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Abstract—The paper provides a novel approach to the design of non-
uniform planar circular antenna arrays for achieving maximal side lobe
level suppression and directivity. The current excitation amplitudes
and phase perturbations of the array elements are determined using an
Adaptive Memetic algorithm resulting from a synergy of Differential
Evolution (DE) and Learning Automata that is able to significantly
outperform existing state-of-the-art approaches to the design problem.
Moreover, existing literature considers the design problem as a single-
objective optimization task that is formulated as a linear sum of
all the performance metrics. Due to the conflicting nature of the
various design objectives, improvements in a certain design measure
causes deterioration of the other measures. Following this observation,
the single-objective design problem is reformulated as a constrained
multi-objective optimization task. The proposed memetic algorithm
is extended to the multi-objective framework to generate a set of
non-dominated solutions from which the best compromising solution
is selected employing a fuzzy membership based approach. An
instantiation of the design problem clearly depicts that the multi-
objective approach provides simultaneous side lobe level suppression
and directivity maximization in comparison to the single-objective
scenario.
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1. INTRODUCTION

Circular antenna array design is a growing avenue of research in
electromagnetics. They find interesting applications in radio direction
finding, sonar, radar and space navigation and other systems and are
advantageous over other array geometries [1, 2]. Although substantial
research work has been conducted for the design of linear arrays,
optimal selection of array parameters of circular antenna arrays for
achieving superior performance remained as an open research problem.
The main design problem in the present context is to determine the
optimal geometric and electrical configurations for the circular array
that provides maximum directivity, reduced side-lobe level and other
suitable criteria. With the rapid growth of wireless and long-distance
communications, antenna arrays have witnessed growing applications
to meet the demands of directive radiation patterns and substantial
power gain [3–5].

Recently researchers have concentrated on the usage of meta-
heuristic algorithms for the array design problem due to the inherent
complexity of the search space involved in the optimization process.
Traditional techniques involving derivatives often get trapped in local
optima and fail to obtain promising results. Panduro et al. [6] first
applied population based search algorithms in the circular antenna
array design problem. They employed the popular Genetic Algorithm
(GA) to ensure maximal side lobe level reduction along with a specific
beam width. Later Shihab et al. [7] used Particle Swarm Optimization
(PSO) for similar purpose. Experimental results indicated that PSO
was able to outperform GA in a statistically significant manner. Later
Panduro et al. [8] provided a comparative performance analysis of GA,
PSO and Differential Evolution (DE) to the above problem. The
main objective of his work was to determine the current excitations
and phase perturbations of the circular antenna array to provide
maximum directivity and reduced side lobe level. PSO and DE
provided comparable results but were able to outperform GA by a large
margin. Recently Invasive Weed Optimization has occupied a special
place in various antenna design problems. In [9] the authors propose
a modified IWO algorithm (referred to as MIWO in this paper) and
applied it to the circular antenna design problem to obtain promising
results. Other significant research works in this field include [10, 11].
In this article we describe the problem of determining optimal current
excitation amplitudes and phase perturbations of the array elements
to ensure maximum directivity and minimum side lobe level.

Recently Memetic Algorithms (MA) [25] have earned popularity
in solving complex numerical optimization problems. The class of
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algorithms fall in a broad category of population based meta-heuristics
that incorporate strategies for individual learning. The word “meme”
was first introduced by Dawkins [12]. It is involved in the context of
cultural evolution and it performs the same role as the “gene” in the
evolution process. MAs utilize the problem domain knowledge through
interaction with the members of the population to culturally improve
the quality of the trial solutions in the evolutionary setting [13–15].

The paper proposes a MA, called LA-DE which employs
Differential Evolution (DE) [16–19] as the global search tool and
Learning Automata [20–22] for local refinement. Recently Differential
Evolution (DE) has emerged as one of the most powerful EA [36] and
has successfully been applied to various electromagnetic problems [33].
It is a simple yet efficient population based search algorithm. However,
it still suffers from the problems of premature convergence or
stagnation. The performance of the heuristic used in DE is governed by
three control parameters — the population size NP, the scale factor
F and the Crossover Ratio Cr [24]. The parameter F controls the
evolution process of a particular member of the population while
parameter Cr controls the degree of diversity introduced in the
population and is highly sensitive to problem selection. The main
inspiration behind this work is outlined next. The basic idea is
that a population member with good fitness should search the local
neighborhood, whereas a poor performing member should be made
to participate in the global search. Thus the scaling factor F should
decrease for fitter individuals in comparison to the others in order to
ensure fitter genes to participate in local search and the remaining ones
to participate in global search. With variation in the generation count
the extent of global and local exploration should also vary and must be
adapted for better performance. Thus it is intuitively understandable
that proper variation of the scaling factor with both fitness and
generation would improve the performance of the DE algorithm. In
the proposed method we have employed Learning Automata to choose
appropriate values for the control parameter F from the meme pool
for each population member during successive generations. Proper
balancing between the exploration and exploitation capabilities of
the members is crucial and must be maintained dynamically as
evolution continues and hence the choice of Learning Automata over
any predetermined control rules for the scaling factor.

In existing literature the array design problem is formulated as
the optimization of a single objective function which is taken as
the linear (or weighted) sum of the various performance metrics of
the array. However, the output in this case is a single optimal
solution which may not always provide optimal values of all the metrics
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simultaneously. Determining the optimal choice of weights to produce
a non-dominated solution is also a cumbersome process. Further, in
most real life scenarios such single objective functions often consist of
conflicting components and hence it is preferable to generate a set of
optimal solutions instead of a single one and employ a knowledgeable
decision maker to select the appropriate choice. As a result, research
paradigm for real world optimization scenarios are gradually shifting
to Multi-objective Optimization (MO) [31, 32]. MO provides a set
of non-dominated solutions which constitute the Pareto-front [26–
30] from which it is suitable to extract an optimal solution. The
second part of our article extends the proposed memetic algorithm to
a multi-objective framework. The design problem is formulated as a
constrained multi-objective optimization process to generate a number
of non-dominated solutions to the design problem.

The major contribution of this paper lies in the integration of
two recent research directions in the field of evolutionary computing
namely, Memetic Algorithms and Multi-objective Optimization.
Simulated results demonstrate that the proposed memetic algorithm
is able to outperform several state-of-the-art evolutionary algorithms
applied before in this research area for the single-objective optimization
problem. In the next part of the article we propose a multi-
objective memetic framework to the aforesaid problem and establish
the superiority of our approach in comparison to the single-objective
one through extensive experimental results. To the best of our
knowledge, such a multi-objective approach to the mentioned design
problem has not been reported before and this work may be considered
as the humble beginning to the multi-objective optimization of the
circular antenna array design problem.

2. THE DESIGN PROBLEM

2.1. The Single-objective Approach

The array factor of a circular antenna array of N antenna elements
placed on a circle of radius r in the x-y plane (Fig. 1) is [6–11]:

AF (Φ)=
N∑

i=1

In exp
(
jkr

(
cos

(
Φ− Φn

ang

)−cos
(
Φ0−Φn

ang

))
+βn

)
(1)

where, Φn
ang = 2π(n− 1)/N is the angular position of the nth element

in the x-y plane, kr = Nd where, k is the wave-number, d is the angular
spacing between elements, and r is the radius of the circle defined by
the antenna array, Φ0 is the direction of maximum radiation, Φ is the
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angle of incidence of the plane wave, In is the current excitation and
βn is the phase excitation of the nth element.

Here our main objective is to suppress side-lobes and minimize
beam width by varying the current and phase excitations of the
antenna elements. For a symmetrical excitation of the circular antenna
array,

In/2+1∠βn/2+1 = conj (I1∠β1)
In/2+2∠βn/2+2 = conj (I2∠β2)

. . .

In∠βn = conj (In∠βn)

Hence we model the objective function as:

f =
∣∣∣AR(ϕsll, ~I, ~β, ϕ0)

∣∣∣
/ ∣∣∣AR

(
ϕmax, ~I, ~β, ϕ0

)∣∣∣ + 1/DIR
(
ϕ0, ~I, ~β

)

+ |ϕ0 − ϕdes| (2)

where ϕsll is the angle at which maximum sidelobe level is attained,
ϕdes is the desired maxima and DIR(ϕ0, ~I, ~β) is the directivity of the
array at the direction indicated by Φ0. The range of variation of
normalized amplitude excitation is [0, 1]. The range of phase excitation
is [−180◦, 180◦]. The element spacing should lie between 0.5λ and λ
to prevent mutual coupling and grating lobes.

The first component attempts to suppress the sidelobes.
Nowadays directivity has become a very useful figure of merit for
comparing array patterns. The second component attempts to

Figure 1. Non-uniform circular antenna array with N isotropic
radiators.
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maximize directivity of the array pattern. The third component serves
basically as a constraint and strives to drive the maxima of the array
pattern close to the desired maxima.

2.2. Extension to Multi-objective Framework

As we shall show later in Section 5 the single-objective function f is
composed of conflicting terms. Hence the various terms of f in (2)
are decomposed to form a multi-objective optimization task. The first
two components of f are treated as separate objective functions to
be optimized simultaneously in the multi-objective framework. The
third component is treated as a constraint. The idea behind this
approach lies in the fact that one is interested to find out the best
compromise solution among minimum side lobe level and maximum
directivity while maintaining the maxima of the array pattern close
to the desired maxima. One should not consider trade-off of the final
solution with respect to the maxima of the array pattern. Thus the
multi-objective optimization task may be specified as:

Optimize : f1 =
∣∣∣AR

(
ϕsll, ~I, ~β, ϕ0

)∣∣∣
/ ∣∣∣AR

(
ϕmax, ~I, ~β, ϕ0

)∣∣∣
f2 = 1

/
DIR

(
ϕ0, ~I, ~β

)

subject to : |ϕ0 − ϕdes| ≤ ε (3)

where ε is a small positive constant (taken as 5◦ in our case).

3. LA-DE FOR SINGLE-OBJECTIVE OPTIMIZATION

The proposed algorithm employs a synergy of Differential Evolution
and Learning Automata to realize a Memetic Algorithm for achieving
superior performance in global optimization problems. It maintains a
meme pool for parameter F in order to select the control parameters for
individual members of the population in every generation. The state
transition probability matrix controls the meme selection process. The
row indices of the matrix, corresponding to the states of the stochastic
automata, denote the members ranked in order of decreasing fitness
value, while the column indices represent the actions performed by
the automata at a particular state corresponding to uniform quantized
values of the control parameter in the range [0, 2]. The state transition
matrix and the associated update and selection rules constitute the
Learning Automata, which learns according to the reward/penalty
responses from its environment, DE. The basic algorithm is outlined
in the following sections.
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3.1. Initialization

The algorithm employs a population of NP D-dimensional parameter
vectors representing the candidate solutions initialized uniformly and
randomly over the entire search space, constrained by the prescribed
minimum and maximum bounds.

The state transition probability matrix is initialized with equal
values of 0.05 for 20 quantized levels of the parameter F . This is in
accordance with the principle of unavailability of a priori information
about the environment and assuming all actions to be equally likely at
the initial stage.

3.2. Adaptive Selection of Memes

We employ Fitness proportionate selection, also known as Roulette-
Wheel selection, for the selection of potentially useful memes. For
state Si, the selection of Fj is such that the cumulative probability of
selection of F = F1 through Fj−1 is greater than r (a random number
in the range [0, 1]), i.e.,

j−1∑

m=1

pSi,m < r ≤
20∑

m=j

pSi,m. (4)

This selection mechanism ensures that although fitter memes would
enjoy much higher probability of selection, yet the memes with poorer
fitness do manage to survive and may contribute some components as
evolution continues, and thus the diversity of the meme population can
be maintained.

3.3. Differential Evolution

In our implementation we use the “DE/current-to-best/1” strategy
for performing the mutation operation, where a donor vector ~Vi,G

corresponding to each population member ~Xi,G in the current
generation is created according to the following rule:

~Vi,G = ~Xi,G + F ·
(

~Xbest,G − ~Xi,G

)
+ F ·

(
~Xri

1,G − ~Xri
2,G

)
. (5)

The indices ri
1 and ri

2 are mutually exclusive integers, different from
the base index i, randomly chosen from the range [1, NP ], and ~Xbest,G

is the vector with the best fitness in the population at generation G.
The parameter F is obtained by selection from the meme pool.

The trial vector is generated using Binomial Crossover where the
components from the donor are inherited according to the following
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rule

uj,i,G =
{

vj,i,G if rand i,j (0, 1) ≤ Cr or j = jrand

xj,i,G otherwise . (6)

where randi,j (0, 1) ∈ [0, 1] is a uniformly distributed random number
lying between 0 and 1 and is instantiated independently for each j-th
component of the i-th vector. jrand ∈ [1, 2, . . . , D] is a randomly chosen
index, which ensures that ~Ui,G gets at least one component from ~Vi,G.

This is followed by the selection step where if the new trial vector
yields an equal or lower value of the objective function, it replaces
the corresponding target vector in the next generation; otherwise the
target is retained in the population.

3.4. Update of State Transition Probability Matrix

The state transition probabilities (Fig. 2) are updated according to
Linear Reinforcement Scheme. If the fitness of the trial vector increases
for the i-th state and choice of Fi from the meme pool then the action
probability pSi,j(t) is increased and all other components are decreased
as shown: {

pSi,j (t + 1) = (1− a) ·Si,j (t) ∀ j 6= Fi

pSi,Fi (t + 1) = pSi,Fi (t) + a ·
(
1− pSi,Fi

(t)
) (7)

where the parameter a ∈ [0, 1] is associated with the reward/penalty
response. Otherwise, in the case of a penalty input, pSi,j(t) is decreased
and all other components are increased as follow:{

pSi,j (t + 1) = a
r−1 + (1− a) ·Si,j (t) ∀j 6= Fi

pSi,Fi (t + 1) = (1− a) ·Si,Fi (t) (8)

This process is repeated for all the population members.

3.5. State Assignment

The population members are now ranked in decreasing order of fitness
and assigned corresponding states.

The Sections 3.2–3.5 are repeated till maximum number of
iterations is reached. The algorithm is outlined in Table 1.

4. LA-DEMO: THE MULTIOBJECTIVE EXTENSION

The two major goals in multi-objective optimization may be stated as
follows:
(a) to find solutions as close to the Pareto front as possible.
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Meme Pool … 

State 1 (S1) … 

State 2 (S2) … 

… … … …  

State NP  (SNP) … 

F F1 2 F20

pS1,F1
pS1,F2

pS1,F20

pS2,F1
pS2,F2

pS2 ,F20

pSNp ,F1
pSNp ,F2

pSNp ,F20

Figure 2. The state transition probability matrix governing the
adaptive selection of memes from the meme pool.

Table 1. LA-DE for single-objective optimization.

1. Initialize the random population P of NP individuals and evaluate the members.
Initialize state transition probability matrixof Learning Automata.

2. While stopping criterion is not reached, do
           2.1. For each individual P       i=1,…, NP do 

                     2.1.1. SelectFi from {F , F ,…, F }by Roulette-Wheel Selection from the meme pool.
2.1.2. Perform Mutation of the original individual.
2.1.3. Generate candidate through Crossover on the mutated individual. 
2.1.4. Selection: If the candidate is fitter than the parent,the candidate is selected.

                                                 else the candidateis discarded.
2.1.5 If candidate is selected, update state transition probability matrixof Learning   

                                    Automata based on rewardscheme.
                                    else update state transition probability matrix based on penalty scheme.

        2.2. Evaluate new population and assign states to the members in accordance to their fitness.
                 2.3. Increase the generation count.

A

i

1 2 20

(b) to find solutions as diverse as possible in the non-dominated front.

In order to apply DE to multi-objective optimization the selection
of potential candidates has to be changed. In single-objective
optimization, selection is based simply on the fitness value of the
individual members. However, in multi-objective optimization the
selection criterion requires certain modifications. In this article, we
employ the selection procedure outlined in DEMO/parent [26]. The
candidate replaces the parent only if it dominates the parent. If the
parent dominates the candidate, it is discarded. Otherwise, if the
candidate and parent are non-dominated with respect to each other,
the candidate is added to the population. If the population size exceeds
the maximum value, truncation is achieved by sorting the individuals
with non-dominated sorting and then evaluating members of the same
front with the crowding distance metric [26].
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We extend our proposed adaptive memetic algorithm LA-DE to
the multi-objective framework by incorporating DEMO’s selection
criteria. In comparison to LA-DE, LA-DEMO updates the state
transition probability matrix based on the penalty scheme iff the
candidate is discarded. The reward scheme is used if the candidate
replaces the parent or it is added to the population before truncation.
Another core feature of the LA-DEMO algorithm is the state
assignment process. In LA-DE the state assignment is based on the
relative fitness values of the individuals. However, in LA-DEMO
members are assigned states based on their rank. In case two
individuals belong to the same front (i.e., they have the same rank)
their crowding distances are compared. A large average crowding
distance will ensure better diversity of the population. Hence for
two individuals with the same rank, the one with a greater crowding
distance is assigned a higher fitness. The resultant algorithm, named
LA-DEMO is used to generate a set of non-dominated solutions
constituting the Pareto front. In absence of any decision-maker, we
use a fuzzy membership based method as described in [34]. The i-th
objective function is represented by a membership function µi where,

µi =





1 fi ≤ fmin
i

fmax
i −fi

fmax
i −fmin

i
fmin

i ≤ fi ≤ fmax
i

0 fi ≥ fmax
i

(9)

fmax
i and fmin

i are the maximum and minimum values of the i-th
objective function among all non-dominated solutions respectively.

For each non-dominated solution j, the normalized membership
function µj can be evaluated as:

µj =
∑N1

i=1 µj
i∑N2

k=1

∑N1
i=1 µk

i

(10)

where N1 is the number of objective functions and N2 is the number
of non-dominated solutions. The best compromise is the one having
the highest value of µj . The algorithm is briefly outlined in Table 2.

5. SIMULATED RESULTS

In order to illustrate the efficiency of our approach to the antenna
array design problem we compare our results with state-of-the-art
methodologies, namely PSO, DE and MIWO. These algorithms have
been previously applied to various electromagnetic problems including
the circular antenna array design scenario and have been successful
in providing superior results [7–11]. The parameter settings for the
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Table 2. LA-DE for multi-objective optimization.

1. Initialize the random population P of NP individuals and evaluate the members.  
Initialize state transition probability matrix o f Learning Automata.

2. While stopping criterion is not reached, do 
           2.1 For each individual  

                     2.1.1. Select  Fi from } by Roulette-Wheel Selection from the meme pool.
2.1.2. Perform Mutation of the original individual.
2.1.3. Generate candidate through Crossover on the mutated individual. 
2.1.4. Selection: If the candidate dominatesthe parent, t he candidate is selected. 

                                                    else if the parent dominates the candidate, the candidateis discarded.
                                                   else the candidate is added to the population

2.1.5 If candidate is discarded, update state transition probability matrix o f Learning   
                                     Automata based on penaltyscheme.
                                    else update state transition probability matrix based on rewardscheme.
              2.2 If population size is more than NP then truncate it.

        2.3 Evaluate new population and assign states to the members in accordance to their rank and
                    crowding distance.
              2.4 Increase the generation count.

P       i=1,…, NP do 

A

{ F , F ,…, F1 2 20

i

Table 3. Brief description of the parameter configurations of the
competitor algorithms.

PSO Value DE/LA-DE Value MIWO Value

Population

size
50

Population

size
50

Initial

population
10

C1 2
Scaling

Factor
0.5

Max

population
50

C2 2
Crossover

ratio
0.9

Max No.

of seeds
4

Inertia

weight
0.9–0.4

Reward/penalty

rate, a
0.01

Min No.

of seeds
0

Std. dev. for

seed dispersal
0.8–0.001

various competitor algorithms are briefly outlined in Table 3. They
have been determined following the guidelines suggested in [7–11]. For
LA-DE the learning rate was set equal to 0.01 after a set of tuning
experiments. We consider the design problem for a 20 element array.

In order to handle the problem constraint for LA-DEMO we used
the method outlined in [35] as follows:
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(a) Any feasible solution is preferred to any infeasible solution;
(b) Between two feasible solutions, the one with better fitness is

preferred;
(c) Between two infeasible solutions, the one with a smaller constraint

violation is preferred.
To tackle the constraints presented the algorithm was initialized with a
population of around 200 particles with randomly initialized positional
coordinates. Out of these, 50 fittest particles were selected, space
coordinates of which obeyed the constraints imposed by (3). During
the evolution phase sorting was accomplished based on both fitness
and constraint violation. Thus, only those members were promoted
to the next generation which satisfied the constraints besides having
greater fitness value.

The first section considers the performance of the various
algorithms with respect to the two design objectives: side lobe level
and directivity. The results are tabulated in Table 4.

Two important aspects are reflected in the above results.
Although LA-DE provides statistically superior results with respect to
the competitor algorithms (statistical significance was measured using
unpaired t-tests [23]), the performance improvement is mainly reflected
in the domain of side lobe level suppression. This is mainly because of
the fact that the single-objective function was formulated as a linear
sum of the design objectives and consequently the side lobe level
component enjoyed a higher weightage in comparison to directivity.
Scaling of the directivity component may provide better results but
determining the relative scaling factors for the various components is
again a cumbersome process. The final results therefore seem to be
biased to side lobe level suppression. An interesting fact may also
be pointed out in this context. For a uniform circular antenna array
with 20 elements the side lobe level and directivity are −6.06 dB and
11.72 dB respectively. Thus the main motive for shifting to the non-

Table 4. Mean and Standard Deviation (within parenthesis) results
obtained after 30 independent runs.

Algorithms Side lobe level Directivity
PSO −9.81 (2.11) 11.61 (0.32)
DE −10.94 (2.73) 11.71(0.24)

MIWO −11.18 (2.84) 11.67 (0.29)
LA-DE −17.67 (2.45) 11.87 (0.21)

LA-DEMO −14.475 (1.24) 13.04 (0.10)
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Figure 3. Optimal Pareto-front
obtained by LA-DEMO.
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obtained by LA-DE.
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Figure 5. Best array pattern
obtained by LA-DEMO.
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Figure 6. Median convergence
characteristics.

uniform array case is somewhat lost, provided the fact that PSO, DE
and MIWO are unable to provide directivity measures that outperform
the uniform array case and LA-DE enjoys only minor improvements in
directivity measure with respect to the uniform array.

We further investigate the scope of improvement through the
multi-objective framework by extending our LA-DE algorithm. The
average compromise solution obtained justifies our claim. Significant
improvements are observed in both the design objectives in comparison
to the uniform array. The optimal Pareto-front obtained is shown in
Fig. 3. The nature of the front clearly depicts the conflicting nature
of the design objectives and serves as the major motivation for the
application of multi-objective optimization in the concerned problem.

The best array patterns obtained by LA-DE and LA-DEMO have
been shown in Figs. 4 and 5 respectively. The current excitation
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Table 5. Current excitation amplitudes and phase perturbations
obtained by LA-DE and LA-DEMO (Best result among 30 independent
runs).

Algorithms Normalized In Phase Perturbations βn

LA-DE

0.0652, 0.5157, 0.6565,

0.6057, 0.3001, 0.2693,

0.5691 0.6459 0.5648,

0.1738

−46.7409, −54.5813, −12.7593,

84.8221, −63.5517, −129.9736,

106.7660, −102.2548, −10.1277,

59.9692

LA-DEMO

0.0139, 0.7266, 0.7612,

0.6873, 0.6415, 0.2981,

0.5826, 0.6162, 0.7216,

0.1732

34.0229, −39.9371, −25.0957,

71.2258, −39.4931, −128.1003,

121.1700, −100.9375, −23.8889,

140.8587

amplitudes and phase perturbations obtained by LA-DE and LA-
DEMO for the circular array under consideration have been presented
in Table 5.

Finally, the robustness of the LA-DE approach is presented
through the convergence graph in Fig. 6. We used number of function
evaluations as a measure to compare the convergence speed. It is
observed that although MIWO enjoys the highest convergence speed,
yet PSO, DE as well as MIWO often get entrapped in the local
optima. In contrast, LA-DE continues to exhibit converging property
throughout the entire evolution phase and is able to provide better
solutions in comparison to the other competitor algorithms. The lower
convergence speed may be attributed to the fact that LADE searches
the problem space thoroughly in the initial stage and is able to avoid
local optima. This prevents stagnation of LADE unlike the competitor
algorithms even after 3000 function evaluations.

6. CONCLUSIONS

In this article we addressed a challenging problem in computational
electromagnetics, namely determination of current excitations and
phase perturbations of non-uniform circular antenna array for
achieving minimal side lobe level and maximum directivity. Circular
antenna arrays have recently gained much attention due to its several
applications in the communication domain [37, 38]. A novel memetic
algorithm was proposed and its efficiency in comparison to state-of-
the-art approaches was established through extensive experimental
simulations. The design problem was again reformulated as a
constrained multi objective optimization task resulting in a host of
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non-dominated solutions from which the best compromise solution
was selected using a fuzzy membership based function. Simultaneous
performance improvements were observed in both the performance
metrics of the array.

Future research work will investigate the application of other multi
objective evolutionary algorithms to the design problem and efficient
ways to extract the compromise solution from the non-dominated
Pareto front.
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