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Abstract—This paper proposed a new approach, which is based on
minimum mean-square error (MMSE) criterion, for wideband signal
spatial direction-of-arrival (DOA) estimation when there is array error,
and the impact of random array error to the new algorithm is analyzed
in this paper. Pass the wideband signal mixed with array error through
a bank of narrowband filters to obtain narrowband signals, then recover
the sparse representation of the narrowband signals by re-iterative
method in the MMSE frameworks, and estimate the number and DOA
of sources from the sparse representation. The new method does not
require the number of sources for direction finding, furthermore, it
can estimate the DOA of coherent signals and the robustness of new
algorithm to array error is better than coherent subspace algorithms.
The simulated results confirmed the effectiveness and robustness of the
new method.

1. INTRODUCTION

Direction-of-arrival (DOA) estimation for wideband signal is an
important branch of array signal processing and there has been growing
interest in it recently. Coherent subspace method (CSM) [1–3] is the
traditional method to deal with wideband signal DOA estimate, and
it can separate signals whose DOAs are close in ideal condition. But
the random array error always exists, which due to antenna element
location uncertainty, realistic calibration tolerances, mutual coupling
effects between elements, etc., and it will decrease its performance and
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even can’t work, so array calibration [4] is the necessary procedure
when there is array error. Another way to deal with wideband signal
DOA is finding a robust algorithm that is not sensitive to array
error [5].

This paper proposes an algorithm called wideband signal DOA
estimation reiterative algorithm, which is denoted as WSERA and
develops from [6], and it is not sensitive to array error. Besides, the
impact of random array error on the new algorithm is also discussed in
this paper. This algorithm considers random array error and recovers
the sparse representation [7–9] of signals to estimate the number of
signals and DOAs. Compared with subspace algorithms, the proposed
algorithm does not require the priori number of sources for direction
finding, and it can also work without decorrelation processing [10–13]
when signals are coherent. Furthermore, the robustness of WSERA to
array error is better than subspace algorithms.

2. SIGNAL MODEL

Assume that K far-field stationary and wideband signals corrupted by
additive Gaussian white noise impinge on a linear array of N (> K)
sensors from direction angles θ = [θ1, . . . , θK ] and that the distance of
adjacent elements is less than half wavelength of the highest frequency.
Passing single wideband signal snapshot through J narrowband filters
to obtain narrowband data at frequencies {fj}J

j=1 [1, 2], the signal
Yj ∈ RN×1 at frequency fj can be represented in vector notation as
the N × 1 vector

Yj = A(fj , θ)S(fj) + Vj (1)
A(fj , θ) = [ a(fj , θ1) a(fj , θi) . . . a(fj , θK) ] (2)

A(fj , θ) ∈ RN×K is manifold matrix, whose kth column is the
kth signal array steering vector a(fj , θi) = [1 e−j2πfj sin(θi)/c . . .

e−j2πfj(N−1) sin(θK)/c]T ∈ RN×1, S(fj) ∈ RK×1 is the signal complex
vector which represents a stationary, zero mean random process
uncorrelated with noise, and Vj ∈ RN×1 is the additive white noise.

Given the overcomplete basis {a(mθ∆)}M−1
m=0 (M À N), where

θ∆ = Ψ/M is the quantification when quantizing the interested spatial
angle Ψ into M discrete values and M the spatial sample factor.
According to sparse signal representation [7–9], the array received
signals can be represented as

Y =




Y1
...

YJ


 ≈ Ỹ =




B1X1
...

BJXJ


 +




V1
...

VJ


 (3)
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Bj = [ a(fj , 0) a(fj , θ∆) . . . a(fj , (M − 1)θ∆) ] (4)

Xj = [ xj1 . . . xjM ]T (5)

The vector Bj ∈ RN×M is the array manifold at frequency fj and
the vector Xj ∈ RM×1, which called amplitude vector, contains the
complex amplitude value associated with each of the M steering vectors
in Bj . If θ∆ is enough fine, Xj will be the vector with all elements
zeros except for K elements associated with the K sources. Thus
DOA estimation is reformulated as the estimation of the parameterized
vector Xj .

The array error at fj is denoted as Zj = [zj1 . . . zjn . . . zjN ]T ∈
RN×1, where

zjn = (1 + ∆jan) · exp(j∆jϕn) (6)

∆jan and ∆jϕn are the random amplitude deviation of arbitrary
distribution and random phase deviation of arbitrary distribution,
respectively. Assume that the distribution of ∆jan and ∆jϕn are
independent and identically distributed (IID) for each antenna element
and are zero mean, the variance of zjn is δ2

z ; array error, signals
and additive noise are also IID. The array received signals should be
donated as

Y =




Y1
...

YJ


 ≈ Ỹ =




B1X1
...

BJXJ


¯




Z1
...

ZJ


 +




V1
...

VJ


 (7)

¯ denotes Hadamard product. Approximate Zj as an additive noise,
then (7) should be denoted as

Y =




Y1
...

YJ


 ≈ Ỹ =




B1X1
...

BJXJ


 +




Vz1
...

VzJ


 +




V1
...

VJ


 (8)




Vz1
...

VzJ


 =







Z1
...

ZJ


−




1N×1
...

1N×1





¯




B1X1
...

BJXJ


 (9)

According to the assumptions, it is evident that the mean of Vzj is
zero.

3. WSERA ALGORITHM

Obtain the signal amplitude matrix X = [XH
1 . . . XH

J ]H that is
composed of amplitude vector Xj by using reiterative algorithm.
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Compute adaptive filter bank W to minimize the MMSE cost function

J
{∥∥X −WHY

∥∥2
}

(10)

{·}H denotes the complex-conjugate transpose. Minimization of (10)
yields the well-known MMSE filter structure

W = (E
{
Y Y H

}
)−1E

{
Y XH

}
(11)

According to the assumptions and (8), it can be known that

W =







B1E
{
X1X

H
1

}
BH

1 . . . B1E
{
X1X

H
J

}
BH

J
...

. . .
...

BJE
{
XJXH

1

}
BH

1 . . . BJE
{
XJXH

J

}
BH

J




+




R1 . . . 0
...

. . .
...

0 . . . RJ


 +




Rz1 . . . 0
...

. . .
...

0 . . . RzJ






−1

·




B1E
{
X1X

H
1

}
. . . B1E

{
X1X

H
J

}
...

. . .
...

BJE
{
XJXH

1

}
. . . BJE

{
XJXH

J

}


 (12)

where Rj = E{VjV
H
j } = δ2

vIN×N and Rzj = E{VzjV
H
zj } are additive

white noise covariance matrix and array noise covariance matrix,
respectively. Enforcing signals at different frequency are uncorrelated
temporally and the spatial power distribution matrix is defined as

P = E
{
XXH

}¯ IJ ·M×J ·M

=




E
{
X1X

H
1

}¯ IM×M . . . 0
...

. . .
...

0 . . . E
{
XJXH

J

}¯ IM×M




=




P1 . . . 0
...

. . .
...

0 . . . PJ


 (13)

IJ ·M×J ·M ∈ RJ ·M×J ·M and IM×M ∈ RM×M are identity matrixes. The
spatial power distribution is composed of the diagonal elements of P.
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Substituting (13) into (12) yields

W =







B1P1B
H
1 . . . 0

...
. . .

...
0 . . . BJPJBH

J


 +




Rz1 . . . 0
...

. . .
...

0 . . . RzJ




+




R1 . . . 0
...

. . .
...

0 . . . RJ






−1 


B1P1 . . . 0

...
. . .

...
0 · · · BJPJ


 (14)

Rzj = E
{
VzjV

H
zj

}
=E

{
(Zj−1N×1)¯(BjXj)(BjXj)H¯(Zj−1N×1)

H
}

= E

{
_

Zj(BjXj)(BjXj)H
_

Z
H

j

}
(15)

where
_

Zj = diag{zj1, . . . , zjN}− IN×N , and IN×N ∈ RN×N is identity
matrix. Using assumptions, it can be shown that (15) simplifies to

Rzj = δ2
zIN×N¯

(
E

{
(BjXj)(BjXj)H

})
= δ2

zIN×N¯
(
BjPjB

H
j

)
(16)

Set X̂0 = [Y H
1 B1 . . . Y H

J BJ ]H be the initial estimate of signal
amplitude matrix X = [XH

1 . . . XH
J ]H , then the initial spatial

power distribution P̂ 0 = E{X̂0(X̂0)H} ¯ IJ ·M×J ·M can be obtained.
Consider (14) and update Ŵ i with P̂ i−1, subsequently, compute signal
amplitude matrix X̂i = (W i)HY . The recursion can stop when
‖X̂i − X̂i−1‖2 ≤ ε, where ε is a predetermined small value that decides
the error range.

When L snapshots signals are received, passing wideband signals
through J narrowband filters to obtain Ȳ = [Ȳ H

1 . . . Ȳ H
J ]H , then

signal amplitude matrix

X̄ = (W̄ )H Ȳ (17)

where X̄j = [x̄j(1) . . . x̄j(L)] ∈ RM×L, the element of X̄ =
[X̄T

1 . . . X̄T
J ]T ∈ RJ ·M×L, is comprised of the spatial complex

amplitude estimation x̄j(`) = [xj1(`) . . . xjM (`)]T for the `th
snapshots at frequency point fj . Ȳj = [ȳj(1) . . . ȳj(L)] ∈ RN×L,
where ȳj(`) = [y1(`) . . . yN (`)]T is the `th snapshots at frequency
point fj and {·}T is the transpose operation. Then the spatial power
distribution should be denoted as

P̄ =

[
1
L

L−1∑

`=0

X̄(`)
(
X̄(`)

)H

]
¯ IJ ·M×J ·M (18)



102 Zhang et al.

Substituting P̄ of (18) into (14) to estimate the MMSE filter bank W̄i

for ith recursion.

W̄ i =







B1P̄
i−1
1 BH

1 . . . 0
...

. . .
...

0 . . . BJ P̄ i−1
J BH

J


+




Rz1 . . . 0
...

. . .
...

0 . . . RzJ







R1 . . . 0
...

. . .
...

0 . . . RJ






−1




B1P̄
i−1
1 . . . 0

...
. . .

...
0 . . . BJ P̄ i−1

J


 (19)

The complete procedures of WSERA are given as follows,
Step 1: Initialization. Passing L snapshots wideband signals

through J narrowband filters to obtain Ȳ = [Ȳ H
1 . . . Ȳ H

J ]H , set initial
signal amplitude distribution as X̂0 = [Ȳ H

1 B1 . . . Ȳ H
J BJ ]H , compute

initial spatial power distribution estimate P̄ 0 = [ 1
L

L−1∑
`=0

X̄0(`)(X̄0(`))H ]

¯ IJ ·M×J ·M . Compute white noise covariance matrix Rj and array
noise covariance matrix Rzj , then set ε.

Step 2: Update the MMSE filter bank

W̄ i =







B1P̄
i−1
1 BH

1 . . . 0
...

. . .
...

0 . . . BJ P̄ i−1
J BH

J


+




Rz1 . . . 0
...

. . .
...

0 . . . RzJ




+




R1 . . . 0
...

. . .
...

0 . . . RJ






−1




B1P̄
i−1
1 . . . 0

...
. . .

...
0 . . . BJ P̄ i−1

J


 .

Step 3: Estimate the signal amplitude matrix X̄i = (W̄ i)H Ȳ .
Step 4: Update the spatial power distribution estimation using

P̄ i =

[
1
L

L−1∑

`=0

X̄i(`)
(
X̄i(`)

)H

]
¯ IJ ·M×J ·M

Step 5: Judge whether ‖X̄i − X̄i−1‖2 ≤ ε is feasible or not, if it’s
feasible, the recursion is halted, or i = i + 1, and jump to step 2.

When the recursion is halted, the spatial amplitude distribution
_

X = diag{
√

P̄ i} is obtained, then compute the mean value X̆ of signal
amplitude at all frequency points. Number of sources, source locations
can be determined via the peaks in X̆.
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4. SIMULATION RESULTS

In this section, the performance of WSERA is discussed. The
performance of WSERA is assessed as a function of 1) sample support
size L, 2) the number of array elements N , 3) Signal to Noise Ratio
(SNR), 4) the degree of separation of two closely-spaced sources, and
5) random array error. All simulations are obtained via 50 Monte-
Carlo tests. Assume that two linear frequency modulation (LFM)
signals located at −20◦, 20◦, and their frequency distribute over the
interval [200, 220] MHz. In order to reduce the amount of computation,
set the interested spatial angle Ψ = [−40◦, 40◦], and spatial sample
factor M = 81, the received signal is sampled at 800MHz. The
filter bank is composed of 10 filters whose center frequencies uniformly
distribute over the interval [200, 220] MHz. The uncertain array error
vector Zj = [zj1 . . . zjn . . . zjN ] ∈ RN×1 at frequency point fj ,
where zjn = [1 + ρ

100N(0, 1)] exp{jπ ρ
100N(0, 1)}, and N(0, 1) means

Gaussian distribution with zero mean and unit variance, besides, ρ
100

is the percent error in terms of the standard deviation. Compute the
estimated root mean square error (RMS ) with (20), where θk is the
real DOA of the kth source and θ̂k is the estimate of θk.

RMS =

√√√√ 1
K

K∑

k=1

∣∣∣θk − θ̂k

∣∣∣
2

(20)

Before consider the impact of parameterization, the effectiveness
of WSERA is examined. Set the number of snapshot L and array
elements N is 200 and 12, respectively, SNR = 10 dB, and ρ = 10.
In Figure 1 we can see that WSERA is effective when sources are
uncorrelated and coherent.

Subsequently, for the comparison sample support, values of L = 5,
20, 250 snapshots are examined. Set ρ = [0, 20], N = 12 and
SNR = 10 dB. Figure 2 illustrates the performance of WSERA as a
function of ρ for the different numbers of snapshots. It can be observed
that as the ρ increases, the number of sources estimated error and
the DOA estimated RMS becomes greater, and the performance of
WSERA is better with greater number of snapshots.

Now, consider the impact of the number of sensors N on the
performance of WSERA. Set ρ = [0, 20], L = 20 and SNR = 10 dB,
values for N of 8, 14 and 20. In Figure 3 it can be found that as
the ρ increases, the number of sources estimated error and the DOA
estimated RMS becomes greater, and the performance of WSERA is
better with greater value of N .

We now consider the impact of SNR on the performance of
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Figure 1. The performance of WSERA for uncorrelated and coherent
wideband signals. (a) Sources are uncorrelated. (b) Sources are
coherent.
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Figure 2. The performance of WSERA as a function of ρ for different
numbers of snapshots L. (a) The mean number of sources versus L
and ρ. (b) The RMS error versus L and ρ.

WSERA Set ρ = [0, 20], L = 20, N = 12, values for SNR of 0 dB,
10 dB and 20 dB. It can be found in Figure 4 that as the ρ increases,
the number of sources estimated error and the DOA estimated RMS
becomes greater, and the ability to estimate the number of sources is
better with greater value of SNR, the performances of RMS are mixed
with each other when ρ > 4, so we can be informed that the impact of
SNR to RMS is much smaller than the impact of array error to RMS
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when ρ becomes greater.
Now the bias of WSERA is considered in terms of the angular

separation between two signals. Assume two uncorrelated signals
whose DOA is θ1 = −20◦ and θ2 = −20◦ + ∆θ, respectively, where
∆θ is varied from 1◦ to 40◦ in 1◦ steps. Set SNR = 10 dB, the number
of snapshots L = 32, ρ = 10 and N = 15. As what can be seen in
Figure 5, that the mean number of sources approximate and even equal
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Figure 3. The performance of WSERA as a function of ρ for the
number of sensors N . (a) The mean number of sources versus N and
ρ. (b) The RMS error versus N and ρ.
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Figure 5. The performance of WSERA as a function of the angular
separation ∆θ between two signals. (a) The mean number of sources
versus ∆θ. (b) The bias versus ∆θ.
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Figure 6. The performance of WSERA, CSM, WAVES and TOFS as
a function of ρ. (a) The mean number of sources versus ρ. (b) The
RMS error versus ρ.

to the real value with ∆θ increasing, and as the ∆θ increases, the bias
is smaller and converges to be zero.

Finally, WSERA is compared with coherent subspace method
(CSM), WAVES [2] and TOFS [14]. Set ρ = [0, 20], L = 8 and
SNR = 10 dB, values for N of 12. In Figure 6 it is observed that as ρ
increases, the number of sources estimate obtained by using WSERA
is not correct when ρ > 12, the error becomes greater with about ρ > 5
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when other algorithms are applied; furthermore, the RMS of WSERA
is smaller than CSM and TOFS with ρ increasing, and is very close
to WAVES that gets the best result. Then it can be known that the
performance of WSERA is better than other methods mentioned when
all results are taken into consideration comprehensively.

5. CONCLUSIONS

This paper proposes a new algorithm called WSERA for wideband
signal DOA estimation, based on MMSE. It is different from methods
that require peak searching and recovers the sparse representation
of the signals received to realize wideband signal DOA estimate.
Furthermore, it naturally estimates the number of sources, their
locations, and their power incident on the array, regardless of the
temporal correlation of the sources. The structure for model error
discussed in Section 2 is incorporated into WSERA to account for
unknown gain and phase errors that are present in all array elements
in practice, and its robustness to array error is better than CSM,
WAVES, and TOFS that are based on the eigendecomposition of
a sample covariance matrix (SCM). The simulated results confirm
the effectiveness of WSERA. The new method and simulated results
provide a useful reference for wideband signal DOA estimate in
practical engineering.
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