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Abstract—A TM mode analysis in a metamaterial based dielectric
waveguide is proposed and introduced. Rigorously derived from
Maxwell’s equations, the dispersion properties are focussed on
the fundamental properties of bound, surface and leaky modes
of metamaterial based dielectric waveguide. Comparing with the
conventional right handed material based waveguide, typical backward
wave characteristic of volume and surface wave modes are found
from the distribution of Poynting power to the transverse direction
of waveguide.

1. INTRODUCTION

Metamaterial with simultaneous negative permittivity (ε = εrε0) and
permeability (µ = µrµ0) was first investigated theoretically by Veselago
in 1968 [1]. After two decades, negative permittivity materials [2],
negative permeability ring resonators [3] and composite medium [4, 5]
were practically realized to demonstrate the concept of left-handedness.
Later, composite right/left handed transmission lines (CRLH TLs)
were proposed to design low-loss and broadband metamaterials [6, 7].
In 2009, a novel structure named as double periodic composite
right/left handed transmission line (DP-CRLH TL) was proposed [8–
11]. Compact devices for communication system applications, like
small leaky-wave antennas (LWAs) [12–15] and compact filters [16–18]
are realized based on CRLH TLs.

Similar to right-handed materials (ε > 0 and µ > 0) [19–22],
the analysis for the composite right/left handed (CRLH) materials is
aimed at determining the propagation constant γ (phase constant β
and attenuation constant α) and dispersion characteristics, especially
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for the left-handed (LH) region (ε < 0 and µ < 0) and stopband
region (εµ < 0). Investigation on the CRLH materials based on the
transmission line theory, Floquet Theorem [6, 7] and equivalent circuit
theory [23] have been proposed based on static methods or quasi-static
methods. The transmission line characteristics are calculated from the
electrostatic properties of the structure and the nature of the mode
of propagation is considered to be TEM mode. For structures like
microstrip lines, waveguide and 3-D materials, it is not capable of
supporting a pure TEM mode, and the static methods cannot fully
describe these hybrid modes. Small longitudinal components of both
the electric and magnetic fields need to be present to satisfy boundary
conditions. These modes, in a lossless CRLH guiding structures, not
only represent waves that propagate without attenuation (β 6= 0 and
α = 0) and decay exponentially without phase variation (β = 0 and
α 6= 0), but also complex wave, leaky-wave, surface wave and lossy
surface wave, etc.

For simplicity and without loss of generality, the transverse
magnetic (TM) mode is considered for basic uniform rectangular
waveguide analysis as shown in Figure 1. The grounded rectangular
waveguide is assumed to be filled with pure right-handed material,
pure LH material, material with εµ < 0 or CRLH material. The
dispersion properties are rigorously derived from Maxwell’s equation
and give a considerable physical insight into the overall behavior of
the structure [21, 24]. For different cases, the wave will propagate in
different modes: forward/back-fire leaky wave mode, forward/back-fire
surface wave mode, decaying radiate mode and lossy surface wave.

For simplicity and without loss of generality, the transverse
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Figure 1. Geometry of the basic uniform rectangular waveguide.
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magnetic (TM) mode is considered for basic uniform rectangular
waveguide analysis as shown in Figure 1 in this paper. The
dispersion analysis is used without invoking any static approximations
to determine the propagation constant while estimating constitutive
equation of permeability and permittivity media [21, 24]. The
dispersion properties are rigorously derived from Maxwell’s equation
and give a considerable physical insight into the overall behavior of
the structure. Pure right-handed material, pure LH material, material
with εµ < 0 and CRLH material are discussed for the grounded
dielectric waveguide. For different cases, the wave will propagate in
different modes: forward/back-fire leaky wave mode, forward/back-
fire surface wave mode, decaying radiate mode and lossy surface
wave. Some of modes do not contribute directly to the aperture field.
However, they mite contribute towards end-fire leaky-wave radiation.

2. FORMULATION OF THE DISPERSION RELATION

The geometry of the problem analyzed is shown in Figure 1. The
lossless dielectric film (ε, µ) occupies the region 0 < x < s and is
covered by the free space (ε0, µ0). For the sake of simplicity and
without loss of generality, only TM mode with nonvanishing field
components Hy, Ex and Ez have been considered to be propagating
in xz-plane. The wave is assumed to be uniform in the y-direction
(∂/∂y = 0) and have the time dependence exp(jωt) [21]. From
Maxwell’s equations, the magnetic field Hy in the waveguide satisfies
the Helmholz equation as [8, 21]

{
∂2

∂x2
+

∂2

∂z2
+ ω2µε

}
Hy = 0. (1)

Ex and Ez can be expressed in terms of Hy as [25] Ex = − 1
jωε

∂Hy

∂z ,

Ez = 1
jωε

∂Hy

∂x .
The fields Hy and Ez are continuous at x = s, and the field Ez = 0

at x = 0. Hence the boundary conditions are given by [8] at x = 0

∂Hys

∂x
= 0, (2)

at x = s {
Hys = Hya
1
ε

∂
∂xHys = 1

ε0

∂
∂xHya.

(3)

Hys and Hya are the fields in the substrate and free space, respectively.
The fields are governed by the differential equations for Ex and

Ez together with boundary conditions. In addition, Hya should satisfy
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Figure 2. Wave number supportable by planer LHMs.

the radiation condition at x = ∞. The dielectric film is assumed to be
sufficiently thin that only the first few modes of the guided modes are
supported [26]. Then, the fields are expressed in detail as [8]{

Hya = Ngage
−jkxa(x−s)e−jkzz (x > s)

Hys = Ngag
cos(kxsx)
cos(kxss) e

−jkzz (0 < x < s),
(4)

where {
k2

xa + k2
z = ω2µ0ε0 (x > s)

k2
xs + k2

z = ω2µε (0 < x < s). (5)

kxa, kxs, and kz are complex transverse wave numbers as shown in
Figure 2. {

kxa = k′xa + jk′′xa = βxa − jαxa,
kxs = k′xs + jk′′xs = βxs − jαxs,
kz = k′z + jk′′z = βz − jαz,

(6)

where β and α are the phase constant and the attenuation constant,
respectively. The partial differential of the magnetic fields in the two
different regions are derived as{

∂
∂xHys = −Ngagkxstan(kxss)e−jkzz

∂
∂xHya = −jNgagkxae

−jkzz.
(7)

Based on the boundary condition Eqs. (2) and (3), the solutions satisfy
the dispersion relation

kxs tan(kxss) = εrjkxa, (8)
where εr = ε/ε0 is the relative permittivity of the material.

3. DISPERSION CHARACTERISTIC ANALYSIS

Dispersion relation of (8) is numerically estimated on the fundamental
TM mode supported by the lossless film with permittivity ε = εrε0
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Figure 3. Dispersion relation on TM mode for the pure right-handed
material.

and permeability µ = µrµ0 covered by the free space (ε0, µ0).
The dispersion diagrams for the right-handed material with different
permittivities have been calculated for reference. Then, the dispersion
characteristics for the LH material and CRLH material are compared.

3.1. Right-handed Material

Figure 3 shows the dispersion characteristic supported by the
conventional right-handed material with different permittivities (εr =
2.2, 4.7, 10.2) and permeability µr = 1 based on the fundamental TM
mode. The attenuation constant αz is zero while the phase constant
βz follows k0 < βz < k0

√
εrµr. Based on the relation of Eq. (5), the

complex wave number kz in the substrate satisfies:

ω2µ0ε0 < k2
z < ω2µε (9)

This condition makes{
k2

xa = ω2µ0ε0 − k2
z < 0

k2
xs = ω2µε− k2

z > 0 (10)

And then, {
βxa = 0, αxa > 0
βxs > 0, αxa = 0 (11)

The fields supported by the right-handed film are expressed as
{

Hya = Ngage
αxa(x−s)e−jβzz (x > s)

Hys = Ngag
cos(βxsx)
cos(βxss) e

−jβzz (0 < x < s),
(12)
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This means the field exponentially decays away from the surface at
x = s, and propagates along the z-axis of the structure. It is a surface
wave [27], Chapter 11.

3.2. Left-handed Material

Although no pure left-handed material (LHM) is found in nature until
now, artificial LH structures [1, 3, 28, 29] and CRLH TL [7, 8, 12, 30]
have been designed and investigated by a majority of groups. In the
LH structure, both the effective permittivity and permeability of the
material are realized as negative value. It is necessary to investigate the
dispersion characteristics of the LHM. For simplicity and without loss
of generality, the analyzed structure is the same as the right-handed
case as shown in Figure 1 except ε < 0 and µ < 0. From Maxwell’s
equations and boundary conditions (2) and (3), the magnetic field is
derived as (4) and the complex wave number also satisfy the conditions
as shown in (5), (6) and (8).

However, in some frequency, ω2µ0ε0 > ω2µε, and we cannot make
k2

xa = ω2µ0ε0 − k2
z < 0 and k2

xs = ω2µε− k2
z > 0 either. If k2

z is a pure
real number, then kz can be a pure real number or imag number. The
same applies to k2

xa and k2
xs. If kz is a pure real number (propagating),

because ω2µ0ε0 > ω2µεs0, then jkxa and kxs cannot be a pure real
number (matching to the boundary condition) simultaneously. If the
value of kz is a pure imag number which means the waveguide works
in stop band, because ω2µ0ε0 > ω2µε, then kxa should be a pure
real number, which is not possible. So that, k2

z should be a complex
number. And the same as k2

xa and k2
xs.

We again assume k2
xa + k2

z = ω2µ0ε0 and k2
xs + k2

z = ω2µε. kxa,
kxs, and kz are complex number as shown in Figure 4.

{
kxa= k′xa + jk′′xa = βxa − jαxa

kxs = k′xs + jk′′xs = βxs − jαxs

kz = k′z + jk′′z = βz − jαz

(13)

where ∗′ is the phase constant and ∗′′ is the attenuation constant. In
the substrate, when both kz and kxs are real, Hys describes the field
of a homogeneous plane wave. When at least one of the wave numbers
ceases to be real, Hys becomes an inhomogeneous plane wave.

For a homogeneous plane wave, we can define a real wave

k = kxsx̂ + kz ẑ (14)

Introducing the radius vector: r = xx̂ + zẑ, the constant phase planes
in Hys are given by k ·r = contant, which indicates that the plane wave
is traveling in the direction of the phase front normal k. if k forms an
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angle with the positive x axis, the phase velocity of the plane wave in
the z-direction is fast in all directions but k.

For an inhomogeneous plane wave, it is obtained as shown in
Figure 5,

{
(k′xa + jk′′xa)

2 + (k′z + jk′′z )2 = ω2µ0ε0

(k′xs + jk′′xs)
2 + (k′z + jk′′z )2 = ω2µε

(15)
{

(k′2xa + k′2z )− (k′′2xa + k′′2z ) = ω2µ0ε0

(k′2xs + k′2z )− (k′′2xs + k′′2z ) = ω2µεs0
(16)

and k′zk′′z + k′xak
′′
xa = 0 and k′zk′′z + k′xsk

′′
xs = 0

For an inhomogeneous plane wave, it is got:{
βa = k′xax̂ + k′z ẑ αa = −(k′′xax̂ + k′′z ẑ)
βs = k′xsx̂ + k′z ẑ αs = −(k′′xsx̂ + k′′z ẑ) (17)

Then, the over questions are rewritten as:{
β2

a − α2
a = ω2µ0ε0 β2

s − α2
s = ω2µε

βaαa = 0 βsαs = 0 (18)

Introducing the radius vector for the inhomogeneous plane wave:
r̂ = xx̂ + zẑ. And then, the solutions for the differential equations is:

Hya = Ngage
−jkxa(x−s)e−jkzz = Ngage

−j(k′xa+jk′′xa)(x−s)e−j(k′z+jk′′z )z

= Ngage
−j(k′xa+jk′′xa)se−j(k′xax̂+k′z ẑ)e(k′′xax̂+k′′z ẑ)

= Ngage
jkxase−j(βa−αa)r̂ (19)

Hys = Ngag
cos(kxsx)
cos(kxss)

e−jkzz = Ngag
cos((k′xs + jk′′xs)x)

cos(kxss)
e−j(k′z+jk′′z )z

=
Ngag

cos(kxss)
ej(k′xs+jk′′xs)x + e−j(k′xs+jk′′xs)x

2
e−j(k′z+jk′′z )z

=
Ngag

2 cos(kxss)

(
e−j(β∗s−jα∗s)r∗s + e−j(βs−jαs)rs

)
(20)

where αa and αs points in the direction of the most rapid amplitude
decrease, βa and βs gives the direction of propagation and that of the
power flow of the wave.
• In the substrate, the wave is shown as in (20). In z-direction,

the wave equation is Hy0sz = e−j(k′z+jk′′z )z, which means the
wave propagates with loss. k′z is the phase constant, and −k′′z
is the attenuation constant. In x-direction, the wave is shown
as Hy0sx = cos((k′xs + jk′′xs)x). This shows the wave is a pair of
composite wave including two conjugate symmetry waves as shown
in Figure 4. This waves is liking a standing wave, but it is lossy.
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Figure 4. Inhomogeneous plane
TM wave in LHM in substrate.

Figure 5. An inhomogeneous
plane TM wave in LHM in
freespace.

Figure 6. The wave types of inhomogeneous plane TM waves in LHM.

• In the free-space, a guided-wave field attenuates along z and
leaky-wave increases exponentially away from the x = 0 plane.
β2

a − α2
a = ω2µε implies |βa| =

√
ω2µε

√
1 + αa

2

ω2µε
which states

that the inhomogeneous plane wave is always a slow wave in its
direction of propagation as shown in Figure 5. However, the
projection βaz of βa on the z direction may correspond to either
a fast or a slow wave. In the freespace, there are some cases as
shown in Figure 6.
A: represent a proper surface wave, which for TM polarization can
propagate on an inductive modal (X > 0) impedance.
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A*: noncontributing. improper surface wave.
B: represent a complex wave which radiates out of the surface but
decays away from it. This wave (or rather its counterpart, −kz) is
of importance in backward wave radiation from periodic structure
and is utilized in log-periodic antennas.
B*: leaky wave. Forward-fire, ( reprensents waves that violate the
radiation condition at x∞. for TM polarization such waves arise
when X is capacitive, as required by αa < 0.)
D: LHMs, represent a complex wave which radiates out of the
surface but decays away from it.
D*: LHMs, leaky-wave, back-fire.
E: LHMs, proper surface wave.
E*: LHMs, noncontributing. improper surface wave.
F: LHMs, lossy surface wave.
F*: LHMs, noncontributing.
H: lossy surface wave. Here βa, and therefore the power flow, has
a component into the surface, as required, to cover the losses.
H*: noncontributing.
A*, B*, D*, E*, F*, H* represent waves that violate the radiation
condition at x∞. for TM polarization such waves arise when X
is capacitive, as required by αa < 0. H* and A*, F* and E*:
do not contribute directly to the aperture field. However, they
may be of some importance for the case of end-fire radiation in
that their presence may require a modification of the steepest-
descent procedure. This shows that the wave radiate from forward
direction to backward direction.
Based on the analysis for conventional RHMs [19], the transverse

resonance relation based on Figure 7 reads

Z(kz, k0) +
kxa

ωε0
= 0 (21)

where Z(kz, k0) = R − jX, and kz = βz − jαz, kxa = βa − jαa. And
then, we get as shown in Figure 7.

βa − jαa

ωε0
= −R + jX (22)

For x > 0, any TM guided wave supportable by the structure
has this relationship. Consequently, the various guided wave types
correspond to the possible classes of plane waves which may exist in
free space above the interface. These plane waves are characterized by
the various combinations of kz and kxa, which in turn are determined
from in accordance with the signs of R and X.

signX = −signαa

−signR = signβa
(23)
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Figure 7. Geometry of the
guiding plane interface and trans-
verse equivalent network for TM
modes [19].

Figure 8. Effective permittivity
and permeability and their disper-
sion behaviour.

3.3. Numerical Results of the Problem

Figure 8 shows the effective permittivity (ε) and permeability (µ) of the
material, which can be given by ε = ε0εr− 1

ω2LΛ
, and µ = µ0− 1

ω2CΛ
[6].

Based on the dispersion relation as predicted by (8), Figure 9
shows that in the LH passband region, fA ∼ fC , both the permittivity
and the permeability are negative. In the stopband region (fC ∼ fE),
µ > 0 and ε < 0, which is demonstrated to be an epsilon-negative
(ENG) medium. In the RH passband region(fE ∼ 9.5GHz), µ > 0,
ε > 0, the medium will be designated a double positive (DPS) medium.

For the dispersion relation (8), the lowest cutoff (Bragg) frequency
f0 associated with this dispersion curve is also determined from the
condition βd = π, as shown in Figure 9. Setting β = 0 in (8), the
solutions of the dispersion equation in frequency yield the desired cutoff
frequencies fC and fE as shown in Figure 9. With the affection of
ki 6= 0, the upper cutoff frequencies are the same for both ki 6= 0 and
ki = 0 (fE = f ′E). But for ki 6= 0, the lower cutoff frequency is lower
than that when ki = 0 (fC = f ′D), which also give that the bandwidth
of the stopband is wider than that when ki = 0. And in the passband,
for lower and higher frequency, the phase constants approach that for
ki = 0, but it will not cross the curve. In the stopband (fC ∼ fE),
the propagation constant is complex. As shown in Figure 9, the phase
constant is equal to that in the air (β2 = ω2µ0ε0), and then passes
to βΛ = π at f = fBragg. there is a stopband because of the effect
of surface ware in the lower frequency and Bragg reflection in higher
frequency. The curve between fB and fC , fE and fG show leaky wave
regions inside of cure of β2 = ω2µ0ε0 and the region between fB and
fC has been used for left handed leaky wave antenna design.
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Figure 9. Propagation constant of left handed TM mode waveguide,
unbalanced case.

4. CONCLUSION

We have proposed and introduced a technique for the analysis of
the LHMs. The dispersion properties are rigorously derived from
Maxwell’s equation for both right-handed material and composite
right/left handed material. In a lossless guiding structure with right-
handed material, it is noted the structure represents simple waves
that propagate without attenuation (β 6= 0 and α = 0) or decay
exponentially without phase variation (β = 0 and α 6= 0). However, in
a lossless guiding structure with composite right/left handed material,
the electromagnetic waves become inhomogeneous plane waves since
the wave numbers ceases to be real and become complex numbers.
Through introducing a radius vector, phase and attenuation constants
are rewritten as real number for the inhomogeneous plane wave
following the direction of the propagation of the plane wave front.
The fundamental properties of bound, surface and leaky modes of
metamaterial based grounded dielectric waveguide have been analyzed.
Typical backward wave characteristic of volume and surface wave
modes are found from the distribution of Poynting power to the
transverse direction of waveguide for the lossless guiding structure with
composite right/left handed material.
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