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Abstract—A time-domain approach for distortion analysis of
electromagnetic field senors is developed in Laguerre functions
subspace. Using Laguerre convolution preservation property, it is
proved that every electromagnetic field sensor corresponds to an
equivalent discrete-time LTI system. The equivalent discrete-time
system is compared to a reference system as a measure of distortion.
Further, this analysis may be performed repeatedly to obtain a
bandwidth-limited distortion characteristic. The method is employed
to compare the distortion characteristic of an asymptotic conical
dipole (ACD) to wire monopoles of various lengths. A time-domain
simulation is performed in order to find the distortion characteristics
by solving an electric field integral equation (EFIE) using the method
of moments (MoM).

1. INTRODUCTION

Electromagnetic field sensors are defined as passive devices which
convert electromagnetic fields into an electric signal at their
terminals [1]. D-dot sensors are a class of electric field sensors
which deliver the time derivative of the incident electric field at
their terminals. D-dot sensors have been used widely in a variety
of measurement procedures such as high-voltage measurements [2],
high-power electromagnetic measurements [3], lightning spectrum
measurements [4], and partial discharge measurements [5].

To characterize the distortion behavior of an electromagnetic
field sensor, such as a D-dot sensor, one can use time-domain
techniques as noted in [6], where fidelity is introduced as a time-
domain distortion characteristic. Fidelity inherently measures the
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similarity of the sensor response and the ideal response, however,
it has some drawbacks. Fidelity should be calculated for every
time-domain waveform which the sensor measures. As a waveform-
dependent characteristic, calculation of fidelity is not a simple task
when comparing two or more sensor receiving a variety of time-domain
waveforms [7].

An alternative distortion measure for electromagnetic field sensors
is investigated in a recent publication by the authors [8] based on
Hermite-Gauss orthogonal functions. In this method, the sensor
is considered as a linear operator and a transformation matrix is
calculated for the system using Hermite-Gauss functions as the basis
set. The matrix is compared to a reference matrix in order to determine
the performance of the system. As the matrix describes the system for
a subspace of waveforms, the obtained distortion measure is valid for a
set of waveforms rather than a single waveform as it is the case using
fidelity.

Study of linear systems in Laguerre subspaces has showed to be
very advantageous as Laguerre functions properties aid to simplify the
formulations [9]. In this paper, Laguerre orthogonal functions are used
as the basis set in order to calculate the transformation matrix. We
will show when Laguerre functions are employed as the basis functions,
the transformation matrix is a special case of a Toeplitz matrix which
in turn corresponds to a discrete-time linear time-invariant (LTI)
system [10]. This makes the distortion analysis as simple as comparing
the impulse response of the corresponding discrete-time system to an
ideal discrete-time impulse response. A bandwidth-limited distortion
analysis is performed in Laguerre subspace as the Laguerre functions
of different orders have the same spectral content where the bandwidth
is controlled by a scaling factor. As an application, distortion
characteristic of an asymptotic conical dipole (ACD) [11], a commonly
used D-dot sensor, is compared to that of wire monopoles of different
lengths. Time-domain simulation of the ACD and the wire monopoles
is performed by solving an electric field integral equation (EFIE) using
the method of moments (MoM) [12].

2. LAGUERRE FUNCTIONS

Laguerre functions are defined as [13]

lpn(t) = (−1)n
√

2pLn(2pt)e−pt t ≥ 0, n = 0, 1, 2, . . . (1)
where p is a real positive scaling factor, and Ln(t) is the nth order
Laguerre polynomial [14]. Fig. 1 shows Laguerre functions for different
orders assuming p = 1. Laguerre functions have many interesting
properties including:
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Figure 1. Different orders of
Laguerre functions for p = 1.
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Figure 2. Variation of magni-
tude of the Fourier transform of
Laguerre functions with respect to
the frequency.

• Laguerre functions form an orthonormal basis set for L2(0,∞) [15].
• The Fourier transform of lpn(t), Lp

n(jω), is given by [13]

Lp
n(jω) = F [lpn(t)] =

√
2p

e
−j(2n+1)tan−1

(
ω
p

)

√
ω2 + p2

. (2)

From (2), one can see that the magnitude of the Fourier transform
of Laguerre functions, |Lp

n(jω)|, is the same for any order of the
function. Using (2), it is shown that the frequency at which
|Lp

n(jω)| falls to 10% of its maximum value (see Fig. 2) is given
by

ω10%

p
∼= 9.95 or f10%

∼= 1.58p. (3)

• Convolution of Laguerre functions is written as a summation of
Laguerre functions [13]

lpn(t) ∗ lpm(t) =
1√
2p

[
lpn+m(t) + lpn+m+1(t)

]
. (4)

This is an extremely useful property which makes the transforma-
tion matrix a special case of a Toeplitz matrix.

3. DISTORTION ANALYSIS IN LAGUERRE
FUNCTIONS SUBSPACE

The electromagnetic field sensor under study is considered as an LTI
system as shown in Fig. 3(a), where, for example, the incident electric
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Figure 3. Block diagram of (a) the LTI system representation of an
electric field sensor and, (b) an equivalent system consisting of the
sensor and the reference sensor in cascade.

field and the received voltage at the terminals of the sensor are the
input and the output of the LTI system, respectively. A distortion
analysis is performed by comparing the sensor’s characteristics to that
of a reference sensor. Consider an equivalent system consisting of the
sensor, heff(t), cascaded with the inverse of the reference sensor, h−1

ref (t)
(See Fig. 3(b)). The equivalent system has the impulse response given
by

h(t) = heff(t) ∗ h−1
ref (t) (5)

where ∗ denotes the convolution operator. For a D-dot sensor, for
example, h(t) is the impulse response of a cascaded ideal integrator
(inverse of an ideal differentiator) and that of the D-dot sensor itself.
The equivalent sensor as determined by (5) should be ideally compared
with the identity system that has an impulse response of the Dirac delta
function.

3.1. Calculation of the Transformation Matrix

Assume that the input signal to the equivalent system shown in
Fig. 3(b) is x(t) and the output is y(t). Since we are measuring causal
pulses with finite energies, both x(t) and y(t) belong to the subspace
of quadratically integrable functions, L2(0,∞). Therefore, a basis set
consisting of Laguerre functions, B = {lp0(t), lp1(t), lp2(t), . . .}, can be
employed to represent x(t) and y(t) as

x(t) =
∞∑

i=0

xil
p
i (t) (6)

y(t) =
∞∑

i=0

yil
p
i (t) (7)
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where lpi (t) is defined as given by (1). The coefficients xi and yi, in (6)
and (7), are given by

xi = 〈x(t), lpi (t)〉 (8)

yi = 〈y(t), lpi (t)〉 (9)

where 〈., .〉 is the inner product operator. Eqs. (8), and (9) are obtained
as a direct implication of the orthonrmality property of Laguerre
functions. Assuming x̄ = [x0, x1, x2, . . .]t and ȳ = [y0, y1, y2, . . .]t are
vector representations of x(t) and y(t) in Laguerre functions subsapace,
then a transformation matrix, L = [lij ] can be found which relates x̄
and ȳ vector representations as

ȳ = L x̄. (10)

The ijth element of the transformation matrix, L, is calculated as [8]

lij =
〈
h(t) ∗ lpj−1(t), l

p
i−1(t)

〉
i, j ≥ 1. (11)

Since the impulse response h(t) is a causal time-domain signal with
finite energy it can be expressed in terms of Laguerre basis functions
as

h(t) =
∞∑

k=0

hkl
p
k(t). (12)

Substituting (12) in (11) and exchanging the summation and the inner
product results in

lij =
∞∑

k=0

hk

〈
lpk(t) ∗ lpj−1(t), l

p
i−1(t)

〉
. (13)

Using Laguerre functions convolution property given in (4), (13) can
be written as

lij =
1√
2p

∞∑

k=0

hk

〈
lpk+j−1(t), l

p
i−1(t)

〉
+

1√
2p

∞∑

k′=0

hk′
〈
lpk′+j(t), l

p
i−1(t)

〉
. (14)

Due to orthonormality of Laguerre functions, (14) is simplified to

lij =
1√
2p

∞∑

k=0

hkδ [k + j − i] +
1√
2p

∞∑

k′=0

hk′δ
[
k′ + j − i + 1

]
(15)

where δ[n] is the discrete impulse function defined as

δ[n] =
{

1 if n = 0
0 otherwise . (16)
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Eq. (15) can be expressed in a more compact form as

lij =
1√
2p

(hi−ju(i− j) + hi−j−1u(i− j − 1)) (17)

where u(.) is the unit step function. The following properties result
from (17):
(i) The diagonal elements are all equal to each other and have the

value of 1√
2p

h0.

(ii) For i < j both u(i− j) and u(i− j− 1) are zero, i.e., the elements
above the matrix diagonal are all zero.

(iii) The first column L1 has the form of

L1 = [h0, h0 + h1, h1 + h2, . . . , hi + hi+1, . . .]
t . (18)

(iv) Other columns in the transformation matrix are shifted versions
of the first column, i.e., the jth column is written as

Lj = [0, 0, . . . , 0︸ ︷︷ ︸
j−1

, h0, h0 + h1, h1 + h2, . . . , hi + hi+1, . . .]t. (19)

The transformation matrix calculated in Laguerre subspace is given by

[lij ] =
1√
2p




h0 0 0 0 · · ·
h0 + h1 h0 0 0 · · ·
h1 + h2 h0 + h1 h0 0 · · ·
h2 + h3 h1 + h2 h0 + h1 h0 · · ·

...
...

...
...

. . .




. (20)

3.2. Equivalent Discrete-time LTI System

In [10], it is proved that the transformation matrix for every discrete-
time LTI system with the impulse response heq [n] = tn is given by

[tij ] =




t0 0 0 0 · · ·
t1 t0 0 0 · · ·
t2 t1 t0 0 · · ·
t3 t2 t1 t0 · · ·
...

...
...

...
. . .




(21)

which is a special case of a Toeplitz matrix. Considering (19) and (20),
we can observe that in Laguerre subspace, every continuous causal LTI
system corresponds to a discrete time LTI system with the impulse
response heq [n] which is determined using

heq[n] =

{
1√
2p

h0 if n = 0
1√
2p

(hn + hn−1) if n ≥ 1
. (22)
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Therefore, instead of comparing h(t), as given in (5), with a Dirac
delta function, we can compare heq [n] with discrete impulse function
as given by (16). The distance between normalized heq [n] as a vector
and the discrete impulse function is given by

d =

√√√√(
ĥ0 − 1

)2
+

∞∑

k=1

(
ĥk + ĥk−1

)2
(23)

where [ĥ0, ĥ1, ĥ2, . . .] are the normalized coefficients of vector
[h0, h1, h2, . . .] to the energy of heq [n]. The value of d varies between 0
and

√
2 with smaller values corresponding to less distortion.

4. SIMULATION RESULTS

To demonstrate the application of the approach developed in this
paper, a 5-cm ACD as well as 5, 10, and 15-cm wire monopoles are
compared to an ideal D-dot senor. In this case, the equivalent system,
as used in (5), is an ideal integrator cascaded by the sensor impulse
response. To calculate the sensor impulse response, a time-domain
simulation is performed. The sensors are modeled as wire structures.
An electric field integral equation (EFIE) is solved to determine the
current on each wire segment when the sensor is illuminated by a plane

Figure 4. Photo of the ACD,
simulated in this paper, and
the wire model used for the
simulations.
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Figure 6. Calculated trans-
formation matrix using Laguerre
functions with p = 1010 for a 5-
cm ACD.
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Figure 7. Calculated distortion
measure, d, for the D-dot sensors
for different frequency ranges.

wave [12]. A photo of the ACD simulated in this paper and its wire
model are shown in Fig. 4.

The received voltage of every sensor, when exposed to a known
incident electric field, is calculated. The transfer function for every
sensor can be calculated in the frequency domain by dividing the
Fourier transform of the received voltage to the Fourier transform of
the incident electric field. Using an inverse Fourier transform, the
time-domain impulse response, heff(t), is determined. Fig. 5 shows
the impulse responses calculated for the four sensors. Fig. 6 shows
the calculated transformation matrix for an ACD using p = 1010

as the scaling factor for Laguerre functions. As shown in Fig. 6,
transformation matrix obtained using numerical simulations has the
same structure as given in (20). Using the simulated data, d is
calculated for the 4 sensors, for different values of p which correspond
to different frequency ranges according to Fig. 2 and as given in (3).
Fig. 7 shows the distortion characteristics of the four sensors as D-dot
sensors where we have plotted d as defined in (23) for different values
of p that correspond to different values of f10%. The 5-cm monopole
is the best differentiator among the four, while the ACD comes in the
second place. Although the 5-cm ACD has a higher level of distortion
compared to a monopole of the same length, it has a higher sensitivity
as observed in Fig. 5. Fig. 7 shows that the ACD has less distortion
level when compared to 10 and 15-cm monopoles.
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5. CONCLUSION

Distortion characteristics of an electromagnetic field sensor were
studied by modeling the sensor as an LTI system. Using a Laguerre
function expansion, a transformation matrix was calculated for the
sensor/system. It was proved that by using Laguerre functions, the
transformation matrix becomes a spacial case of a Toeplitz matrix that
can be reduced to a vector. This matrix corresponds to a discrete-
time LTI system. It was shown in this paper that by comparing
this equivalent discrete-time LTI system to a reference discrete-time
system, a quantitative measure of distortion is obtained. A spectral
analysis is also possible using spectral properties of Laguerre functions.
Finally, a 5-cm ACD along with 5, 10, and 15-cm monopoles are
compared to an ideal D-dot sensor. It was concluded that the 5-cm
monopole has the least distortion, but considering the sensitivity as a
factor, the ACD is a more practical electric field D-dot sensor.
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