, and
let ∆i denote the size of the target in the i-th image frame. The target
size represents the mean area of the smallest rectangle which contains
the target. The IFCDTL is defined as

IFCDTL = min

(
1

N − 2

N∑

i=3

|di − di−1|
∆i−2

, 1

)
(21)

From Equation (21), we see that this metric equals to 0 not only
when the target location in a given sequence is unchanged, but also
when the target in a given sequence shows uniform linear motion, since
in this case inter-frame target displacement di never changes. We can
also see that this metric is set to be 1 in the special case when the
target displacement is equal to or greater than the target size. These
properties of the proposed metric are in accord with the results of our
experiments.

3.4. Calculation Methods of the Three New Metrics When
the Target Disappears

Because of being sheltered by background or other reasons, the target
may disappear from the field of view. In this particular case, the
calculation methods of IFCDT, IFCDTS and IFCDTL defined in
Equations (18), (20) and (21) are not valid, because there is no
information about target texture, target location and target size, which
are essential factors in proposed metrics. We know that target tracking
in the images without target information is very difficult. Therefore,
these particular images should be assigned to high degrees of difficulty
when measuring the image sequence using the new metrics. Taking
IFCDT as an example, the contribution of the i-th frame image to
IFCDT is

∑ |CMi−CMi−1|∑ |CMi+CMi−1| under normal circumstances. However, for
the image in which the target is totally shielded, we set its contribution
to IFCDT to 1. Similarly, the contributions of the images without
target to IFCDTS and IFCDTL are set to 1 as well.

In the following section, we will show the experiments for
validating our image sequence metrics.

4. EXPERIMENTAL RESULTS

Generally speaking, image quality evaluation results should be
associated with the ATR algorithm performance and there should
be a monotone relationship between a good image measure and the
ATR algorithm performance [46, 48]. Therefore, to validate the image
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sequence metrics proposed in this paper, real image sequences are
used as samples for analyzing the relationship between our metrics
and actual performance of tracking algorithms. Specific experimental
conditions are as follows.

4.1. Tracking Algorithm Selection

It is widely accepted that automatic target tracking algorithms
can be divided into two categories: ‘filtering and data association’
tracking framework and ‘target representation and location’ tracking
framework [55]. In this experiment, in order to ensure the universality
of the selected algorithm, the tracking algorithm used here combines
the advantages of the two mentioned tracking frameworks: the Kalman
filter is used for location prediction, while the Mean-shift algorithm is
used for accurate matching. The procedure of the tracking algorithm
is broadly demonstrated as follows.

Step 1: Preprocess the initial frame image and each of the subsequent
images, including image denoising and image enhancing and
differential operator (Sobel operator) filtering;

Step 2: Extract the edge information of target to generate Eigen
template in the preprocessed initial frame image;

Step 3: After tracking in the frame image i − 1, predict the start
searching location in the frame image i by the Kalman filter;

Step 4: Search the optimal location of the target in frame image i
near the start searching location predicted in Step 3 using the
Mean-Shift algorithm;

Step 5: Update the Eigen template using the method mentioned in
Step 2 every constant period;

Step 6: Advance to the next frame and go to Step 3, until the last
frame of the image sequence is reached.

4.2. Experiment Samples

The samples used in the experiment are all real target image sequences,
including 21 groups of visual image sequences and 75 groups of infrared
image sequences, while each image sequence includes 200 image frames.
Figs. 6 and 7 show some samples of them.

4.3. Image Sequence Metrics Selection

We have found that the texture, target size and target location in
actual image sequences may be all variable in different image frames,
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Figure 6. Four groups of visual image sequences in our experiment.

so it is meaningless to describe the relationship between a single metric
(one of IFCDT, IFCDTS and IFCDTL) and the tracking result, as the
other two metrics also reveal in part the tracking difficulty and destroy
the one-to-one relationship between the selected metric and tracking
result. In order to solve this problem, an integrated indicator which
combines the three measures is proposed. We call it inter-frame change
degree (IFCD), defined as:

IFCD =
√

IFCDT 2 + IFCDTS2 + IFCDTL2 (22)

4.4. Tracking Performance Representation

In this experiment, the tracking precision is used to quantify the
tracking results in given image sequences, defined as follows:

S =
1
N

N∑

i=1

√
(|Soi − Sri|)2 (23)

where N is the number of images in tested image sequence, i is current
frame number, Soi and Sri are actual target location and target location
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frame 1 frame 50 frame 100 frame 150

Figure 7. Four groups of infrared image sequences in our experiment.

obtained by tracking algorithm respectively.
Under the above experimental conditions, we get the experimental

results of visual image sequences samples. For the tested 21 image
sequences, their IFCD values are not exceeding 0.8049 and the
relationship between IFCD values and tracking precisions is shown
in Fig. 8. From this curve, we can see that there is a good, monotone,
almost linear relationship between the image sequence metric and the
actual tracking performance. Meanwhile, this paper calculates the
values of two classical traditional image metrics (SNR and TBC) of
the tested image sequences, which are used most extensively in the
field of automatic target recognition and tracking. The relationship



466 Diao et al.

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

Inter-frame change degree

T
ra

c
k
in

g
 p

e
rc

is
io

n
 (

p
ix

e
ls

)

Figure 8. Relationship between
tracking precision and inter-frame
change degree for visual image
sequences.

Figure 9. Relationship between
tracking precision and SNR for
visual image sequences.

Figure 10. Relationship between
tracking precision and TBC for
visual image sequences.
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Figure 11. Relationship between
tracking precision and inter-frame
change degree for infrared image
sequences.

between SNR values and tracking precisions is shown in Fig. 9, and the
relationship between TBC values and tracking precisions is shown in
Fig. 10. It is obvious that the correlations between traditional metrics
and actual tracking performance are very poor.

In the second group of experiments, we get 75 sets of results of
infrared image sequences samples and the relationship between IFCD
values and tracking precisions is shown in Fig. 11. We can see that
there is also a strong correlation between actual performance and
our metric for infrared image sequences. In this experiment, we also
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Figure 12. Relationship between
tracking precision and SNR for
infrared image sequences.

Figure 13. Relationship between
tracking precision and TBC for
infrared image sequences.

give the relationships of SNR values and TBC values with tracking
precisions, as shown in Fig. 12 and Fig. 13. The curves in these
two figures illustrate that the traditional metrics cannot describe the
difficulty degree of the target tracking in infrared image sequences.

The experimental results show that the greater the IFCD value
is, the greater the tracking error is and the tracking algorithm may
miss the target when the IFCD value is high enough. Since the
proposed image sequence metrics meet the criterion that there has to
be a monotone relationship between a good image measure and ATR
algorithm performance, this paper concludes that the new metrics are
much more valid to measure the tracking difficulties in image sequences
than the old ones.

5. DISCUSSION AND CONCLUSION

This paper studies and discusses thirty-four commonly used image
measures and classifies them into two categories in terms of their
definition principles: statistical metrics and “clutter” metrics. These
metrics have been summarized in Table 1 and Table 2. On this
basis, the paper finds that the existing image metrics have obvious
deficiencies and are not appropriate to measure image sequences.

To compensate the lack of current image sequence measure
systems in the field of automatic target recognition and tracking, this
paper analyzes the characteristics of image sequences and concludes
that the inter-frame change is the main factor interfering with target
tracking. Further, this paper proposes three new measures for
image sequences, including the inter-frame change degree of texture
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(IFCDT ), the inter-frame change degree of target size (IFCDTS ),
and the inter-frame change degree of target location (IFCDTL). We
prove by experiments that the new metrics are valid to measure image
sequences with the purpose of assessing the difficulties associated with
the task of target tracking.

In the future, we will continue to study valid image measure
methods according to corresponding image processing purposes (target
detection, recognition, and tracking). Further, we will establish
an image database for performance evaluation of automatic target
recognition algorithms, based on the theory of image measurement.

ACKNOWLEDGMENT

This work is supported by the Fundamental Research Funds for
the Central Universities (No. YWF-12-LZGF-054). The infrared
data sets were provided through the center for imaging science,
ARODAAH049510494.

REFERENCES

1. Vicen-Bueno, R., M. Rosa-Zurera, M. P. Jarabo-Amores, et al.,
“Automatic target detection in simulated ground clutter (Weibull
distributed) by multilayer perceptrons in a low-resolution coherent
radar,” IET Radar, Sonar and Navigation, Vol. 4, No. 2, 315–328,
2010.
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