
Progress In Electromagnetics Research, Vol. 130, 281–317, 2012

FINITE DATA PERFORMANCE ANALYSIS OF LCMV
ANTENNA ARRAY BEAMFORMERS WITH AND WITH-
OUT SIGNAL BLOCKING

Y.-L. Chen1 and J.-H. Lee2, *

1Graduate Institute of Communication Engineering, National Taiwan
University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan
2Department of Electrical Engineering, Graduate Institute of
Communication Engineering, and Graduate Institute of Biomedical
Electronics and Bioinformatics, National Taiwan University, No. 1,
Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan

Abstract—A linearly constrained minimum variance (LCMV)
antenna array beamformer using finite data samples suffers from slow
convergence when the received array data contain the desired signal.
It has been reported that signal blocking techniques speed up the
convergence rate and increase the robustness of LCMV antenna array
beamformers. However, the reason of this improvement has not been
explored in the literature. Moreover, the existing formulas for the
output signal-to-interference-plus-noise ratio (SINR) are too rough to
realize the influence of signal blocking techniques on the performance.
In this paper, we show that the correlation due to finite samples causes
the redundant component (termed as the cross weight) embedded in
the weight vector of a LCMV beamformer even if the signal sources
and noise are independent. The cross power results from the cross
weight degrades the performance when the sample size is small. In
contrast, the cross weight and cross power can be fully eliminated when
a signal blocking technique is used. The theoretical results presented
in this paper provide a comprehensive description on the effectiveness
and the price of using signal blocking for antenna array beamforming.
Simulation results are also given for confirming the validity of the
theoretical results.
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1. INTRODUCTION

For an antenna array beamformer, several practical situations degrade
its performance. Among them, the finite sample effect is frequently
considered. This effect comes from the fact that the ensemble data
correlation matrix is usually unknown and is estimated by taking
finite data samples. In the literature, the finite data performance of a
linearly constrained minimum variance (LCMV) beamformer has been
analyzed in [1–3]. Wax and Anu [1] gave detail discussions for the
behavior of a LCMV beamformer under several special cases. Chang
and Yeh [2] derived the output signal-to-interference-plus-noise ratio
(SINR) of a LCMV beamformer under one desired signal and one
interferer. Reed et al. [3] analyzed a LCMV beamformer without
the desired signal in the received data. However, the existing results
can not be directly extended to the case with one desired signal and
multiple interferers.

The signal blocking technique was originally proposed by Widrow
et al. [4] to tackle the coherent problem. Due to its effectiveness, the
idea of removing the desired signal before computing the weights has
been widely applied for antenna array beamforming [5–10]. Notable
among them are [5, 8]. In [5], the authors proposed an eigencanceler
constraining the weight vector to be orthogonal to the interference
subspace instead of the conventional LCMV criteria. Later, a
statistical analysis to this eigencanceler was presented in [8], where
a compensation matrix was proposed for eliminating the blocking
effect on the noise. It was shown that the eigencanceler can eliminate
interference efficiently and has a fast convergence rate. Nevertheless,
the signal blocking effect is still unknown in both [5] and [8].

Recently, an analysis of LCMV beamformers with and without
signal blocking under pointing error and finite sample effect was
presented in [11]. The derivations are based on the probability density
function of the weight vector given by [12, 13]. The formulas presented
in [11] demonstrate the drawback of the one dimension loss when
signal blocking is used. Although the analysis in [11] provides accurate
formulas to describe the output SINRs, the robustness enhancement
and convergence rate improvement for signal blocking is, however,
invisible either from the derivations or the final theoretical results.
In addition, the effects of system parameters such as source directions,
signal powers, or array configurations on the output SINRs are still
unknown from the expressions.

In this paper, we consider the performance of LCMV beamformers
with and without signal blocking under finite samples and derive the
output SINR formulas for the LCMV beamformers with and without
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signal blocking. Based on the theoretical results, the merits and defects
of using a signal blocking technique can be described comprehensibly.
Besides, these theoretical results can be easily extended to the case
with multiple interferers. Simulation results confirm the accuracy of
the theoretical results.

This paper is organized as follows. Section 2 briefly describes the
principles of LCMV beamformers with and without signal blocking.
In Section 3 and Section 4, we analyze the performances of a LCMV
beamformer without and with signal blocking, respectively. Simulation
results are presented in Section 5 for confirming the validity of the
research work. Finally, we make a conclusion in Section 6.

2. PRINCIPLES OF LCMV BEAMFORMERS

2.1. A LCMV Beamformer without Signal Blocking

Let q independent narrowband signal sources including one desired
signal and (q − 1) interferers impinge on a conventional LCMV
beamformer with p array sensors, q < p. The data vector received
by the array beamformer can be expressed as

x (t) = s1 (t)a1 +
q∑

k=2

sk (t)ak + n (t) = s1 (t)a1 + v (t) , (1)

where si(t) is the complex waveform of the ith signal source with zero
mean and variance σ2

si; ai is the corresponding steering vector, i =
1, 2, . . . , q; v(t) is the undesired component including the interference
and noise. n(t) denotes the noise vector with zero mean and variance
σ2

n and is independent of the q signal sources. The ensemble correlation
matrix of x(t) is given by

R = E
[
x (t)xH (t)

]
= σ2

s1a1aH
1 + Q, (2)

where the superscript “H” denotes the conjugate and transpose
operation. Q is given by

Q = E
[
v(t)vH(t)

]
=

q∑

k=2

σ2
skakaH

k + σ2
nI, (3)

and I is the identity matrix with appropriate size. The weight vector
of the LCMV beamformer can be obtained by solving the following
optimization problem [14, 15]:

Minimize wHRw Subject to wHa1 = 1. (4)
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The solution of (4) is given by [14, 15]

wo =
R−1a1

aH
1 R−1a1

=
Q−1a1

aH
1 Q−1a1

. (5)

However, the ensemble correlation matrix R is not available in practice.
Its approximation computed by taking data samples is given as
follows [3, 16]:

R̂ =
1
m

m∑

i=1

x (ti)xH (ti), (6)

where x(ti) denotes the ith data sample of x(t) taken at the ith time
instant, i = 1, 2, . . ., m. Hence, the solution of (5) becomes

ŵ =
R̂−1a1

aH
1 R̂−1a1

. (7)

According to the result of [1], the sample correlation matrix R̂ can be
expressed as follows:

R̂ = σ̂2
s1a1aH

1 + a1r̂H + r̂aH
1 + Q̂, (8)

where σ̂2
s1 = (1/m)

∑m
i=1 |s1 (ti)|2, Q̂ = (1/m)

∑m
i=1 v (ti)vH (ti),

and r̂ = (1/m)
∑m

i=1 s∗1 (ti)v (ti) are the sample mean of the desired
signal power, the sample version of Q, and the sample version of
the cross correlation between the desired signal and the undesired
component, respectively. Since the signal sources and noise are
mutually independent, we have

E [̂r] =
1
m

m∑

i=1

E [s∗1 (ti)]E [v (ti)] = 0. (9)

2.2. A LCMV Beamformer with Signal Blocking

Figure 1 depicts a LCMV beamformer with signal blocking. The signal
blocking matrix B is employed to block the desired signal with the
presumed look direction a1, i.e., [6, 17]

Ba1 = 0. (10)

Let the data vector after the blocking operation be xB(ti) = Bx(ti)
and B be of size N ×p with N < p. The N ×1 weight vector required
for beamforming is given by [6, 7]

ŵB =
R̂−1

B a1

a1
HR̂−1

B a1

, (11)
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Figure 1. A LCMV beamformer with signal blocking.

where R̂B is the N ×N sample correlation matrix of xB(t) and given
by R̂B = BR̂B

H
. Without loss of generality, we set ak to contain the

first N entries of ak, k =1, 2, . . ., q. It follows from (8) that

R̂B = B
(
σ̂2

s1a1aH
1 + a1r̂H + r̂aH

1 + Q̂
)
BH = BQ̂B

H
. (12)

Equation (12) reveals that the cross terms a1r̂H and r̂aH
1 in R̂ due to

finite samples are removed. Let Q̂B = BQ̂B
H

, (11) can be rewritten
as

ŵB =
Q̂−1

B a1

a1
HQ̂−1

B a1

. (13)

2.3. The Existing Analysis Results

In [11], the array output SINRs based on ŵ and ŵB were derived to

SINRL =
σ2

s1a
H
1 R−1a1

tr(QR−1)
m−p+1 + m−p

m−p+1 ·
aH
1 R−1QR−1a1

aH
1 R−1a1

(14)

and

SINRB =
σ2

s1ā
H
1 R−1

B ā1

tr
(
Q̄R

−1
B

)

m−p+2 + m−p+1
m−p+2 ·

āH
1 R−1

B Q̄R
−1
B ā1

āH
1 R−1

B ā1

, (15)

respectively, where Q̄ is obtained by removing the pth row and column
of Q, and RB = BRBH is the ensemble version of R̂B. Although (14)
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and (15) were derived without making approximations, it is not easy
to observe the pros and cons of signal blocking from (14) and (15). In
addition, the effects of system parameters such as source directions,
signal powers, or array configurations on the output SINRs can not be
observed directly from (14) and (15).

3. PERFORMANCE OF A LCMV BEAMFORMER
WITHOUT SIGNAL BLOCKING

Under finite data samples, the output of a LCMV beamformer is given
by y (t) = ŵHx (t). Using (1), (2), and (3), we have

E
[|y(t)|2]=E

[
σ2

s1

∣∣ŵHa1

∣∣2
]
+E

[
q∑

k=2

σ2
sk

∣∣ŵHak

∣∣2
]
+E

[
σ2

nŵ
Hŵ

]

≡Ps + Pi + Pn. (16)

From (7) and (16), the output SINR of a LCMV beamformer without
signal blocking is given by

SINRL=
Ps

Pi + Pn
=

E
[
σ2

s1

∣∣ŵHa1

∣∣2
]

E

[
q∑

k=2

σ2
sk |ŵHak|2

]
+ E [σ2

nŵHŵ]

=
σ2

s1

E

[
q∑

k=2

σ2
sk |ŵHak|2

]
+ E [σ2

nŵHŵ]
. (17)

The weight vector of ŵ in (7) can be derived to [1, Eq. (20)]

ŵ =
Q̂−1a1

aH
1 Q̂−1a1

− P̂Q̂
−1

r̂, (18)

where P̂ = I − Q̂−1a1aH
1

/
aH

1 Q̂−1a1. The first term in (18) ŵQ ≡
Q̂−1a1

/
aH

1 Q̂−1a1 represents the weight vector without the desired
signal in the received data vector. The second term is related to
the cross correlation r̂ between the desired signal and undesired
component. According to the analysis in [3], the difference between the
output SINRs of using ŵQ and the optimal wo is within 3 dB when the
number m of data samples is larger than twice of the number of array
elements. Then, Anu and Wax [1] extended this result and claimed
that the r̂ in (18) captures the most finite sample effect as compared
with the other random quantities Q̂ and P̂. For a moderate sample
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Figure 2. Output SINRs computed by three weight vectors. ‘◦’: the
LCMV weight vector in (7). ‘×’: the weight vector in (18). ‘- -’: the
approximated weight vector in (19).

size m > 3p, it is also shown in [1, Eq. (21)] that ŵ in (18) can be
approximated by

ŵ ≈ Q−1a1

aH
1 Q−1a1

−PQ−1r̂ = wo + ŵc, (19)

where

P = I− Q−1a1aH
1

aH
1 Q−1a1

and ŵc = −PQ−1r̂. (20)

A trial with four parameter settings for the output SINRs computed
by (7), (18), and (19) are presented in Figure 2 for an eight-element
uniform linear array (ULA) with half-wavelength spacing. We observe
that the approximation used in (19) results in acceptable errors and
still preserves the most finite sample effect even if the output SINRs
have not reached the steady-state (i.e., optimal SINR). To facilitate
the following analysis, we adopt this approximation. Equation (19)
shows that a redundant component ŵc called cross weight is produced
when the finite sample effect exists.

3.1. Output SINR in Terms of Q

Substituting (19) into the term Pi of (17) yields

Pi=E

[
q∑

k=2

σ2
sk

∣∣ŵHak

∣∣2
]
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≈
q∑

k=2

σ2
sk

∣∣wH
o ak

∣∣2 +
q∑

k=2

σ2
skE [ŵc]akaH

k wo

+
q∑

k=2

σ2
skw

H
o akaH

k E [ŵc] +
q∑

k=2

σ2
skE

[∣∣ŵH
c ak

∣∣2
]
. (21)

Using (9) and (20), we have E [ŵc] = 0 and

Pi ≈
q∑

k=2

σ2
sk

∣∣wH
o ak

∣∣2 +
q∑

k=2

σ2
skE

[∣∣ŵH
c ak

∣∣2
]
≡ Pio + Pic. (22)

Then, substituting wo of (5) and ŵc of (20) into (22) yields the optimal
interference output power and the additional interference output power
due to finite samples as follows:

Pio =
q∑

k=2

σ2
sk

∣∣∣∣
aH

1 Q−1ak

aH
1 Q−1a1

∣∣∣∣
2

(23)

and

Pic =
q∑

k=2

σ2
skE

[∣∣̂rHQ−1PHak

∣∣2
]
=

q∑

k=2

σ2
ska

H
k PQ−1E

[
r̂r̂H

]
Q−1PHak, (24)

respectively. Since

E
[
r̂r̂H

]
=

1
m2

m∑

i=1

m∑

k=1

E
[
s∗1 (ti)v (ti) s1 (tk)vH (tk)

]
=

σ2
s1

m
Q (25)

and P = I−Q−1a1aH
1 /

(
aH

1 Q−1a1

)
, (24) becomes

Pic =
σ2

s1

m

q∑

k=2

σ2
sk

(
aH

k Q−1ak −
∣∣aH

k Q−1a1

∣∣2
aH

1 Q−1a1

)
. (26)

Similarly, substituting (19) into the term Pn of (17) yields

Pn ≈ σ2
nw

H
o wo + σ2

nE
[
ŵH

c ŵc

] ≡ Pno + Pnc. (27)

Using wo of (5) and ŵc of (20), we obtain

Pno = σ2
n

∥∥Q−1a1

∥∥2

(
aH

1 Q−1a1

)2 (28)

and

Pnc =σ2
nE

[
r̂HQ−1PHPQ−1r̂

]
=σ2

ntr
(
Q−1PHPQ−1E

[
r̂r̂H

])
, (29)
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where ||x||2 denotes the squared norm of the vector x and tr(X) the
trace of the matrix X. From (25) and (20), we have Pnc given by

Pnc = σ2
n

σ2
s1

m

(
tr

(
Q−1

)−
∥∥Q−1a1

∥∥2

aH
1 Q−1a1

)
. (30)

Using Pic of (26) and Pnc of (30) and performing some algebraic
manipulations yields the additional power in the denominator of (17)
due to ŵc as follows:

Pc ≡ Pic + Pnc =
σ2

s1

m
(p− 1) . (31)

Since the cross weight produces a positive Pc (called cross power) in the
denominator of (17), the effect of using finite data samples degrades
the beamforming performance. From (22), (23), (27), (28), and (31),
we can rewrite (17) as follows:

SINRL ≈ σ2
s1

Pio + Pno + Pc

=
σ2

s1
q∑

k=2

σ2
sk

∣∣∣aH
1 Q−1ak

aH
1 Q−1a1

∣∣∣
2
+ σ2

n
‖Q−1a1‖2

(aH
1 Q−1a1)2 + (p−1)σ2

s1
m

. (32)

3.2. Derivation of Q−1

Assume a set of dummy variables Kr, r = 1, 2, . . ., q, defined as follows:

Kr =





σ2
nI r = 1
r∑

i=2
σ2

siaiaH
i + σ2

nI 2 ≤ r ≤ q
. (33)

Hence, Q−1 can be expressed as

Q−1 = K−1
q =

(
Kq−1 + σ2

sqaqaH
q

)−1
. (34)

Applying the matrix inversion lemma to (34), we obtain the following
recursive formula

Q−1 = K−1
q = K−1

q−1

(
I− aqaH

q K−1
q−1

σ−2
sq + aH

q K−1
q−1aq

)
(35)

with K−1
1 = σ−2

n I. It follows from (35) that

Q−1 =
(
σ−2

n I
)

︸ ︷︷ ︸
K−1

1

(
I− a2a

H
2 K−1

1

σ−2
s2 + aH

2 K−1
1 a2

)

︸ ︷︷ ︸
K−1

2

(
I− a3a

H
3 K−1

2

σ−2
s3 + aH

3 K−1
2 a3

)

︸ ︷︷ ︸
K−1

3
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. . .

(
I− aqaH

q K−1
q−1

σ−2
sq +aH

q K−1
q−1aq

)
=σ−2

n

q∏

i=2

(
I− aiaH

i K−1
i−1

σ−2
si +aH

i K−1
i−1ai

)
. (36)

Substituting (36) into (32) provides an explicit formula for computing
SINRL under any q interferers. Moreover, the recursive formula shown
by (36) facilitates the computation process.

3.3. Output SINR for Two Interferers

Substituting q = 3 into (36) and performing some algebraic
manipulations yields

Q−1=

σ−2
n





σ4
nI+σ2

s2σ
2
n

[(
aH

2 a2

)·I−a2aH
2

]
+σ2

s3σ
2
n

[(
aH

3 a3

)·I−a3aH
3

]

+σ2
s2σ

2
s3

[(
aH

2 a2aH
3 a3

)·I−(
aH

3 a2aH
2 a3

)·I−(
aH

3 a3

)·a2aH
2

−(
aH

2 a2

)·a3aH
3 +

(
aH

3 a2

)·a3aH
2 +

(
aH

2 a3

)·a2aH
3

]




[
σ4

n+σ2
s2σ

2
naH

2 a2+σ2
s3σ

2
naH

3 a3+σ2
s2σ

2
s3

(
aH

2 a2aH
3 a3−aH

3 a2aH
2 a3

)].
(37)

By letting dij ≡ (1/p)·aH
i aj for i < j and using the fact that aH

k ak = p,
k = 1, 2, 3, (37) can be rewritten as

Q−1 =

σ−2
n





σ4
nI+σ2

s2σ
2
n

(
pI−a2aH

2

)
+σ2

s3σ
2
n

(
pI−a3aH

3

)

+σ2
s2σ

2
s3

[
p2

(
1−|d23|2

)
·I− pa2aH

2 −pa3aH
3

+pd∗23a3aH
2 +pd23a2aH

3

]





σ4
n + pσ2

s2σ
2
n + pσ2

s3σ
2
n + p2σ2

s2σ
2
s3

(
1− |d23|2

) . (38)

Based on (38), we obtain the following expressions:

aH
1 Q−1a1=

pσ−2
n





σ4
n+pσ2

s2σ
2
n

(
1−|d12|2

)
+pσ2

s3σ
2
n

(
1−|d13|2

)

+p2σ2
s2σ

2
s3

[
1− |d23|2 − |d12|2 − |d13|2

+2Re (d12d
∗
13d23)]





σ4
n + pσ2

s2σ
2
n + pσ2

s3σ
2
n + p2σ2

s2σ
2
s3

(
1− |d23|2

) , (39)

aH
1 Q−1a2=

pσ−2
n

[
σ4

nd12 + pσ2
s3σ

2
n (d12 − d13d

∗
23)

]

σ4
n + pσ2

s2σ
2
n + pσ2

s3σ
2
n + p2σ2

s2σ
2
s3

(
1− |d23|2

) , (40)

aH
1 Q−1a3=

pσ−2
n

[
σ4

nd13 + pσ2
s2σ

2
n (d13 − d12d23)

]

σ4
n + pσ2

s2σ
2
n + pσ2

s3σ
2
n + p2σ2

s2σ
2
s3

(
1− |d23|2

) , (41)
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∥∥Q−1a1

∥∥2 =

pσ−4
n





σ8
n + pσ2

s2σ
4
n

(
pσ2

s2 + 2σ2
n

) (
1− |d12|2

)
+ pσ2

s3σ
4
n

×(
pσ2

s3 + 2σ2
n

) (
1− |d13|2

)
+ p3σ2

s2σ
2
s3

×
[
2σ2

s2σ
2
n + 2σ2

s3σ
2
n + pσ2

s2σ
2
s3

(
1− |d23|2

)]

×
[
1− |d23|2 − |d12|2 − |d13|2 + 2Re (d12d

∗
13d23)

]

+2p2σ2
s2σ

2
s3σ

4
n

[
2− |d23|2 − 2 |d12|2 − 2 |d13|2

+3Re (d12d
∗
13d23)]





[
σ4

n+pσ2
s2σ

2
n+pσ2

s3σ
2
n+p2σ2

s2σ
2
s3

(
1−|d23|2

)]2 ,

(42)

where Re{x} and {x}∗ denote the real part and complex conjugation
of x, respectively. Under adequate angular separation for each pair of
the incident signal sources and appropriate inter-element spacing, we
can assume that |dij |2 ¿ 1 for i 6= j [2, 8]. Using this assumption and
substituting (39)–(42) into Pio and Pno of (32) yields

Pio ≈
σ2

s2σ
4
n

∣∣σ2
nd12 + pσ2

s3d12

∣∣2 + σ2
s3σ

4
n

∣∣σ2
nd13 + pσ2

s2d13

∣∣2
(
σ2

n + pσ2
s2

)2 (
σ2

n + pσ2
s3

)2

=
σ2

s2σ
4
n |d12|2(

σ2
n + pσ2

s2

)2 +
σ2

s3σ
4
n |d13|2(

σ2
n + pσ2

s3

)2 (43)

and

Pno ≈
σ2

n

(
σ8

n+p2σ4
s2σ

4
n+p2σ4

s3σ
4
n+2pσ2

s2σ
6
n+2pσ2

s3σ
6
n

+4p2σ2
s2σ

2
s3σ

4
n+p4σ4

s2σ
4
s3+2p3σ4

s2σ
2
s3σ

2
n+2p3σ2

s2σ
4
s3σ

2
n

)

p
(
σ2

n + pσ2
s2

)2 (
σ2

n + pσ2
s3

)2

=
σ2

n

p
, (44)

respectively. Hence, the approximated expression of SINRL for q = 3
is given by

SINRL ≈ σ2
s1

3∑

k=2

σ2
skσ

4
n |d1k|2(

σ2
n + pσ2

sk

)2 +
σ2

n

p
+

(p− 1) σ2
s1

m

. (45)

As compared with the results given by (14) and (32), the output SINR
shown by (45) is expressed directly in terms of the system parameters.
The SINRL for q = 2 and 1 can be obtained easily by substituting
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σ2
s3 = 0 and σ2

s3 = σ2
s2 = 0 into (45), respectively, as follows:

SINRL|q=2 ≈ σ2
s1

σ2
s2σ

4
n |d12|2(

σ2
n + pσ2

s2

)2 +
σ2

n

p
+

(p− 1)σ2
s1

m

, (46)

SINRL|q=1 ≈ σ2
s1

σ2
n

p
+

(p− 1)σ2
s1

m

. (47)

To obtain an explicit output SINR formula for any 3 < q <p, a value
of q should be specified in the Q−1 of (36). Then, we substitute the
Q−1 into (32) and perform the required simplifications. However, it is
not an easy task to derive the case for q > 3 due to the complicated
algebraic manipulations. Instead, it is shown in Appendix A with
mathematical induction [18, 19] that an approximation of SINRL for
any 2 ≤ q < p is given by

SINRL ≈ σ2
s1

Pio + Pno + Pc
≈ σ2

s1
q∑

k=2

σ2
skσ

4
n |d1k|2(

σ2
n + pσ2

sk

)2 +
σ2

n

p
+

(p− 1) σ2
s1

m

.

(48)
Note that the condition of q < p is required to satisfy |dij |2 ¿ 1 for
i 6= j in order to derive (45). For convenience, the derived formulas
and corresponding assumptions are summarized in Table 1.

4. PERFORMANCE OF A LCMV BEAMFORMER WITH
SIGNAL BLOCKING

4.1. Output SINR in Terms of QB

Following the approximation Q̂ ≈ Q in ŵ, Q̂B in (13) can be
approximated by

Q̂B = BQ̂B
H ≈ BQBH ≡ QB. (49)

Hence, we have

ŵB ≈ Q−1
B a1

a1
HQ−1

B a1

≡ wB. (50)

Comparing (50) and (19), we note that the signal blocking replaces
wo with wB and eliminates ŵc. Since ŵc is the term caused
by finite samples, the analysis of ŵB reduces to the infinite sample
scenario under the same condition m > 3p and approximation Q̂ ≈ Q
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considered in Section 3. This reveals that the condition m > 3p
is sufficient for a LCMV beamformer with signal blocking achieving
to its infinite performance. To confirm this, a trial for the output
SINRs computed by (11), (13), and (50) are plotted in Figure 3, where
the four parameter settings are the same as those in Figure 2. The
blocking matrices are produced by the “null” function in MATLAB
to satisfy (10). We see from Figure 3 that most errors caused by the
approximation used in (50) are within 1 dB or even less. This confirms
that the exact performance of ŵB is insensitive to the data sample size
m as compared with that of ŵ.

Similar to (17), the output SINR of a LCMV beamformer with
signal blocking is given by

SINRB =
σ2

s1

Pi,B + Pn,B
=

σ2
s1

E

[
q∑

k=2

σ2
sk

∣∣ŵH
B ak

∣∣2
]

+ E
[
σ2

nŵ
H
B ŵB

] (51)

Table 1. The summary of the derived output SINR formulas.

SINRL SINRB Assumptions

SINR in terms

of Q or QB

(32) (54)

1. 2 ≤ q < p for SINRL,

2 ≤ q < N for SINRB

2. ŵ ≈ wo + ŵc and

ŵB ≈ wB are valid

3. B satisfies (10)

Explicit SINR

for q = 3
(45) (68)

1. q = 3

2. ŵ ≈ wo + ŵc and

ŵB ≈ wB are valid

3. |dij |2 ¿ 1, |dij,B |2 ¿ 1

4. B satisfies (10) and (59)

Explicit SINR

for general q
(48) (69)

1. 2 ≤ q < p for SINRL,

2 ≤ q < N for SINRB

2. ŵ ≈ wo + ŵc and

ŵB ≈ wB are valid

3. |dij |2 ¿ 1, |dij,B |2 ¿ 1

4. B satisfies (10) and (59)

Explicit SINR

for the Duvall

beamformer

N/A (80)

1. 2 ≤ q < N

2. ŵB ≈ wB is valid

3. |dij |2 ¿ 1, |dij,B |2 ¿ 1

4. Duvall’s B
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with

Pi,B =E

[
q∑

k=2

σ2
sk

∣∣ŵH
B ak

∣∣2
]

≈E

[
q∑

k=2

σ2
sk

∣∣wH
B ak

∣∣2
]
=

q∑

k=2

σ2
sk

∣∣wH
B ak

∣∣2=
q∑

k=2

σ2
sk

∣∣∣∣∣
a1

HQ−1
B ak

a1
HQ−1

B a1

∣∣∣∣∣
2

(52)

and

Pn,B =E
[
σ2

nŵ
H
B ŵB

]≈σ2
nE

[
wH

B wB

]
=σ2

n ‖wB‖2 =σ2
n

∥∥Q−1
B a1

∥∥2

(
a1

HQ−1
B a1

)2 .

(53)
Substituting (52) and (53) into (51) yields

SINRB =
σ2

s1

Pi,B+Pn,B
≈ σ2

s1

q∑

k=2

σ2
sk

∣∣∣∣∣
a1

HQ−1
B ak

a1
HQ−1

B a1

∣∣∣∣∣
2

+σ2
n

∥∥Q−1
B a1

∥∥2

(
a1

HQ−1
B a1

)2

. (54)

Comparing (32) and (54), we observe that the cross power Pc produced
by the cross weight ŵc is eliminated and the output power Pio

and Pno produced by the optimal weight wo are replaced with Pi,B

and Pn,B, respectively when using signal blocking. If the sample
size m is small or the desired signal power σ2

s1 is large, the cross
power Pc in the denominator of SINRL will dominate and affect the

Figure 3. Output SINRs computed by three weight vectors. ‘◦’:
the weight vector in (11). ‘×’: the weight vector in (13). ‘- -’: the
approximated weight vector in (50).
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performance of a LCMV beamformer. On the contrary, no cross power
is present in SINRB. Hence, a LCMV beamformer with B alleviates
the finite sample effect on its performance. This leads to the fact
that a LCMV beamformer with B converges faster than the same
beamformer without B especially for large arrays or strong desired
signal environments.

4.2. Derivation of Q−1
B

Analogous to the derivation of Q−1, we derive an expression for Q−1
B

as follows. Let a set of dummy variables Lr, r = 1, 2, . . ., q, be given
by

Lr =





σ2
nBBH r = 1
r∑

i=2
σ2

siBaiaH
i BH + σ2

nBBH 2 ≤ r ≤ q
. (55)

Q−1
B can be expressed by

Q−1
B = L−1

q =
(
Lq−1 + σ2

sqBaqaH
q BH

)−1
. (56)

Using the matrix inversion lemma, we have Q−1
B given by

Q−1
B = L−1

q = L−1
q−1

(
I− BaqaH

q BHL−1
q−1

σ−2
sq + aH

q BHL−1
q−1Baq

)
(57)

with L−1
1 = σ−2

n

(
BBH

)−1. It follows from (57) that

Q−1
B = σ−2

n

(
BBH

)−1

︸ ︷︷ ︸
L−1

1

(
I− Ba2a

H
2 BHL−1

1

σ−2
s2 + aH

2 BHL−1
1 Ba2

)

︸ ︷︷ ︸
L−1

2

(
I− Ba3a

H
3 BHL−1

2

σ−2
s3 + aH

3 BHL−1
2 Ba3

)

︸ ︷︷ ︸
L−1

3

. . .

(
I− Baqa

H
q BHL−1

q−1

σ−2
sq + aH

q BHL−1
q−1Baq

)

= σ−2
n

(
BBH

)−1
q∏

i=2

(
I− Baia

H
i BHL−1

i−1

σ−2
si + aH

i BHL−1
i−1Bai

)
. (58)

Substituting (58) into (54) yields an explicit formula for computing
SINRB under any q interferers.

4.3. Output SINR for Two Interferers

In direct form beamformers, the blocking matrix usually possesses the
property [5, 8]

Bak = γkak, k = 2, . . . , q (59)
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in addition to (10), where the scalar γk depends on the category of
B. The constraint of (59) preserves the directions of all interferers,
so that ŵB can put the nulls in the direction angles θ2, . . ., θq [5].
A systematic methodology to design the blocking matrices satisfying
both (10) and (59) is presented in [8], which is appropriate for a ULA.
Here, we consider the blocking matrices in [8] and derive SINRB under
two interferers, i.e., q = 3.

The steering vector ak of a ULA is given by

ak =[1 exp (iϕk) exp (i2ϕk) . . . exp (i(p−1) ϕk)]
T

=
[
1 zk z2

k . . . zp−1
k

]T
, (60)

where zk = exp (iϕk), ϕk = 2π (d/λ) sin θk. d is the inter-element
spacing, λ the signal wavelength, and θk the direction angle off
broadside for the kth signal source, k = 1, 2, . . ., q. The superscript
“T” denotes the transpose operation. Setting q = 3 in (58), performing
some algebraic manipulations, and utilizing the relationship of (59), we
obtain

Q−1
B =

σ−2
n





σ4
n

(
BBH

)−1 + |γ2|2 σ2
s2σ

2
n

[(
a2

H
(
BBH

)−1
a2

)

· (BBH
)−1 − (

BBH
)−1

a2a2
H

(
BBH

)−1
]

+ |γ2|2 σ2
s2 |γ3|2 σ2

s3


(
a2

H
(
BBH

)−1
a2a3

H
(
BBH

)−1
a3

)
·(BBH

)−1

−
(
a3

H
(
BBH

)−1
a2a2

H
(
BBH

)−1
a3

)
·(BBH

)−1

−
(
a2

H
(
BBH

)−1
a2

)
·(BBH

)−1
a3a3

H
(
BBH

)−1

−
(
a3

H
(
BBH

)−1
a3

)
·(BBH

)−1
a2a2

H
(
BBH

)−1

+
(
a2

H
(
BBH

)−1
a3

)
·(BBH

)−1
a2a3

H
(
BBH

)−1

+
(
a3

H
(
BBH

)−1
a2

)
·(BBH

)−1
a3a2

H
(
BBH

)−1




+ |γ3|2 σ2
s3σ

2
n

[(
a3

H
(
BBH

)−1
a3

)
· (BBH

)−1

− (
BBH

)−1
a3a3

H
(
BBH

)−1
]







σ4

n+|γ2|2σ2
s2σ

2
na2

H
(
BBH

)−1
a2+|γ3|2σ2

s3σ
2
na3

H
(
BBH

)−1
a3

+ |γ2|2 σ2
s2 |γ3|2 σ2

s3

(
a2

H
(
BBH

)−1
a2a3

H
(
BBH

)−1
a3

−a3
H

(
BBH

)−1
a2a2

H
(
BBH

)−1
a3

)




. (61)

Let dij,B = ai
H(BBH)−1aj/(

√
ai

H(BBH)−1ai

√
aj

H(BBH)−1aj), i <
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j. Based on (61), it is straightforward to derive the following terms:

a1
HQ−1

B a1 =

σ−2
n





σ4
na1

H
(
BBH

)−1
a1 + |γ2|2 σ2

s2σ
2
na1

H
(
BBH

)−1
a1

a2
H

(
BBH

)−1
a2

(
1− |d12,B |2

)
+ |γ3|2 σ2

s3σ
2
na1

H
(
BBH

)−1

a1a3
H

(
BBH

)−1
a3

(
1− |d13,B |2

)
+ |γ2|2 σ2

s2 |γ3|2 σ2
s3a1

H

(
BBH

)−1
a1a2

H
(
BBH

)−1
a2a3

H
(
BBH

)−1
a3

× [
1− |d23,B |2 − |d12,B |2 − |d13,B |2 + 2Re

(
d12,Bd∗13,Bd23,B

)]





[
σ4

n+|γ2|2σ2
s2σ

2
na2

H
(
BBH

)−1
a2+|γ3|2 σ2

s3σ
2
na3

H
(
BBH

)−1
a3

+ |γ2|2 σ2
s2|γ3|2 σ2

s3a2
H

(
BBH

)−1
a2a3

H
(
BBH

)−1
a3

(
1−|d23,B |2

)
] ,

(62)

a1
HQ−1

B a2 =

σ−2
n




σ4
n

√
a1

H
(
BBH

)−1
a1

√
a2

H
(
BBH

)−1
a2d12,B + |γ3|2 σ2

s3

σ2
na3

H
(
BBH

)−1
a3

√
a1

H
(
BBH

)−1
a1

√
a2

H
(
BBH

)−1
a2(

d12,B − d13,Bd∗23,B

)




[
σ4

n + |γ2|2 σ2
s2σ

2
na2

H
(
BBH

)−1
a2 + |γ3|2 σ2

s3σ
2
na3

H
(
BBH

)−1

a3+|γ2|2σ2
s2 |γ3|2 σ2

s3a2
H

(
BBH

)−1
a2a3

H
(
BBH

)−1
a3

(
1−|d23,B|2

)
]

(63)

a1
HQ−1

B a3 =

σ−2
n




σ4
n

√
a1

H
(
BBH

)−1
a1

√
a3

H
(
BBH

)−1
a3d13,B + |γ2|2

σ2
s2σ

2
na2

H
(
BBH

)−1
a2 ×

√
a1

H
(
BBH

)−1
a1√

a3
H

(
BBH

)−1
a3 (d13,B − d12,Bd23,B)







σ4
n + |γ2|2 σ2

s2σ
2
na2

H
(
BBH

)−1
a2 + |γ3|2 σ2

s3σ
2
na3

H

(
BBH

)−1
a3 + |γ2|2 σ2

s2 |γ3|2 σ2
s3a2

H
(
BBH

)−1
a2

a3
H

(
BBH

)−1
a3

(
1− |d23,B |2

)




,

(64)

∥∥Q−1
B a1

∥∥2
=

σ−4
n

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

σ4
n

(
BBH

)−1
a1+|γ2|2 σ2

s2σ
2
n

[(
a2

H
(
BBH

)−1
a2

) (
BBH

)−1
a1

−
(
a2

H
(
BBH

)−1
a1

)
·(BBH

)−1
a2

]
+ |γ2|2 σ2

s2 |γ3|2 σ2
s3



a2
H
(
BBH

)−1
a2a3

H
(
BBH

)−1
a3

(
1−|d23,B |2

) (
BBH

)−1
a1

−a3
H
(
BBH

)−1
a3

√
a2

H
(
BBH

)−1
a2

√
a1

H
(
BBH

)−1
a1(

d∗12,B − d23,Bd∗13,B

) (
BBH

)−1
a2− a2

H
(
BBH

)−1
a2√

a1
H

(
BBH

)−1
a1 ×

√
a3

H
(
BBH

)−1
a3(

d∗13,B − d∗12,Bd∗23,B

) · (BBH
)−1

a3




+ |γ3|2 σ2
s3σ

2
n

[(
a3

H
(
BBH

)−1
a3

)
· (BBH

)−1
a1

−
(
a3

H
(
BBH

)−1
a1

)
· (BBH

)−1
a3

]

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

2




σ4
n + |γ2|2 σ2

s2σ
2
na2

H
(
BBH

)−1
a2 + |γ3|2 σ2

s3σ
2
na3

H

(
BBH

)−1
a3 + |γ2|2 σ2

s2 |γ3|2 σ2
s3a2

H
(
BBH

)−1
a2a3

H

(
BBH

)−1
a3

(
1− |d23,B |2

)




2 .

(65)
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Substituting (62)–(65) into (54) under q = 3 and |dij,B|2 ¿ 1, i 6= j,
we obtain

Pi,B ≈
3∑

k=2

σ2
skσ

4
nak

H
(
BBH

)−1
ak |d1k,B|2

a1
H

(
BBH

)−1
a1

[
σ2

n + |γk|2 σ2
skak

H
(
BBH

)−1
ak

]2 (66)

and

Pn,B ≈ σ2
n

a1
H

(
BBH

)−1 (
BBH

)−1
a1[

a1
H

(
BBH

)−1
a1

]2 . (67)

Therefore, the output SINR of a LCMV beamformer with B
satisfying (10) and (59) is approximately given by

SINRB ≈ σ2
s1

3∑
k=2

σ2
skσ4

nak
H(BBH)−1

ak|d1k,B|2
a1

H(BBH)−1
a1

[
σ2

n+|γk|2σ2
skak

H(BBH)−1
ak

]2

+σ2
n

a1
H(BBH)−1(BBH)−1

a1[
a1

H(BBH)−1
a1

]2

. (68)

Note that Pi,B and Pn,B of (68) reduce to Pio and Pno of (45) if B, γk,
a1, and ak are replaced by I, 1, a1, and ak, respectively, which confirms
the validity of (68). Similar to (45)–(48), it is shown in Appendix B
that the SINRB in (68) can be generalized to the q-interferer case, 2
≤ q < N , as follows:

SINRB =
σ2

s1

Pi,B + Pn,B

≈ σ2
s1

q∑
k=2

σ2
skσ4

nak
H(BBH)−1

ak|d1k,B|2
a1

H(BBH)−1
a1

[
σ2

n+|γk|2σ2
skak

H(BBH)−1
ak

]2

+σ2
n

a1
H(BBH)−1(BBH)−1

a1[
a1

H(BBH)−1
a1

]2

. (69)

The generalized result of (69) is reasonable when the approximation
used in (50) and |dij,B|2 ¿ 1, i 6= j, hold. An example with common
source directions and moderate sample size is presented in Section 5
to confirm the accuracy of (69) and the following formulas.

4.4. The Duvall Beamformer

To see the details about the effect of the signal blocking on Pio and Pno

of (48), we consider the following B used by the Duvall beamformer [4]:
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B =




−z1 1 0 0 · · · 0
0 −z1 1 0 · · · 0

0 0 −z1 1
. . .

...
...

...
. . . . . . . . .

...
0 0 · · · 0 −z1 1




(p−1)×p

(70)

and
γk = zk − z1 = exp (iϕk)− exp (iϕ1) . (71)

Based on the blocking matrix of (70), we can further derive the terms
āH

k (BBH)−1āk, āH
1 (BBH)−1ā1, and āH

1 (BBH)−1(BBH)−1ā1 in Pi,B

and Pn,B of (69). Following the well-known Gauss-Jordan elimination
algorithm [20] and performing some algebraic manipulations, we have
the term (BBH)−1 given by

(
BBH

)−1
=

1
p




p− 1 p− 2 p− 3 . . . 1
p− 2 2 (p− 2) 2 (p− 3) . . . 2
p− 3 2 (p− 3) 3 (p− 3) . . . 3

...
...

...
. . .

...
1 2 3 . . . p− 1




⊗




1 z∗1 (z∗1)
2 . . . (z∗1)

p−2

z1 1 z∗1 . . . (z∗1)
p−3

z2
1 z1 1

. . .
...

...
...

. . . . . . z∗1
zp−2
1 zp−3

1 . . . z1 1




, (72)

where “⊗” denotes the Hadamard product. It follows from (72) and
some necessary algebraic manipulations that

ak
H

(
BBH

)−1
ak

=
p2 − 1

6
+

1
3p

p−2∑

t=1

(p−t−1) (p−t) (p−t+1) cos [t (ϕk − ϕ1)]. (73)

We show in Appendix C that (73) can have a closed-form expression
as follows:

ak
H

(
BBH

)−1
ak =

p2 [1−cos(ϕk − ϕ1)]+cos[p (ϕk−ϕ1)]− 1
2p [1− cos (ϕk−ϕ1)]

2 . (74)

Based on (74), we can substitute k = 1 and apply L’ Hopital’s rule to
obtain

a1
H

(
BBH

)−1
a1 =

p
(
p2 − 1

)

12
. (75)
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Moreover, since the square of the absolute value of d1k can be simplified
to

|d1k|2 =
1− cos [p (ϕk − ϕ1)]
p2 [1− cos (ϕk − ϕ1)]

(76)

according to (60), the condition |d1k|2 ¿ 1 is equivalent to 1 −
cos[p(ϕk − ϕ1)] ¿ p2[1− cos(ϕk − ϕ1)]. Hence, we have the following
approximations for āH

k (BBH)−1āk of (74) and |γk|2āH
k (BBH)−1āk:

ak
H

(
BBH

)−1
ak ≈ p

2 [1− cos (ϕk − ϕ1)]

and |γk|2 ak
H

(
BBH

)−1
ak ≈ p. (77)

Next, we consider the term a1
H(BBH)−1(BBH)−1a1. Using (60)

and (72), we have
(
BBH

)−1

a1

=
[

p−1
2

(p− 2) z1
3
2

(p− 3) z2
1 . . . 3

2
(p− 3) zp−4

1 (p− 2) zp−3
1

p−1
2

zp−2
1

]T
. (78)

Note that the ith and (p−i)th entries of (78) have the same coefficients.
The closed-form of a1

H(BBH)−1(BBH)−1a1 can be obtained by taking
the squared norm of (78) as follows:

a1
H

(
BBH

)−1 (
BBH

)−1
a1 =

p
(
p4 − 1

)

120
. (79)

Substituting (75), (77), and (79) into (69), we have an explicit
expression for the output SINR of the Duvall beamformer as follows:

SINRB =
σ2

s1

Pi,B + Pn,B

≈ σ2
s1

q∑
k=2

6
(p2−1)[1−cos(ϕk−ϕ1)]

· σ2
skσ4

n|d1k,B|2
(σ2

n+pσ2
sk)

2 + σ2
n
p · 6(p2+1)

5(p2−1)

. (80)

The summary of the derived SINR formulas in Sections 3–4 is presented
in Table 1.

Unlike (14) and (15), the comparison of (48) and (80) provides
insights into the influence on performance when the blocking matrix
of (70) is used. From (48) and (80), it is apparent that Pn,B is always
larger than Pno. Comparing Pio and Pi,B, the main difference between
them is the ratio 6/{(p2−1)[1−cos(ϕk−ϕ1)]} in each summation term.
|d1k|2 and |d1k,B|2 are assumed to be tiny and have almost the same
scale. More details about |d1k,B|2 are presented in Appendix D. Since
all sources are assumed to have distinct incident angles with enough
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angular separations, 6/{(p2− 1)[1− cos(ϕk−ϕ1)]} is normally smaller
than one. Therefore, it is possible for Pi,B to be smaller than Pio, but
this improvement is slight due to the fact that Pio is relative marginal
as compared with Pno [2]. Besides, it is reasonable that Pi,B + Pn,B is
always larger than Pio +Pno owing to the loss of the degree of freedom
(DOF). As a result, inserting the blocking matrix operation into LCMV
beamformers eliminates the cross power Pc at the price of changing
Pio + Pno to Pi,B + Pn,B.

5. SIMULATION RESULTS

In this section, we present simulation results for confirmation and
comparison. For all simulation examples, an eight-element ULA
with inter-element spacing equal to half of the signal wavelength is
considered. The numbers of Monte Carlo runs and data snapshots
are set to 100. The background noise is spatially white and complex
Gaussian with zero mean and unit variance. To evaluate the benefit
of using B for a LCMV beamformer, we define a gain factor which is
the ratio of SINRB and SINRL given as follows:

G ≡ SINRB

SINRL
=

Pio + Pno

Pi,B + Pn,B
+

Pc

Pi,B + Pn,B
. (81)

When the blocking matrix is designed properly without enlarging
Pio + Pno too much, Pi,B + Pn,B can be roughly approximated to
Pio + Pno, especially when the cross power is dominant. Hence, (81)
can be approximated by

G ≡ SINRB

SINRL
≈ 1 +

Pc

Pi,B + Pn,B
. (82)

Moreover, the theoretical results in (14) and (15) provided by [11] are
also plotted for comparison.

Example 1 : Three independent complex Gaussian sources are
impinging on the array with direction angles [11◦ − 36◦ 49◦] off array
broadside and powers [8 20 15] (dB), where the first one denotes the
desired signal and the others the interferers. B is set to the blocking
matrix in [8] with order equal to 2 (i.e., N = p − 2). The theoretical
results of (14), (15), (45), and (68) are plotted for comparison.
Figures 4–6 show the output SINR, the related power terms derived
in Sections 3 and 4, and the gain factor in dB of (81)–(82) versus the
desired signal power. In Figure 4, it is seen that the curves of using
(45) and (68) are close to those simulated by data snapshots and those
of using (14) and (15), which explains the validity of the derivations
and approximations. The output SINR without signal blocking sticks
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Figure 4. The output SINR
versus desired signal power for
Example 1.

Figure 5. The theoretical terms
versus desired signal power for
Example 1.

Figure 6. The gain factor
of signal blocking versus desired
signal power for Example 1.

Figure 7. The output SINR
versus number of data snapshots
for Example 1.

to 12 dB even when the desired signal power is larger than 14 dB. In
contrast, the output SINR with B increases almost linearly as the
desired signal power increases. This phenomenon can be seen from the
results shown by Figure 5 where Pi,B and Pn,B do not vary with the
desired signal power and approach Pio and Pno, respectively. However,
Pc does increase as the desired signal power increases. In Figure 6,
the gain of using signal blocking is smaller than zero for desired signal
power smaller than −1 dB due to Pio + Pno < Pi,B +Pn,B. Since
the cross power Pc increases with the growth of the desired signal
power, its significance is also increased. When the desired signal power
is stronger than −1 dB, SINRB starts transcending SINRL and the
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gain factor in (81) is larger than 0 dB. For the desired signal power
larger than 11 dB, the term Pc/(Pi,B + Pn,B) is dominant in (81),
and the curves plotted by using (81) and (82) are almost the same.
Next, we depict the output SINR, the related power terms derived in
Sections 3 and 4, and the gain factor in dB of (81)–(82) versus the
number of data snapshots for SNR = 8 dB in Figures 7–9, respectively.
The simulated SINRB is almost invariant with the number of data
snapshots in contrast to SINRL as expected. The scale of Pc is large
and the gain of using signal blocking is substantial for data sample
size smaller than 250. However, the scale of Pc becomes tiny and the

Figure 8. The theoretical terms versus number of data snapshots for
Example 1.

Figure 9. The gain factor of
signal blocking versus number of
data snapshots for Example 1.

Figure 10. The output SINR
versus dimension of the blocking
matrix for Example 1.
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output SINR without B starts surpassing the one with B when the
number of snapshots is larger than about 750. To observe the effect of
the dimension N of the blocking matrix on the system performance,
the SINRB and the theoretical terms Pi,B and Pn,B with varying N are
depicted in Figures 10 and 11, respectively. Notice that the proposed
formula of (68) still predicts the simulated output SINR well. As we
see from Figure 10, the output SINR is increased with the growth of
N because the DOF for adaptive beamforming is also increased. Since
more DOF is beneficial to eliminating the noise component, the Pn,B

is decreasing in Figure 11, while the Pi,B is tiny and almost invariant
with N . In spite of the loss of DOF, increasing the order of the blocking
matrix may alleviate the performance degradation due to steering angle
error [8].

Example 2 : Here, seven independent BPSK signals with bipolar
rectangular waveforms are considered for the case of q > 3. The
direction angles and the powers of the sources are [11◦ −36◦ 49◦
−55◦ 32◦ 78◦ −64◦] off array broadside and [8 20 15 10 8 3 5] (dB),
respectively, where the first one denotes the desired signal. The
blocking matrix of (70) is used, and the theoretical results of (48)
and (80) are plotted instead of (45) and (68), respectively. First,
the output SINRs versus the number of signal sources are shown in
Figure 12 for the number of elements equal to 8 and 16, respectively.
The differences between the theoretical results and the simulated ones
are all within 1 dB. This confirms the accuracy of the closed-forms given
in (48) and (80). Considering the SINRB for p = 8, we note that the
errors between the theoretical results and the simulated ones are more
significant for higher q’s. However, the errors become smaller when the

Figure 11. The theoretical terms
versus dimension of the blocking
matrix for Example 1.

Figure 12. The output SINR
versus number of sources for
Example 2.
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Figure 13. The output SINR
versus desired signal power for
Example 2.

Figure 14. The output SINR
versus number of data snapshots
for Example 2.

number of elements is increased to 16 because the assumptions |dij |2
¿ 1 and |dij,B|2 ¿ 1 become more reasonable. On the other hand,
the prediction errors for the SINRL are almost uncorrelated with q.
Comparing the SINRL for p = 8 and p = 16, we observe that the
overall errors are increased when the number of elements is doubled.
Because Pio and Pno are usually much smaller than Pc for deficient
sample size, the approximations for generalizing Pio and Pno to the
case with multiple interferers are relative marginal. The errors for
the SINRL are mainly due to the approximation used in (19) which is
valid when m/p > 3. Since the ratio m/p becomes smaller when p is
doubled, the theoretical results of p = 8 are more accurate than those
of p = 16 as expected.

Next, we consider the 8-element array impinged by the first five
signal sources (i.e., q = 5) mentioned above. The output SINR versus
the desired signal power using 100 data snapshots and the output
SINR versus the number of snapshots for SNR = 8 dB are presented
in Figures 13 and 14, respectively. The reason for the performance
difference between LCMV beamformers with B and without B is
similar to that discussed in Example 1. As shown in Figures 13 and 4,
the difference between SINRB and SINRL for σ2

s1 < −4 dB (i.e., Pc is
weak) becomes smaller. This is due to the increase of one DOF when
the order of B is reduced from 2 to 1. The results computed by (48)
and (80) are still close to those of simulation and those computed by
(14) and (15) for q = 5. Again, we observe that the validity of the
theoretical work is confirmed in this case.
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6. CONCLUSION

This paper has analyzed the finite data performance of LCMV
beamformers with and without signal blocking. The presented
formulas are more comprehensive than the existing formulas in the
literature and provide insights into the effect of using signal blocking.
Based on the analytical formulas, we can see that the signal blocking
operation does not only block the desired signal but also eliminates
the cross weight component caused by the correlation due to finite
data samples. This provides the detailed explanation to the fact that
a LCMV beamformer with signal blocking converges faster than the
same beamformer without signal blocking, especially when the number
of array elements or the desired signal power is large. Furthermore, the
explicit formulas have been extended to a general situation with one
desired signal and multiple interferers. The validity of the theoretical
work is confirmed by simulations. The extension of our theoretical
work to the case with broadband signal sources is currently under
investigation.

APPENDIX A.

Here, we apply the well-known mathematical induction [18, 19] to
prove (48) is a reasonable approximated result of (32) after expanding
Q. First, substituting q = 2 into (48) yields the result of (46), which
is shown to be true in Section 3.3. Next, we suppose that (32) can be
derived and simplified to (48) for q = r. Then, we have

Pio(r) =
r∑

k=2

σ2
sk

∣∣∣∣∣
aH

1 Q−1
(r)ak

aH
1 Q−1

(r)a1

∣∣∣∣∣

2

≈
r∑

k=2

σ2
skσ

4
n |d1k|2(

σ2
n + pσ2

sk

)2 (A1)

and

Pno(r) = σ2
n

∥∥∥Q−1
(r)a1

∥∥∥
2

(
aH

1 Q−1
(r)a1

)2 ≈
σ2

n

p
, (A2)

where the subscript (r) denotes the particular case of q = r. Based
on (A1) and (A2), we then show that the output SINR of (48) can be
derived from (32) under q = r+ 1.

Since the analysis in Section 3.1 is suitable for a general q, we
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apply (23) to obtain the Pio for q = r + 1 as follows:

Pio(r+1)=
r+1∑

k=2

σ2
sk

∣∣∣∣∣
aH

1 Q−1
(r+1)ak

aH
1 Q−1

(r+1)a1

∣∣∣∣∣

2

=
r∑

k=2

σ2
sk

∣∣∣∣∣
aH

1 Q−1
(r+1)ak

aH
1 Q−1

(r+1)a1

∣∣∣∣∣

2

+σ2
s(r+1)

∣∣∣∣∣
aH

1 Q−1
(r+1)ar+1

aH
1 Q−1

(r+1)a1

∣∣∣∣∣

2

. (A3)

Using the recursive formula of Q−1 in (35), we have

Q−1
(r+1) = Q−1

(r)

(
I−

ar+1aH
r+1Q

−1
(r)

σ−2
s(r+1) + aH

r+1Q
−1
(r)ar+1

)
. (A4)

From (A4), we obtain

aH
1 Q−1

(r+1)a1 = aH
1 Q−1

(r)a1 −
aH

1 Q−1
(r)ar+1aH

r+1Q
−1
(r)a1

σ−2
s(r+1) + aH

r+1Q
−1
(r)ar+1

(A5)

and

aH
1 Q−1

(r+1)ak = aH
1 Q−1

(r)ak −
aH

1 Q−1
(r)ar+1aH

r+1Q
−1
(r)ak

σ−2
s(r+1) + aH

r+1Q
−1
(r)ar+1

. (A6)

Now, consider the optimal weight vector wo1 = Q−1
(r)a1 without the

normalized scalar. Since Q(r) contains the 2nd to rth signal sources,
the directions of a1, ar+1, and ak, k = 2, 3, . . ., r, are regarded as
the desired signal, noise, and interference, respectively. The responses
of wo1 in the three directions are different and in general, wH

o1a1 À
wH

o1ar+1 À wH
o1ak. That is,

aH
1 Q−1

(r)a1 À aH
1 Q−1

(r)ar+1 À aH
1 Q−1

(r)ak. (A7)

On the other hand, if the steering vector of the desired signal becomes
ar+1, the according optimal weight vector is wo2 = Q−1

(r)ar+1. As to
wo2, the directions of a1, ar+1, and ak are identified as the noise,
desired signal, and interference, respectively. Similarly, we have

aH
r+1Q

−1
(r)ar+1 À aH

r+1Q
−1
(r)a1 À aH

r+1Q
−1
(r)ak. (A8)

Note that (A7) and (A8) hold because the 1st and (r + 1)th sources
are excluded from Q(r) and all the (r + 1) sources are assumed to be
separate enough so that |dij |2 ¿ 1, i 6= j. Combining (A7) and (A8)
yields

aH
1 Q−1

(r)a1 ≈ aH
r+1Q

−1
(r)ar+1 À aH

1 Q−1
(r)ar+1

≈ aH
r+1Q

−1
(r)a1 À aH

1 Q−1
(r)ak ≈ aH

r+1Q
−1
(r)ak. (A9)
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According to (A9), aH
1 Q−1

(r+1)a1 in (A5) and aH
1 Q−1

(r+1)ak in (A6) can
be approximated as follows:

aH
1 Q−1

(r+1)a1 ≈ aH
1 Q−1

(r)a1 (A10)

and
aH

1 Q−1
(r+1)ak ≈ aH

1 Q−1
(r)ak, (A11)

respectively. Using (A1), (A10), and (A11), the summation term on
the right-hand side of (A3) can be approximated as follows:

r∑

k=2

σ2
sk

∣∣∣∣∣
aH

1 Q−1
(r+1)ak

aH
1 Q−1

(r+1)a1

∣∣∣∣∣

2

≈
r∑

k=2

σ2
sk

∣∣∣∣∣
aH

1 Q−1
(r)ak

aH
1 Q−1

(r)a1

∣∣∣∣∣

2

≈
r∑

k=2

σ2
skσ

4
n |d1k|2(

σ2
n + pσ2

sk

)2 . (A12)

Further, applying the results of (A10) and (A11), we have

aH
1 Q−1

(r+1)a1 ≈ aH
1 Q̇−1

(r)a1 (A13)

and
aH

1 Q−1
(r+1)ar+1 ≈ aH

1 Q̇−1
(r)ar+1, (A14)

where Q̇(r) is obtained by removing one of the 2nd to rth sources from
Q(r+1). Analogous to each term of (A12), the second term on the
right-hand side of (A3) can be derived to

σ2
s(r+1)

∣∣∣∣∣
aH

1 Q−1
(r+1)ar+1

aH
1 Q−1

(r+1)a1

∣∣∣∣∣

2

≈ σ2
s(r+1)

∣∣∣∣∣
aH

1 Q̇−1
(r)ar+1

aH
1 Q̇−1

(r)a1

∣∣∣∣∣

2

≈
σ2

s(r+1)σ
4
n

∣∣d1(r+1)

∣∣2
(
σ2

n + pσ2
s(r+1)

)2 . (A15)

It follows from (A12) and (A15) that Pio under q = r + 1 is given by

Pio(r+1) =
r+1∑

k=2

σ2
sk

∣∣∣∣∣
aH

1 Q−1
(r+1)ak

aH
1 Q−1

(r+1)a1

∣∣∣∣∣

2

≈
r+1∑

k=2

σ2
skσ

4
n |d1k|2(

σ2
n + pσ2

sk

)2 . (A16)

Next, consider the Pno in (28) for q = r+ 1 as follows:

Pno(r+1) = σ2
n

∥∥∥Q−1
(r+1)a1

∥∥∥
2

(
aH

1 Q−1
(r+1)a1

)2 , (A17)
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where the squared norm of Q−1
(r+1)a1 can be derived to

∥∥∥Q−1
(r+1)a1

∥∥∥
2
=

∥∥∥Q−1
(r)a1

∥∥∥
2
+

∣∣∣∣∣
aH

r+1Q
−1
(r)a1

σ−2
s(r+1)+aH

r+1Q
−1
(r)ar+1

∣∣∣∣∣

2∥∥∥Q−1
(r)ar+1

∥∥∥
2

−2Re

(
aH

r+1Q
−1
(r)a1

σ−2
s(r+1)+aH

r+1Q
−1
(r)ar+1

aH
1 Q−1

(r)Q
−1
(r)ar+1

)
(A18)

according to (A4). Again, utilizing the relationship of (A9), Eq. (A18)
can be approximated to∥∥∥Q−1

(r+1)a1

∥∥∥
2
≈

∥∥∥Q−1
(r)a1

∥∥∥
2
. (A19)

Substituting (A19) and (A10) into (A17) and utilizing (A2) yields

Pno(r+1) = σ2
n

∥∥∥Q−1
(r+1)a1

∥∥∥
2

(
aH

1 Q−1
(r+1)a1

)2 ≈ σ2
n

∥∥∥Q−1
(r)a1

∥∥∥
2

(
aH

1 Q−1
(r)a1

)2 ≈
σ2

n

p
. (A20)

From the Pio in (A16) and Pno in (A20), we have the output SINR for
q = r+ 1 given by

SINRL(r+1) ≈
σ2

s1
r+1∑
k=2

σ2
skσ4

n|d1k|2

(σ2
n+pσ2

sk)
2 + σ2

n
p + (p−1)σ2

s1
m

, (A21)

which is the same as (48) with q replaced by r + 1. Therefore, it is
proved by mathematical induction that the approximated SINRL in
(48) is valid for 2 ≤ q < p. Since the approximated error exists in
each stage of the recursive expression, the proposed formula in (48)
may be inaccurate for greater q due to error propagation. However,
our experiment in Section 5 shows that the errors are acceptable even
if q = p− 1.

APPENDIX B.

In this appendix, we apply the mathematical induction [18, 19] to
prove (69) is a reasonable approximated result of (54) after expanding
QB, where the blocking matrix B possesses the properties of (10)
and (59). First, substituting q = 2 into (69) yields

SINRB ≈ σ2
s1

σ2
s2σ4

na2
H(BBH)−1

a2|d12,B|2
a1

H(BBH)−1
a1

[
σ2

n+|γ2|2σ2
s2a2

H(BBH)−1
a2

]2

+σ2
n

a1
H(BBH)−1(BBH)−1

a1[
a1

H(BBH)−1
a1

]2

. (B1)
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Since (B1) is a special case of (68), the result of (69) is true for q =
2. Assume that (54) can be derived and simplified to (69) for q = r.
Then, we have

Pi,B(r)≈
r∑

k=2

σ2
sk

∣∣∣∣∣
a1

HQ−1
B(r)ak

a1
HQ−1

B(r)a1

∣∣∣∣∣

2

≈
r∑

k=2

σ2
skσ

4
nak

H
(
BBH

)−1
ak |d1k,B|2

a1
H

(
BBH

)−1
a1

[
σ2

n+|γk|2 σ2
skak

H
(
BBH

)−1
ak

]2 (B2)

Pn,B(r)≈σ2
n

∥∥∥Q−1
B(r)a1

∥∥∥
2

(
a1

HQ−1
B(r)a1

)2 ≈ σ2
n

a1
H

(
BBH

)−1 (
BBH

)−1
a1[

a1
H

(
BBH

)−1
a1

]2 , (B3)

where the subscript (r) denotes the particular case of q = r. Based
on (B2) and (B3), we then show that the output SINR of (69) can also
be derived from (54) under q = r+ 1. It follows from (52) that the
Pi,B for q = r + 1 is approximately given by

Pi,B(r+1) ≈
r+1∑

k=2

σ2
sk

∣∣∣∣∣
a1

HQ−1
B(r+1)ak

a1
HQ−1

B(r+1)a1

∣∣∣∣∣

2

=
r∑

k=2

σ2
sk

∣∣∣∣∣
a1

HQ−1
B(r+1)ak

a1
HQ−1

B(r+1)a1

∣∣∣∣∣

2

+σ2
s(r+1)

∣∣∣∣∣
a1

HQ−1
B(r+1)ar+1

a1
HQ−1

B(r+1)a1

∣∣∣∣∣

2

. (B4)

Using the recursive formula of Q−1
B in (57), we have

Q−1
B(r+1) = Q−1

B(r)

(
I−

Bar+1aH
r+1B

HQ−1
B(r)

σ−2
s(r+1) + aH

r+1BHQ−1
B(r)Bar+1

)
. (B5)

Pre-multiplying a1
H and post-multiplying a1 and ak, k = 2, 3, . . ., r,

to Q−1
B(r+1), we obtain

a1
HQ−1

B(r+1)a1 =a1
HQ−1

B(r)a1−
a1

HQ−1
B(r)Bar+1aH

r+1B
HQ−1

B(r)a1

σ−2
s(r+1)+aH

r+1BHQ−1
B(r)Bar+1

(B6)

and

a1
HQ−1

B(r+1)ak =a1
HQ−1

B(r)ak−
a1

HQ−1
B(r)Bar+1aH

r+1B
HQ−1

B(r)ak

σ−2
s(r+1)+aH

r+1BHQ−1
B(r)Bar+1

. (B7)
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For the weight vector wB1 = Q−1
B(r)a1, the directions of a1, Bar+1

(= γr+1ar+1), and ak are respectively regarded as the desired signal,
noise, and interference, respectively. On the other hand, for the weight
vector wB2 = Q−1

B(r)Bar+1, the directions of a1, Bar+1, and ak are
regarded as the noise, desired signal, and interference, respectively.
Similar to (A7)–(A9), we obtain the following relationships:

a1
HQ−1

B(r)a1 ≈aH
r+1B

HQ−1
B(r)Bar+1 À a1

HQ−1
B(r)Bar+1

≈aH
r+1B

HQ−1
B(r)a1 Àa1

HQ−1
B(r)ak ≈aH

r+1B
HQ−1

B(r)āk. (B8)

Note that (B8) is valid when all the (r + 1) sources are assumed to be
separate enough so that |dij,B|2 ¿ 1 for i 6= j. According to (B8), the
a1

HQ−1
B(r+1)a1 in (B6) and a1

HQ−1
B(r+1)ak in (B7) can be approximated

to
a1

HQ−1
B(r+1)a1 ≈ a1

HQ−1
B(r)a1 (B9)

and
a1

HQ−1
B(r+1)ak ≈ a1

HQ−1
B(r)ak, (B10)

respectively. Using (B2), (B9), and (B10), the summation term in (B4)
can be approximated to

r∑

k=2

σ2
sk

∣∣∣∣∣
a1

HQ−1
B(r+1)ak

a1
HQ−1

B(r+1)a1

∣∣∣∣∣

2

≈
r∑

k=2

σ2
sk

∣∣∣∣∣
a1

HQ−1
B(r)ak

a1
HQ−1

B(r)a1

∣∣∣∣∣

2

≈
r∑

k=2

σ2
skσ

4
nak

H
(
BBH

)−1
ak |d1k,B|2

a1
H

(
BBH

)−1
a1

[
σ2

n+|γk|2 σ2
skak

H
(
BBH

)−1
ak

]2 . (B11)

Further, applying the results of (B9) and (B10), we have

a1
HQ−1

B(r+1)a1 ≈ a1
HQ̇−1

B(r)a1 (B12)

and
a1

HQ−1
B(r+1)ar+1 ≈ a1

HQ̇−1
B(r)ar+1, (B13)

where Q̇B(r) is obtained by removing one of the 2nd to rth sources from
QB(r+1). Analogous to each term of (B11), the second term of (B4)
can be derived to

σ2
s(r+1)

∣∣∣∣∣
a1

HQ−1
B(r+1)ar+1

a1
HQ−1

B(r+1)a1

∣∣∣∣∣

2

≈ σ2
s(r+1)

∣∣∣∣∣
a1

HQ̇−1
B(r)ar+1

a1
HQ̇−1

B(r)a1

∣∣∣∣∣

2

≈
σ2

s(r+1)σ
4
nar+1

H
(
BBH

)−1
ar+1

∣∣d1(r+1),B

∣∣2

a1
H

(
BBH

)−1
a1

[
σ2

n+|γr+1|2 σ2
s(r+1)ar+1

H
(
BBH

)−1
ar+1

]2 . (B14)
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It follows from (B11) and (B14) that Pi,B under q = r + 1 is given by

Pi,B(r+1)≈
r+1∑

k=2

σ2
skσ

4
nak

H
(
BBH

)−1
ak |d1k,B|2

a1
H
(
BBH

)−1
a1

[
σ2

n+|γk|2σ2
skak

H
(
BBH

)−1
ak

]2 . (B15)

Next, consider the Pn,B in (53) for q = r + 1 as follows:

Pn,B(r+1) ≈ σ2
n

∥∥∥Q−1
B(r+1)a1

∥∥∥
2

(
a1

HQ−1
B(r+1)a1

)2 , (B16)

where the squared norm of Q−1
B(r+1)a1 can be derived to

∥∥∥Q−1
B(r+1)a1

∥∥∥
2

=
∥∥∥Q−1

B(r)a1

∥∥∥
2
+

∣∣∣∣∣
aH

r+1B
HQ−1

B(r)a1

σ−2
s(r+1)+aH

r+1BHQ−1
B(r)Bar+1

∣∣∣∣∣

2 ∥∥∥Q−1
B(r)Bar+1

∥∥∥
2

−2Re

(
aH

r+1B
HQ−1

B(r)a1

σ−2
s(r+1)+aH

r+1BHQ−1
B(r)Bar+1

a1
HQ−1

B(r)Q
−1
B(r)Bar+1

)
(B17)

according to (B5). Again, utilizing the relationship of (B8), Eq. (B17)
can be approximated to

∥∥∥Q−1
B(r+1)a1

∥∥∥
2
≈

∥∥∥Q−1
B(r)a1

∥∥∥
2
. (B18)

Substituting (B18) and (B9) into (B16) and utilizing (B3) yields

Pn,B(r+1)≈σ2
n

∥∥∥Q−1
B(r)a1

∥∥∥
2

(
a1

HQ−1
B(r)a1

)2 ≈σ2
n

a1
H

(
BBH

)−1 (
BBH

)−1
a1[

a1
H

(
BBH

)−1
a1

]2 . (B19)

From the Pi,B in (B15) and Pn,B in (B19), we have SINRB for q = r+
1 given by

SINRB(r+1)≈
σ2

s1
r+1∑
k=2

σ2
skσ4

nak
H(BBH)−1

ak|d1k,B|2
a1

H(BBH)−1
a1

[
σ2

n+|γk|2σ2
skak

H(BBH)−1
ak

]2

+σ2
n

a1
H(BBH)−1(BBH)−1

a1[
a1

H(BBH)−1
a1

]2

, (B20)

which is the same as (69) with q replaced by r + 1. Therefore, it is
proved by mathematical induction that the approximated SINRB in
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(69) is valid for 2 ≤ q < N . As we discussed in Appendix A, the
proposed formula in (69) may also be more inaccurate for greater q
due to error propagation. However, our experiment in Section 5 shows
that the errors are acceptable even if q approaches the number p of
array elements. Especially, the approximated errors are tiny for small
q/p.

APPENDIX C.

Define F (t) ≡ f (t + 1)− f (t) = ∆f (t). Then we have [21]
p−2∑

t=1

F (t) = f (p− 1)− f (1) . (C1)

From (73) and (C1), we can let
F (t) = (p− t− 1) (p− t) (p− t + 1) cos (tρk) , (C2)

where ρk ≡ ϕk − ϕ1. The corresponding f(t) can be found as follows:

f (t) = ∆−1F (t) , (C3)
where the operation “∆−1” is given by [22]. Some common formulas
of ∆−1 about trigonometry are given as follows [22]:

∆−1 cos (at + b) =
sin

(
at + b− a

2

)

2 sin a
2

+ C

and ∆−1 sin (at + b) =
− cos

(
at + b− a

2

)

2 sin a
2

+ C, (C4)

where C is a constant. Utilizing “summation by parts” [22] and (C4),
we have

∆−1 (p− t− 1) (p− t) (p− t + 1) cos (ρkt)

=
1

2 sin ρk
2

(p− t− 1) (p− t) (p− t + 1) sin
(
ρkt− ρk

2

)

+
3

2 sin ρk
2

∆−1 (p− t− 1) (p− t) sin
(
ρkt +

ρk

2

)
+ C1. (C5)

Similarly, we have

∆−1 (p− t− 1) (p− t) sin
(
ρkt +

ρk

2

)

=
−1

2 sin ρk
2

(p− t− 1) (p− t) cos (ρkt)

− 1
sin ρk

2

∆−1 (p− t− 1) cos (ρkt + ρk) + C2 (C6)
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and

∆−1 (p− t− 1) cos (ρkt + ρk)

=
1

2 sinρk
2

(p−t−1) sin
(
ρkt+

ρk

2

)
− 1

4 sin2 ρk
2

cos (ρkt+ρk)+C3. (C7)

Substituting (C7) into (C6) yields

∆−1 (p− t− 1) (p− t) sin
(
ρkt +

ρk

2

)

=
−1

2 sin ρk
2

(p−t−1) (p−t) cos (ρkt)+
1

4 sin3 ρk
2

cos (ρkt+ρk)

− 1
2 sin2 ρk

2

(p− t− 1) sin
(
ρkt +

ρk

2

)
+ C4. (C8)

Then substituting (C8) into (C5), we obtain the function f(t) as
follows:

∆−1 (p− t− 1) (p− t) (p− t + 1) cos (ρkt)

=
1

2 sin ρk
2

(p− t− 1) (p− t) (p− t + 1) sin
(
ρkt− ρk

2

)

− 3
4 sin2 ρk

2

(p− t− 1) (p− t) cos (ρkt)

− 3
4 sin3 ρk

2

(p−t−1) sin
(
ρkt+

ρk

2

)
+

3
8 sin4 ρk

2

cos(ρkt+ρk)+C5

= f (t) . (C9)

From (C1)–(C3) and (C9), it is easy to find that
p−2∑

t=1

(p− t− 1) (p− t) (p− t + 1) cos (tρk)

=
3

8 sin4 ρk
2

[cos (pρk)− 1] +
3

4 sin2 ρk
2

p2 − 1
2
p

(
p2 − 1

)
. (C10)

As a result, (74) can be obtained by substituting (C10) and ρk =
ϕk − ϕ1 into (73).

APPENDIX D.

Following the definition of dij,B, |d1k,B|2 can be expressed by

|d1k,B|2 =

∣∣∣a1
H

(
BBH

)−1
ak

∣∣∣
2

a1
H

(
BBH

)−1
a1ak

H
(
BBH

)−1
ak

. (D1)
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The unknown term a1
H

(
BBH

)−1
ak can be derived with some algebra

manipulations and Calculus of Finite Differences [21, 22], respectively.
The results are given as follows:

Re
[
a1

H
(
BBH

)−1
ak

]
=

p−1
4

+
1

8sin3 ρk
2

sin
[(

p− 1
2

)
ρk

]

− 1
8sin2 ρk

2

{p−2+(p+1) cos [(p−1) ρk]} , (D2)

Im
[
a1

H
(
BBH

)−1
ak

]
=

p−1
4 sin ρk

2

cos
(ρk

2

)
− p+1

8sin2 ρk
2

sin [(p−1)ρk]

+
1

8sin3 ρk
2

{
cos

(ρk

2

)
−cos

[(
p− 1

2

)
ρk

]}
, (D3)

where Im{x} denotes the imaginary part of x and ρk = ϕk − ϕ1 is the
same as that in Appendix C. Based on (D2) and (D3), we obtain

∣∣∣a1
H

(
BBH

)−1
ak

∣∣∣
2

=
{

Re
[
a1

H
(
BBH

)−1
ak

]}2
+

{
Im

[
a1

H
(
BBH

)−1
ak

]}2

=

{{
p2 + 1 +

(
p2 − 1

)
[cos (pρk)− cos ρk]

− (p− 1)2 cos (pρk) cos ρk − 2p cos [(p− 1) ρk]
}
}

8 (1− cos ρk)
3 . (D4)

Substituting (74), (75), and (D4) into (D1) yields

|d1k,B|2=
3
{

p2(1−cosρk)+1−cos(pρk)+cos ρk[1−cos (pρk)]
+p2 cos(pρk)(1−cos ρk)−2p sin (pρk) sin (ρk)

}

(p2 − 1) (1− cos ρk) [p2 (1− cos ρk) + cos (pρk)− 1]
. (D5)

It follows from (76) that the assumption |d1k|2 ¿ 1 for a ULA is
equivalent to 1 − cos (pρk) ¿ p2 (1− cos ρk). Thus, |d1k,B|2 can be
approximated as

|d1k,B|2

≈ 3
[
p2 (1−cos ρk)+p2 cos (pρk) (1−cos ρk)−2p sin (pρk) sin (ρk)

]

p2 (p2 − 1) (1− cos ρk)
2

=
3 [1 + cos (pρk)]

(p2 − 1) (1− cos ρk)
− 6 sin (pρk) sin (ρk)

p (p2 − 1) (1− cos ρk)
2 (D6)

when |d1k|2 ¿ 1 holds. It can be seen from (D6) that |d1k,B|2 is in
general much less than 1 for a moderate number of array elements.
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