
Progress In Electromagnetics Research B, Vol. 41, 397–417, 2012

GYROTROPIC-NIHILITY IN FERRITE-SEMICONDUC-
TOR COMPOSITE IN FARADAY GEOMETRY

V. R. Tuz1, 2, *, O. D. Batrakov2, and Y. Zheng2

1Institute of Radio Astronomy of National Academy of Sciences of
Ukraine, 4, Krasnoznamennaya St., Kharkiv 61002, Ukraine
2School of Radio Physics, Karazin Kharkiv National University, 4,
Svobody Square, Kharkiv 61022, Ukraine

Abstract—The reflection, transmission spectra and the polarization
transformation of linearly polarized waves in the ferrite-semiconductor
multilayer structure are considered. In the long-wavelength limit, the
effective medium theory is applied to describe the studied structure as
a uniaxial anisotropic homogeneous medium defined by the effective
permittivity and effective permeability tensors. The investigations are
carried out in the frequency band where the real parts of the diagonal
elements of both the effective permittivity and permeability tensors are
close to zero. In this frequency band the studied structure is referred
to a gyrotropic-nihility medium. An enhancement of polarization
rotation, impedance matching, backward propagation are revealed.

1. INTRODUCTION

The main purpose of the effective medium theory (EMT) is to
determine the effective parameters of a complex structure for its
given composition, shape and properties of the constitutive elements.
These parameters are permittivity, permeability, conductivity or
complex index of refraction. The identification of composite
properties via effective parameters of a homogeneous medium requires
averaging of microscopic electromagnetic fields and microscopic
(local) polarization/magnetization which satisfy microscopic Maxwell’s
equations and the continuity equation. The averaging results in the
material equations and in relations for material parameters entering
these equations [1, 2]. In the scientific literature the identification
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procedure of a multicomponent system via a uniform continuous
medium with some effective parameters is called homogenization [3].

From the viewpoint of the EMT, the homogenization procedure of
a composite medium is reduced to a derivation of Maxwell’s equations
for the averaged fields and their spectral components inside the
composite. In particular, such an approach is also applicable to the
composite media realized in the form of multilayer periodic systems if
the structure’s period is much less than the length of wave propagating
inside the structure. In the simplest case of isotropic dielectric
constituents, the EMT gives us a description of a multilayer periodic
structure as a uniaxial anisotropic homogeneous medium defined by
the effective permittivity tensor [1, 2]. This effective permittivity is
expressed by the actual material parameters and thickness of layers
and does not depend on the number of periods inside the system.
Further, in [4–7], the EMT is expanded to the general case of periodic
systems with anisotropic layers including magnetic ones. Evidently, in
the latter case, the homogenization procedure requires the definition
of both effective permittivity and effective permeability tensors.

It has been also found that, under a special structure configuration
and in a certain frequency band, the real parts of both effective
permittivity and effective permeability of the homogenized composite
structure can simultaneously acquire negative values. In general, the
idea of electromagnetic complex materials which simultaneously have
negative real parts of both permittivity and permeability (referred
to double-negative media) is realized in metamaterials made of
periodically arranged arrays of metallic rings/rods or metallic split
ring resonators. A straightforward homogenization procedure is
applied to describe the complicate system as a layer of the double-
negative uniform medium, and then such double-negative layers can
be combined with slabs of conventional dielectric double-positive
medium to form some waveguide system. The main problem in
such structure realization is the fact that the double-negative layers
are described using the homogenization procedure applied to the
metamaterials composed of metallic elements which have strong
resonant characteristics. Such an approach can result in some fallibility
in the EMT framework, which lead to failures in the attempts to obtain
the expected optical properties of the system [8, 9].

On the other hand, the systems based on a combination of
materials with naturally occurring negative permittivity and negative
permeability can also be realized [10–17]. It is possible due to the
internal resonant characteristics of some natural materials. As an
example, ferrites have negative permeability in the microwave band
near to the frequency of ferromagnetic resonance (the low-frequency
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magnetic resonance) [18], and conducting materials have negative
permittivity below the plasma frequency (plasmalike effect of the
metallic mesostructures and semiconductors) [19]. A remarkable
feature of these natural materials is the dependence of their
electromagnetic properties on the temperature or electric and magnetic
fields which allows one to control the conditions of the wave
propagation through such systems effectively.

In the case of materials in which only one of the two parameters
permittivity and permeability has negative real part, not both, the
entire structure is constructed by periodically arranging in the system
such mu-negative (ε′ > 0, μ′ < 0) and epsilon-negative (ε′ < 0, μ′ > 0)
layers, provided that these layers are optically thin [20]. As an example
of such materials, ferrites (mu-negative) and semiconductors (epsilon-
negative) can be considered. If the layers of the structure are optically
thin, the EMT can be applied without any restrictions. It results in
the consideration of the periodic system as a homogeneous gyrotropic
medium described by tensors of the effective permittivity and the
effective permeability which possess certain dispersion characteristics.

Typically, the normal wave incidence is considered and the
transversal (the Cotton-Mouton or Voigt geometry) or longitudinal
(the Faraday geometry) magneto-optic configuration of the biased
external static magnetic field is chosen to study electromagnetic
properties of ferrite-semiconductor structures [11–16]. In the
transversal geometry, the electromagnetic wave can be presented as
the TE and TM waves and in the longitudinal one, as the right-
handed and left-handed circularly polarized waves. In either case
these modes are uncoupled ones and the solution of the electromagnetic
wave propagation problem is described via the 2 × 2 transfer matrix
formulation. In the general case of oblique wave incidence, the use of
the full 4 × 4 transfer matrix formulation is required [21, 22].

In the present paper the EMT is applied to predict optical
properties of the ferrite-semiconductor multilayer structure in the
Faraday geometry in both cases of normal and oblique incidence
of the exciting wave. The long-wave approximation is applied to
transform the rigorous solution of the Cauchy problem related to the
tangential field components. Since the double-negative conditions in
such a structure have been studied before both theoretically [10–16]
and experimentally [17], our main interest in the present paper is to
study the optical response of the system in the frequency band where
the real parts of both permittivity and permeability simultaneously
undergo the transition from negative values to positive ones. So, in this
frequency band, the structure under study can be referred to a class of
nihility media. Such media have many interesting characteristics, such
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as complete transmission, impedance matching, backward propagation
which are the subjects of this research. In particular, all these effects
are of special interest in the transformation optics [23, 24].

2. PROBLEM STATEMENT

A stack of N identical double-layer slabs (unit cells) which are
arranged periodically along the z axis is investigated (Fig. 1). Each
unit cell is composed of ferrite (with constitutive parameters ε1,
μ̂1) and semiconductor (with constitutive parameters ε̂2, μ2) layers
with thicknesses d1 and d2, respectively. The structure’s period is
L = d1 + d2, and in the x and y directions the system is infinite. An
external static magnetic field �M is directed along the z axis (Faraday
geometry). Generally, in such a configuration, the studied structure
can be referred to gyromagnetic-gyroelectric one with magnetoplasma
properties.

Figure 1. A periodic stack of one-dimensional double-layer ferrite-
semiconductor structure under the action of an external static
magnetic field.
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The input z ≤ 0 and output z ≥ NL half-spaces are homogeneous,
isotropic and have constitutive parameters ε0 and μ0. Suppose that
the incident field is a plane monochromatic wave of frequency ω and its
direction of propagation in the region z ≤ 0 is determined by angles ψ0

and ϕ0 relative to the z axis and x axis, respectively. Time dependence
is assumed to be exp(−iωt) throughout the paper.

We use common expressions for constitutive parameters of
normally magnetized ferrite and semiconductor layers with taking into
account the losses. For ferrite layers the permittivity and permeability
are defined in the form [18, 25]:

ε1 = εf , μ̂1 =

⎛
⎝μT

1 −iα 0
iα μT

1 0
0 0 μL

1

⎞
⎠ , (1)

where μT
1 = 1 + χ′ + iχ′′, χ′ = ω0ωm[ω2

0 − ω2(1 − b2)]D−1, χ′′ =
ωωmb[ω2

0+ω2(1+b2)]D−1, α = Ω′+iΩ′′, Ω′ = ωωm[ω2
0−ω2(1+b2)]D−1,

Ω′′ = 2ω2ω0ωmbD
−1, D = [ω2

0 − ω2(1 + b2)]2 + 4ω2
0ω

2b2, μL
1 = 1, ω0 is

the Larmor frequency and b is a dimensionless damping constant.
For semiconductor layers the permittivity and permeability are

defined as follows [19]:

ε̂2 =

⎛
⎝εT2 −iβ 0
iβ εT2 0
0 0 εL2

⎞
⎠ , μ2 = μs, (2)

where εT2 = ε0
[
1 − ω2

p(ω + iν)[ω((ω + iν)2 − ω2
c )]−1

]
, εL2 =

ε0
[
1 − ω2

p[ω(ω + iν)]−1
]
, β = ε0ω

2
pωc[ω((ω + iν)2 − ω2

c )]−1, ε0 is the
part of permittivity attributed to the lattice, ωp the plasma frequency,
ωc the cyclotron frequency, and ν the electron collision frequency in
plasma.

For our calculation we use the same values of parameters of ferrite
and semiconductor as in theoretical work [13] to maintain continuity.
The frequency dependences of the permeability and permittivity
calculated using Equations (1), (2) and parameters of [13] are presented
in Fig. 2. Note that the values of Im(μT

1 ), Im(α) and Im(εT2 ), Im(β) are
so close to each other that the curves of their frequency dependences
coincide in the figures.

Nevertheless we want to draw an attention to the experimental
work [17] where the optical response of the ferrite-semiconductor
periodic structure embedded into the hollow rectangular waveguide
is measured in the millimeter waveband. The studied structure is
composed of ferrite (brand 1SCH4) and InSb semiconductor layers
which are under an action of the external magnetic field in the
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Figure 2. Frequency dependences of the (a) permeability and
permittivity of ferrite and (b) semiconductor layers, respectively. We
use parameters for these materials in the microwave region from [13].
For the ferrite layers, under saturation magnetization of 2000 G,
parameters are: ω0/2π = 4.2 GHz, ωm/2π = 8.2 GHz, b = 0.02, εf =
5.5. For the semiconductor layers, parameters are: ωp/2π = 4.5 GHz,
ωc/2π = 4.0 GHz, ν/2π = 0.05 GHz, ε0 = 1.0, μs = 1.0.

transversal magneto-optic configuration. In this study one can find
the parameters of materials and strength of the external magnetic field
under which the double-negative conditions are satisfied.

3. EFFECTIVE MEDIUM THEORY

In the long-wavelength limit, when the characteristic dimensions of the
structure (d1, d2, L) are significantly smaller than the wavelength in
the corresponding layer (d1 � λ, d2 � λ, L � λ), the interactions
of electromagnetic waves with a periodic gyromagnetic-gyroelectric
structure can be described analytically using the effective medium
theory (EMT). From the EMT viewpoint, the periodic structure
is represented approximately as an anisotropic (gyrotropic) uniform
medium whose optical axis is directed along the structure periodicity,
and this medium is described with some effective permittivity and
permeability tensors ε̂e and μ̂e. By this means, the investigation of the
wave interaction with an inhomogeneous periodic structure is reduced
to the solution of the boundary-value problem of conjugations of an
equivalent homogeneous anisotropic layer with surrounding spaces.

Let us consider a unit cell of the studied structure. It is made of
two layers 0 < z < d1 and d1 < z < L of dissimilar materials whose
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constitutive relations are as follows:
�D = ε1 �E
�B = μ̂1

�H

}
0 < z < d1,

�D = ε̂2 �E
�B = μ2

�H

}
d1 < z < L. (3)

In general form, in Cartesian coordinates, the system of Maxwell’s
equations for each layer has a form

ikyHz − ∂zHy = −ik0

(
ε̂j �E

)
x
, ikyEz − ∂zEy = ik0

(
μ̂j
�H

)
x
,

∂zHx − ikxHz = −ik0

(
ε̂j �E

)
y
, ∂zEx − ikxEz = ik0

(
μ̂j
�H

)
y
,

ikxHy − ikyHx = −ik0

(
ε̂j �E

)
z
, ikxEy − ikyEx = ik0

(
μ̂j
�H

)
z
,

(4)

where ∂z = ∂/∂z, kx = k0 sinψ0 cosϕ0, ky = k0 sinψ0 sinϕ0, k0 = ω/c
is the free-space wavenumber, j = 1, 2, ε̂1, and μ̂2 are the tensors with
ε1 and μ2 on their main diagonal and zeros elsewhere, respectively
(ε̂1 = ε1Î, μ̂2 = μ2Î, Î is the identity tensor). From six components of
the electromagnetic field �E and �H, only four are independent. Thus
the components Ez and Hz can be eliminated from the system (4) and
derived a set of four first-order linear differential equations related to
the transversal field components inside a layer of the structure [21, 22].
For the ferrite (0 < z < d1) and semiconductor (d1 < z < L) layers
these systems, respectively, are:

∂z

⎛
⎜⎝
Ex

Ey

Hx

Hy

⎞
⎟⎠ = ik0

⎛
⎜⎝

0 0
0 0

−kxky/k
2
0μ

L
1 −ε1 + k2

x/k
2
0μ

L
1

ε1 − k2
y/k

2
0μ

L
1 kxky/k

2
0μ

L
1

kxky/k
2
0ε1 + iα μT

1 − k2
x/k

2
0ε1

−μT
1 + k2

y/k
2
0ε1 −kxky/k

2
0ε1 + iα

0 0
0 0

⎞
⎟⎠

⎛
⎜⎝
Ex

Ey

Hx

Hy

⎞
⎟⎠ ,(5)

∂z

⎛
⎜⎝

Ex

Ey

Hx

Hy

⎞
⎟⎠ = ik0

⎛
⎜⎝

0 0
0 0

−kxky/k
2
0μ2 − iβ −εT2 + k2

x/k
2
0μ2

εT2 − k2
y/k

2
0μ2 kxky/k

2
0μ2 − iβ

kxky/k
2
0ε

L
2 μ2 − k2

x/k
2
0ε

L
2

−μ2 + k2
y/k

2
0ε

L
2 −kxky/k

2
0ε

L
2

0 0
0 0

⎞
⎟⎠

⎛
⎜⎝

Ex

Ey

Hx

Hy

⎞
⎟⎠ . (6)

The sets of Equations (5) and (6) can be abbreviated by using a
matrix formulation:

∂z
�Ψ(z) = ik0A(z)�Ψ(z), 0 < z < L. (7)
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In this equation, �Ψ = {Ex, Ey,Hx,Hy}T is a four-component column
vector (here upper index T is the matrix transpose operator), while
the 4 × 4 matrix function A(z) is piecewise uniform as

A(z) =
{

A1, 0 < z < d1,
A2, d1 < z < L,

(8)

where the matrices A1 and A2 correspond to Equations (5) and (6),
respectively.

Since the vector �Ψ is known in the plane z = 0, the Equation (7) is
related to the Cauchy problem [26] whose solution is straightforward,
because the matrix A(z) is piecewise uniform. Thus, the field
components referred to boundaries of the double-layer period of the
structure are related as

�Ψ(L) = M2
�Ψ(d1) = M2M1

�Ψ(0) = M�Ψ(0)

= exp[ik0A2d2] exp[ik0A1d1]�Ψ(0), (9)

where Mj and M are the transfer matrices of the corresponding layer
and the period, respectively.

Suppose that γj is the eigenvalue of the corresponding matrix Aj

(det[Aj − γjI] = 0), j = 1, 2 and I is the 4 × 4 identity matrix. When
|γj |dj � 1 (i.e., both layers in the period are electrically thin), the
next long-wave approximations can be used [27]

exp[ik0A2d2] exp[ik0A1d1] � I + ik0A1d1 + ik0A2d2. (10)
Let us now consider a single layer of effective permittivity ε̂e,

effective permeability μ̂e and thickness L. Quantity Ae can be defined
in a way similar to (5), (6):

∂z

⎛
⎜⎝

Ex

Ey

Hx

Hy

⎞
⎟⎠

= ik0

⎛
⎜⎝

0 0
0 0

−kxky/k
2
0μ

L
e − iβe −εTe + k2

x/k
2
0μ

L
e

εTe − k2
y/k

2
0μ

L
e kxky/k

2
0μ

L
e − iβe

kxky/k
2
0ε

L
e + iαe μT

e − k2
x/k

2
0ε

L
e

−μT
e + k2

y/k
2
0ε

L
e −kxky/k

2
0ε

L
e + iαe

0 0
0 0

⎞
⎟⎠

⎛
⎜⎝

Ex

Ey

Hx

Hy

⎞
⎟⎠ , (11)

and (9):
�Ψ(L) = Me

�Ψ(0) = Me
�Ψ(0) = exp[ik0AeL]�Ψ(0). (12)
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Provided that γe is the eigenvalue of the matrix Ae (det[Ae −
γeI] = 0) and |γe|L � 1 (i.e., the entire composite layer is electrically
thin as well), the next approximation follows

exp[ik0AeL] � I + ik0AeL. (13)

Equations (10) and (13) permit us to establish the following
equivalence between bilayer and single layer:

Ae = f1A1 + f2A2, (14)

where fj = dj/L.
In the case when the directions of both wave propagation and

static magnetic field are coincident (kx = ky = 0), the following
simple expressions for the effective constitutive parameters of the
homogenized medium can be obtained:

μT
e = f1μ

T
1 + f2μ2,

εTe = f1ε1 + f2ε
T
2 ,

αe = f1α,

βe = f2β.

(15)

The effective constitutive parameters calculated according to the
formulae (15) are given in Fig. 3. The whole frequency range can
be divided into three specific bands where parameters of the tensors
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Figure 3. Frequency dependences of the (a) effective permeability
and (b) effective permittivity of the homogenized ferrite-semiconductor
medium. Parameters of the ferrite and semiconductor layers are the
same as in Fig. 2; d1 = 0.05 mm, d2 = 0.2 mm. The circles mark the
situation when Re(μT

e ) and Re(εTe ) are close to zero while Re(αe) �= 0,
Re(βe) �= 0 and losses in the ferrite and semiconductor layers are small.
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μ̂e and ε̂e acquire different properties. In the first band, located
between 2 GHz and 3 GHz, μT

e , εTe , αe and βe have positive values
of their real parts and small imaginary parts. In the second band,
between 3GHz and 4.5 GHz, the real parts of parameters vary from
positive values to negative ones as the frequency increases. These
transitions occur at the frequencies of the ferromagnetic resonance of
ferrite (ffr = 4.2 GHz) and the cyclotron resonance of semiconductor
(fpr = 4.0 GHz), respectively. In this band the medium losses are
very significant. Finally, in the third frequency band, located from
4.5 GHz to 5.5 GHz, the real parts of parameters have a transition
from negative to positive values while their imaginary parts are small.
The latter band is given in the insets of Fig. 3 on a larger scale. One
can see that there is a frequency fgn ≈ 4.94 GHz where μT

e and εTe
simultaneously reach zero. It is significant that, by special adjusting
ferrite and semiconductor type, external static magnetic field strength
and thicknesses of layers, it is possible to obtain the condition when
μT

e and εTe acquire zero at the same frequency. Exactly this situation
is marked in the insets of Fig. 3 with the circles. Note that at this
frequency, the parameters αe and βe are far from zero and the medium
losses are small.

The formulation of the eigenvalue problem of the matrix Ae

(det[Ae − γeI] = 0), whose coefficients are defined as (15), gives us
the characteristic equation

γ4 − 2γ2(εTe μ
T
e + αeβe) + (εTe μ

T
e )2 − (μT

e βe)2 − (εTe αe)2 = 0, (16)
whose solution is

γ±e = k0

√
(εTe ± βe)(μT

e ± αe) = k0

√
ε±μ± = k0n

±. (17)

Here the sign ‘±’ defines two different eigenvalues. It is well known
that in an unbounded gyrotropic medium these eigenvalues are related
to the right circularly polarized (RCP, γ+) and the left circularly
polarized (LCP, γ−) eigenwaves [28].

Since the medium losses are taken into account, the real and
imaginary parts of the complex index of refraction n± = (n±)′+i(n±)′′
are defined from the solution of the equation

{(n±)′ + i(n±)′′}2 = {(ε±)′ + i(ε±)′′}{(μ±)′ + i(μ±)′′}, (18)
which, with using (17), is reduced to the next system of equations [16]
(here and further the indexes ‘±’ and T are omitted)

(n′)2 − (n′′)2 = ε′μ′ − ε′′μ′′

= (ε′e ± β′e)(μ
′
e ± α′

e) − (ε′′e ± β′′e )(μ′′e ± α′′
e), (19)

2n′n′′ = ε′′μ′ + ε′μ′′

= (ε′′e ± β′′e )(μ′e ± α′
e) + (ε′e ± β′e)(μ

′′
e ± α′′

e). (20)
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Figure 4. Frequency dependences of the material parameters of
the equivalent gyrotropic medium for the (a) RCP and (b) LCP
eigenwaves. Parameters of the ferrite and semiconductor layers are
the same as in Fig. 2; d1 = 0.05 mm, d2 = 0.2 mm.

Here the signs ‘+’ and ‘−’ are related to the RCP and LCP eigenwaves,
respectively.

Since the conditions ε′′ > 0 and μ′′ > 0 are valid for the passive
media, the imaginary part of the index of refraction must be positive
value (n′′ > 0) to ensure the damping of the wave as it propagates.
Thus, according to the Equation (20), in the frequency band where the
real parts of both the permittivity and the permeability are negative
(ε′ < 0, μ′ < 0) the real part of the index of refraction is negative as
well (n′ < 0). From (19) it is obvious that in the case of negligible
losses, the double-negative condition can appear when |α′

e| > |μ′e| and
|β′e| > |ε′e| (see also, Ch. IV of [29]). In particular, in the frequency
range 4.5–5.5 GHz, there are α′

e < 0 and β′e < 0, and the double-
negative condition is satisfied for the RCP eigenwave (μ+)′ < 0,
(ε+)′ < 0 which is shown in Fig. 4(a). We should note here that,
generally, the negative index of refraction can appear even in the case
when only one of permittivity and permeability has negative real part,
i.e., ε′μ′ < 0. Thus, from the equation ε′′μ′ + ε′μ′′ = 0, the index of
refraction becomes negative when μ′ > 0, ε′ < −μ′ε′′/μ′′ and ε′ > 0,
μ′ < −ε′μ′′/ε′′ [16].

Especially interesting situation appears if μ′e and ε′e are close
to zero and the medium losses are small. In this case there is
|ε±μ±| ≈ |α′

eβ
′
e|, and the propagation constants become as:

γe = −γ+
e = γ−e ≈ k0

√
|α′

eβ
′
e|. (21)

Thus, the propagation constants of the RCP (γ+
e ) and LCP (γ−e ) waves
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are equal in the magnitude but opposite in sign to each other, and
the backward propagation appears for the RCP wave while for the
LCP wave it is forward one. Recall that the backward wave is the
wave in which the direction of the Poynting vector is opposite to that
of its phase velocity [30]. The similar peculiarity of the RCP and
LCP waves propagation occurs also in the chiral-nihility media [31–
33], so in the analogy with them, the condition (21) can be related
to the gyrotropic-nihility media [34]. The frequency band, at which
the gyrotropic-nihility condition is satisfied for the RCP wave, is
shown in Fig. 4. The gyrotropic-nihility frequency fgn is marked in
the inset of this figure with the red line. From our calculations it
follows that at the frequency fgn = 4.94 GHz the permeability and
the permittivity related to the RCP and LCP eigenwaves, respectively,
are μ+ = −1.18 + i0.29, ε+ = −1.58 + i0.19 and μ− = 1.18 + i0.002,
ε− = 1.54+i0.002. Evidently, that in the case of oblique wave incidence
(ψ0 �= 0), the similar gyrotropic-nihility conditions can be derived for
the elliptically polarized waves, but they are not presented here due to
their cumbersomeness.

4. REFLECTED AND TRANSMITTED FIELDS.
POLARIZATION TRANSFORMATION

In the general case, since the values of real and imaginary parts of the
indexes of refraction n± and, therefore, the propagation constants γ±
are different for the RCP and LCP eigenwaves, the incident linearly
polarized wave propagating through an unbounded gyrotropic medium
becomes elliptically polarized. The angle of the specific Faraday
rotation (the rotation of the plane of polarization of the wave per unit
length of the sample) is determined by the real parts of the propagation
constants of the circularly polarized eigenwaves as [18]:

F =
1
2

[
(γ−)′ − (γ+)′

]
=
k0

2
[
(n−)′ + (n+)′

]
. (22)

The peculiarity of the Faraday rotation in the relation to the
structure under study is the fact that there is a frequency band where
the propagation constants γ+ and γ− have opposite signs (i.e., n+ < 0
and n− > 0). As discussed above, in this case, the RCP eigenwave
undergoes the backward propagation while the LCP eigenwave is the
forward one. Therefore, in this band, the specific Faraday rotation is
defined by the expression:

F =
1
2

[
(γ−)′ + |(γ+)′|] =

k0

2
[
(n−)′ + |(n+)′|] , (23)

from which it follows that the angle of the polarization plane rotation
increases in comparison with the convenient double-positive medium
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where n+ > 0 and n− > 0 [16]. Remarkably, at the frequency where
the gyrotropic-nihility condition (21) is satisfied, the specific Faraday
rotation becomes directly proportional to the modulus of the real part
of the propagation constant (21), i.e.,

F = |(γ)′| =
√

|α′
eβ

′
e|. (24)

It is anticipated that if the frequency of the electromagnetic
wave which incidents on a finite layer of such composite medium is
chosen to be nearly the frequency of the gyrotropic-nihility condition
fgn, the transmitted and reflected fields will acquire some unusual
properties. In order to demonstrate this, in the long-wavelength limit,
the reflection and transmission coefficients can equivalently be defined
using the rigorous solutions (9) or the approximate solution (12) of
the Equation (7) because these solutions give the same result. So, the
equation which defines the relation of the tangential components of the
fields at the structure input and output has the form:

�Ψ(0) = (MN )−1�Ψ(NL) = (MN
e )−1�Ψ(NL) = T�Ψ(NL). (25)

The field vector at the structure input is made up of two parts
that consist of the incident and reflected wave contributions:

�Ψ(0) = �Ψin + �Ψref . (26)

The field at the structure output is matched only a single transmitted
wavefield:

�Ψ(NL) = �Ψtr. (27)

On the other hand, the incident, reflected and transmitted fields can
be written as follows:

�Ein(�r) = �Ein
0 exp(i�kin · �r), �Eref (�r) = �Eref

0 exp(i�kref · �r),
�Etr(�r) = �Etr

0 exp(i�ktr · �r). (28)

The fields (28) can be represented in terms of the linearly polarized
waves. If we assume that the incident field is either p-polarized or s-
polarized, the reflected and transmitted fields will have the components
of both types since two polarizations of the linearly polarized wave
propagating in the gyrotropic medium are coupled due to the Faraday
rotation, i.e., generally, the reflected and transmitted fields become
elliptically polarized. So, we define the co-polarized reflection and
transmission coefficients by the expressions Rvv = Bv/Av and T vv =
Cv/Av , and the cross-polarized ones as Rvv′ = Bv′/Av and T vv′ =
Cv′/Av, where Av, Bv and Cv (v = p, s) are the amplitudes of
the incident, reflected and transmitted fields which are introduced in
the Equation (28). In the case of normal wave incidence (ψ0 = 0)
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Figure 5. (a) The transmission, reflection spectra of the co-polarized
and cross-polarized waves, and the polarization ellipses of the (b)
transmitted and (c) reflected fields. Parameters of the ferrite and
semiconductor layers are the same as in Fig. 2; d1 = 0.05 mm,
d2 = 0.2 mm; (a) NL = 2.5 mm; (b), (c) f = 4.94 GHz.

there is not any difference in the two linear polarizations, therefore
T pp = T ss = T co, Rpp = Rss = Rco and T ps = T sp = T cr,
Rps = Rsp = Rcr for the co-polarized and cross-polarized waves,
respectively, and one can represent them as a superposition of the RCP
and LCP waves. The complete expressions evaluated via elements of
the transfer matrix T which allow us to calculate the reflection and
transmission coefficients are given in [22]. The results obtained using
these expressions in the case of normal wave incidence are summarized
in Figs. 5–7.

Thus, from Fig. 5 one can conclude that the drastic changes in the
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Figure 6. The transmission, reflection spectra and absorption
coefficient (W± = 1− |R±|2 − |T±|2) of the circularly polarized waves.
Parameters of the ferrite and semiconductor layers are the same as in
Fig. 2; d1 = 0.05 mm, d2 = 0.2 mm; (a)NL = 2.5 mm; (b)NL = 5 mm.

transmission and reflection characteristics occur in that three frequency
bands mentioned earlier. In particular, in the frequency band from
3GHz to 4.5 GHz, due to the significant level of medium losses nearly
the frequencies of the ferromagnetic and cyclotron resonances, there
is strong damping of the RCP wave. Directly, at the frequency of
4GHz, both the transmitted and reflected fields become circularly
polarized, since the RCP wave is completely suppressed, and, in the
linear polarization space, there are |Rco| = |Rcr| and |T co| = |T cr|
(Fig. 5). From the frequency of 4.5 GHz, the double-negative condition
begins to be satisfied, and the reflected and transmitted fields become
to be elliptically polarized. The angle of the polarization ellipse
rotation is defined with the Equation (23), and the evolution of these
ellipses versus the equivalent layer thickness increasing one can see in
Figs. 5(b), (c). These ellipses are calculated directly at the gyrotropic-
nihility frequency fgn.

The transmitted, reflected spectra and the absorption coefficient
calculated in the vicinity of the gyrotropic-nihility frequency fgn are
presented in Fig. 6. The curves are plotted in the circular polarization
space for two different thicknesses of the equivalent layer. From these
figures one can see that, in this band, the reflection of both the RCP
and LCP waves is low, while their absorption inside the system is
different. Such a low reflection is due to the peculiarities of the medium
impedances (Z± =

√
μ±/ε±) related to the RCP and LCP waves. It

is particularly remarkable that in the vicinity of the gyrotropic-nihility
frequency fgn, the parameters αe and βe are close in value to each
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other and their real parts approach to unit which can be clearly seen
in Fig. 3. It leads to the fact that the medium is impedance matched
to the free space. Directly at the gyrotropic-nihility frequency, the
impedances related to the RCP and LCP waves are indistinguishable

Z = Z+ = Z− ≈
√

|α′
e|

|β′e|
. (29)

Actually, from our calculations, these impedances are: Z+ = 0.873 −
i0.067 and Z− = 0.875 + i0.00002. As a result of this matching, the
incident wave passes into the system with a small reflection, and, at
the gyrotropic-nihility frequency, the equality of both the propagation
constants and the impedances of the RCP and LCP eigenwaves gives
the identity |R+| = |R−| (Fig. 6).

Also, the polarization characteristics of the system in the vicinity
of the gyrotropic-nihility frequency can be understood from Fig. 7,
where the corresponding frequency dependences of the polarization
azimuth (θ) and ellipticity angle (η) for the transmitted and reflected
fields are plotted for two different thicknesses of the equivalent layer.
According to the definition of the Stokes parameters, we introduce
the ellipticity η so that the field is linearly polarized when η = 0,
and η = −π/4 for LCP and +π/4 for RCP (note that in the
latter cases the preferential azimuthal angle of the polarization ellipse
θ becomes undefined). In all other cases (0 < |η| < π/4), the
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waves transmitted through (t) and reflected from (r) the equivalent
gyrotropic layer with finite thickness. Parameters of the ferrite and
semiconductor layers are the same as in Fig. 2; d1 = 0.05 mm,
d2 = 0.2 mm.
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layer with finite thickness. Parameters of the ferrite and semiconductor
layers are the same as in Fig. 2; d1 = 0.05 mm, d2 = 0.2 mm,
NL = 2.5 mm.

field is elliptically polarized. In the considered frequency band, the
transmitted field is nearly linearly polarized and its polarization ellipse
experiences clockwise rotation. As the equivalent layer thickness rises,
the ellipticity of the transmitted field increases as a consequence of
the circular dichroism, i.e., due to the stronger absorption of the RCP
wave compared to the absorption of the LCP wave. On the contrary,
the reflected field undergoes anticlockwise rotation and sequentially
changes between LCP and RCP states and this transition occurs
exactly at the gyrotropic-nihility frequency where the reflected field
becomes linearly polarized (η = 0).

At the end of the paper we consider oblique wave incidence
(ψ0 �= 0) on the equivalent gyrotropic layer of the finite thickness.
We have calculated the transmission and reflection coefficients of the
co-polarized and cross-polarized waves at two different frequencies.
The first frequency is chosen to be far from the frequencies of the
ferromagnetic and cyclotron resonances and the second one is selected
to be at the gyrotropic-nihility frequency. The results of these
calculations are presented in Fig. 8. One can see that in the first case,
at the frequency of f = 20.0 GHz, the curves of the magnitude of the
transmission and reflection coefficients have typical form where the zero
reflection and total transmission at a certain angle of incidence occur
only for parallel polarization. It is consistent with the results related
to the conventional free-space-double-positive dielectric interface. Note
that at this frequency, the cross-polarized transmission and reflection
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are small. On the other hand, at the gyrotropic-nihility frequency, the
curves of the transmission and reflection coefficients magnitudes are
different drastically from that ones in the first case. Thus, the level
of the transmission/reflection remains to be invariable almost down to
the glancing angles. The cross-polarized transmission is considerable,
and the conditions |T pp| ≈ |T ss| and |T ps| ≈ |T sp| are valid in the all
range of angles. At the same time, both the co-polarized and cross-
polarized reflection are small down to the glancing angles because the
medium is impedance matched to the free space.

5. CONCLUSION

In this paper, we have investigated optical properties of a ferrite-
semiconductor multilayer structure. In the long-wavelength limit,
when the structure layers are optically thin, the effective medium
theory is developed, and the effective constitutive parameters, index
of refraction, wave impedances of the equivalent uniform anisotropic
medium are obtained analytically. On the basis of these parameters
the peculiarities of the eigenwaves propagation are studied and the
possibility of achieving a double-negative condition is predicted.

The main part of our study is curried out in the frequency band
where the real parts of both the effective permittivity and the effective
permeability acquire a transition from negative values to positive ones.
Such a transition is referred by us as a gyrotropic-nihility effect. The
reflection, transmission, absorption and polarization transformation of
waves in the system are studied in vicinity of the gyrotropic-nihility
frequency. The effects of an enhancement of the polarization rotation,
impedance matching, backward propagation are revealed. It is also
shown that under the oblique wave incidence on the studied structure,
the level of the transmission/reflection remains to be invariable almost
down to the glancing angles when the gyrotropic-nihility condition is
satisfied. This outcome can be of great interest in the problem of the
transformation optics.
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