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Abstract—One of the main techniques for the Finite-Difference
Time-Domain (FDTD) analysis of dispersive media is the Recursive
Convolution (RC) method. The idea here proposed for calculating the
updating FDTD equation is based on the Laplace transform and is
applied to the Drude dispersion case. A novel RC-FDTD algorithm,
that we call modified, is then deduced. We test our algorithm by
simulating gold and silver nanospheres exposed to an optical plane
wave and by comparing the results with the analytical solution. The
modified algorithm guarantees a better overall accuracy of the solution,
in particular at the plasmonic resonance frequencies.

1. INTRODUCTION

We focus here on the explicit Finite-Difference Time-Domain (FDTD)
numerical solution method of the Maxwell’s equations [1, 2], with the
Convolutional Perfectly Matched Layer (CPML) boundary conditions
formulation [3]. Although some other approaches for the simulation of
Drude dispersive media already exist [4–16], we consider the Recursive
Convolution (RC) algorithm [17], that we call standard, as reference.
It time-discretizes directly the convolution integral expressing the
temporal non-locality between the D and E fields. In order to minimize
the truncation error, we propose here to find a closed form solution
of the Ampère-Maxwell equation, and only after to proceed with the
time discretization. We calculate explicitly the kernel of such a closed
form solution in the case of Drude media deducing the modified RC
algorithm, and show how it can be updated recursively with the same
memory requirements than the standard RC scheme. The evaluation of
some error parameters and the comparison of the electromagnetic fields
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highlight the better accuracy of the proposed modified RC algorithm
with respect to the standard one. The test has been done for Au
and Ag noble metals [18] nanospheres, in the optical frequency range,
and makes the modified RC algorithm suitable for the simulation
of plasmonic resonant nanostructures and optical antennas, as for
example proposed in [19, 20].

2. THEORETICAL APPROACH

The temporal non-locality relation between the D and E fields in
dispersive media is expressed by means of the convolution integral

D(t) = ε0ε∞E(t) + ε0

∫ t

0
E(t− τ)χ(τ)dτ (1)

which exhibits a Dirac-delta contribution representing the instanta-
neous response at the infinite frequency through the (relative) permit-
tivity ε∞ term. In (1) χ (τ) is the inverse Fourier transform of the
electric susceptibility χ̄ (ω). This measures the media polarization and
enters the complex permittivity ε (ω) in

D(ω) = ε0 [ε∞ + χ̄(ω)]E(ω) = ε(ω)E(ω), (2)
i.e., the proportionality coefficient between D and E in the angular
frequency domain ω after a Fourier transform with respect to the time
variable. In (2) the same letters are used to denote the fields both in the
time and frequency domain and the space dependence is understood.
The Ampère-Maxwell equation which is time stepped in the FDTD
method, along with the Faraday-Maxwell curl equation for the E and
B fields, is

∇×H =
∂D
∂t

+ σE, (3)

where σ is the static conductivity contribution. Before discretizing (3)
for time stepping however, we analytically solve it with respect to the
time variable by the Laplace transform method, to get a closed form
solution for the electric field E at a given time instant t. If we denote by
s the dual of the time variable t, omit an understood space dependence
as before, and now use a tilde for a Laplace transformed quantity, we
have from (1)

D̃(s) = ε0 [ε∞ + χ̃(s)] Ẽ(s) (4)

and from (3)

∇× H̃(s) = sD̃(s)−D(0) + σẼ(s), (5)
where we assumed that the curl operator ∇×, acting on the space
variables, commutes with the Laplace transform operator. By solving
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for D̃ (s) the first of the two previous equations, inserting the result
in the second one, where an initial time zero-field condition has been
assumed, and then solving for Ẽ (s) we have

Ẽ(s) = G̃(s) ·∇× H̃(s), (6)

where G̃ (s) stands for

G̃(s) =
1

sε0 [ε∞ + χ̃(s)] + σ
. (7)

Note that χ̃(s = −iω) = χ̄(ω) where i =
√−1 is the imaginary unit.

By returning to the time domain through an inverse Laplace transform,
we get the aforementioned closed form exact solution for the electric
field

E(t) =
∫ t

0
G(t− τ) ·∇×H(τ)dτ, (8)

where the convolutional kernel G (τ) depends on the medium dispersion
characteristic. Note that if in (1) χ (τ) were identically zero, we would
recover the usual non-dispersive behavior with the absolute dielectric
constant ε = ε0ε∞. This would imply an identically zero χ̃ in (7) too.
For the corresponding original G we would then get

G(τ) =
1
ε
e−

σ
ε
τ , (9)

where a Heaviside step function factor of argument is understood.
Using this result in (8) and, as is usual in FDTD, sampling at discrete
times nδt, where δt is the time-step, with ∇ ×H and H temporally
sampled halfway at (n + 1/2)δt, one gets an updating equation for E
with exponential coefficients

En+1 = e−
σδt
ε En +

(
1− e−

σδt
ε

)

σ
∇×Hn+ 1

2 , (10)

where superscripts denote time levels. By Taylor expanding to first
order the coefficients in (10) with respect to the small quantity σδt/ε,
they equal their FDTD discrete counterparts expanded to the same
order. With this in mind we think that our approach based on (8)
is less prone to time truncation errors, mainly for highly absorptive
media with rapidly time decaying fields, than the standard method
based on an early discretization of the convolution integral (1).

We now calculate explicitly the convolutional kernel G̃ (s) shown
in (7) in the case of Drude dispersion. This is formulated by the single
term electric susceptibility

χ̃(s) =
ω2

D

s(s + γ)
, (11)
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where ωD and γ are the plasma frequency and the damping coefficient.
This gives

G̃(s) =
s + γ

ε0ε∞(s− s+)(s− s−)
, (12)

where
s± = −P ± iQ (13)

and

P =
1
2

(
γ +

σ

ε0ε∞

)
, Q =

√
ε0ω2

D + σγ

ε0ε∞
− P 2 . (14)

After returning to the time-domain we get

G(τ) =
1

ε0ε∞

[
es+τ (s+ + γ)

s+ − s−
+

es−τ (s− + γ)
s− − s+

]
(15)

which, putting

S =
1
2

(
γ − σ

ε0ε∞

)
, (16)

has the following form

G(τ) = =
{

Ke−Wτ+iΦ
}

, (17)

where

K =
1

ε0ε∞

√
1 +

(
S

Q

)2

, (18)

W = P − iQ, (19)

Φ = arctan
Q

S
, (20)

with K and Φ real quantities. < and = denote the real and imaginary
parts of a complex quantity. By defining the complex vector

Ψ(t) =
∫ t

0
Ke−W (t−τ)+iΦ ·∇×H(τ)dτ (21)

one sees that, according with (8) and (17), the electric field E results
to be

E(t) = ={Ψ(t)} =
∫ t

0
=

{
Ke−W (t−τ)+iΦ

}
·∇×H(τ)dτ. (22)

Sampling (21) at the discrete times nδt (n = 1, 2, . . .) we have

Ψn+1 =
∫ (n+1)δt

0
Ke−W ((n+1)δt−τ)+iΦ ·∇×H(τ)dτ. (23)
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Separating the integration interval we obtain

Ψn+1 = e−Wδt

∫ nδt

0
Ke−W (nδt−τ)+iΦ ·∇×H(τ)dτ

+∇×Hn+ 1
2 ·

∫ (n+1)δt

nδt
Ke−W ((n+1)δt−τ)+iΦdτ (24)

and then
Ψn+1 = e−Wδt ·Ψn + A ·∇×Hn+ 1

2 , (25)

where the complex coefficient A is given by

A =
∫ (n+1)δt

nδt
Ke−W ((n+1)δt−τ)+iΦdτ = K

eiΦ
(
1− e−Wδt

)

W
. (26)

Thus storing, as in the RC traditional scheme [17], one extra complex
variable for each sampling point and each electric field component,
updating it according to (25), and using its imaginary part as a new
electric field value, allows us to include dispersive media in a simpler
and more accurate recursive procedure. By expanding the exponential
factor according to the Euler formula

e−Wδt = e−Pδt · [cos(Qδt) + i sin(Qδt)] (27)

and taking the imaginary part of both sides of (25) we have the
modified form of the electric field updating equation

En+1 = e−Pδt sin(Qδt) · < {Ψn}
+e−Pδt cos(Qδt) ·En + ={A} ·∇×Hn+ 1

2 . (28)

For completeness we report the updating equation of the standard
method [17]:

En+1 = C1 ·Φn + C2 ·En + C3 ·∇×Hn+ 1
2 , (29)

where
Φn = C4 ·En−1 + e−γδt ·Φn−1 (30)

and

C1 =
1

ε0 + χ0
, (31)

C2 = (ε∞ + ∆χ0)C1, (32)

C3 =
δt

ε0
C1, (33)

C4 = e−γδt∆χ0, (34)

χ0 =
∫ δt

0
χ(τ)dτ, (35)
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∆χ0 = −ω2
D

γ

[
1− e−γδt

]2
. (36)

3. SIMULATIONS

To test the modified RC algorithm previously proposed, we apply it to
a 96 nm radius nanosphere, made of gold or silver, in a monochromatic
light beam. The static conductivity is assumed null. We have tested
our modified algorithm in particular for Au at λ = 480 nm and for Ag at
λ = 336 nm and λ = 380 nm, i.e., the resonance wavelengths evidenced
in Fig. 1 through the extinction coefficient Cext defined in [21]. This
coefficient is an efficiency parameter defined as the ratio of the particle
cross section over a surface which is the geometrical projection of the
particle on a plane perpendicular to the incoming field. The extinction,
scattering and absorption coefficients for a spherical particle are:

Cext =
2

r2k2

∞∑

m=1

(2m + 1)<(am + bm), (37)

Csca =
2

r2k2

∞∑

m=1

(2m + 1)
(|am|2 + |bm|2

)
, (38)

Figure 1. Analytical Cext for Au and Ag nanospheres (r = 96 nm)
modeled by Drude dispersion.
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Table 1. Noble metals drude parameters.

ε∞ ωD [rad/s] γ [s−1]

Au 9.84 1.3819 · 1016 1.09387 · 1014

Ag 3.70 1.3521 · 1016 3.19050 · 1013

Cabs = Cext − Csca, (39)

where k = (2πn)/λ, n is the refractive index of the medium
surrounding the sphere, λ is the wavelength of the incident radiation,
an and bn are combinations of Riccati-Bessel functions [22]. These
functions are explicitly dependent on the radius r of the sphere and on
the complex dielectric function of the medium. We used a N ×N ×N
cubic Yee cell discretization, with N = 200, to accommodate the
nanosphere. The cell edge (space step δ = δx = δy = δz) amounts
to 2 nm for a good representation of the geometrical details. The time
step was set to δ/(2c0), with c0 the vacuum light velocity, to satisfy
the Courant stability condition [2] in three dimensions. We also used
a total field/scattered field (TFSF) source [2], placed 8 cells inward
from the outer boundary of the FDTD lattice, to create a plane wave
linearly polarized (along the z-axis), impinging along the positive y-
direction on the nanostructure. The FDTD lattice was completed
with an extra layer, 15 cells thick, supporting the CPML boundary
conditions [3] to simulate an open to infinity surrounding media. We
used the CPML parameters reported in [23]. We used a compact pulse
exciting signal, i.e., of finite duration and with zero value outside
a given time interval [24, 25]. The signal duration T = 1/fmax is
suitably chosen to get spectral distribution results in the range 200–
1000 nm, where fmax is the maximum frequency, as obtained by the
Discrete Fourier Transform (DFT) which is updated at every FDTD
time iteration, until the excitation is extinguished inside the whole
numerical lattice. The excitation signal is (1 − cos(2πt

T ))3 and it can
be considered extinguished in 3 ÷ 4 the time the radiation needs for
propagating along the lattice diagonal. The Drude parameters for Au
and Ag were taken from the literature [18] and are reported in Table 1.

The electric fields, by means of the DFT, are computed for each
sampling point of the lattice at the frequency of interest and are
normalized with respect to the incident electric field component at
the same frequency. The numerical results for the electric field and
the extinction coefficient have been compared with those from the
standard RC method [17] through the analytical solutions obtained
by implementing the methods described in [21]. The numerical
counterpart of Cext is calculated by adding the absorption coefficient
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Figure 2. Error parameters Lξ,η and Lξ comparison for Au (DFT at
λ = 480 nm).

Table 2. Error evaluation at the resonance frequencies.

Au (480 nm) Ag (336 nm) Ag (380 nm)

Lm,x (Ls,x) 0.0386 (0.0548) 0.1275 (0.1533) 0.0374 (0.0421)
Lm,y (Ls,y) 0.0592 (0.0872) 0.2085 (0.2485) 0.0585 (0.0687)
Lm,z (Ls,z) 0.0440 (0.0633) 0.1718 (0.2024) 0.0430 (0.0478)
Lm (Ls) 0.0693 (0.1011) 0.2670 (0.3282) 0.0594 (0.0684)

LCm (LCs) 0.2216 (0.3376) 0.3265 (0.3646) 0.4579 (0.5052)

Cabs to the scattering coefficient Csca, indeed only these two are
evaluable through a numerical approach. The first is the Poynting
vector flux through a closed surface containing the sphere in the
total field domain, the second is calculated by means of the same
flux through a closed surface located in the scattered field region.
In order to evaluate the deviation of the numerical results from the
exact solution we considered the average error for each electric field
component

Lξ,η =
1

N3

N∑

i,j,k=1

∣∣∣Eξ
η(i, j, k)− Ea

η (i, j, k)
∣∣∣ , (40)
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Table 3. LCξ over the total frequency range.

Au Ag

LCm (LCs) 0.0515 (0.0747) 0.0926 (0.1019)

Figure 3. Total field Ex, Ey, Ez for Au nanosphere (DFT at
λ = 480 nm) along the x axis (y = 170, z = 120).

the average error for the electric field module

Lξ =
1

N3

N∑

i,j,k=1

∣∣∣
∣∣∣Eξ(i, j, k)

∣∣∣−
∣∣∣Ea(i, j, k)

∣∣∣
∣∣∣ (41)

and the average error for Cext

LCξ =
1

Nλ

Nλ∑

i=1

∣∣∣Cξ
exti

− Ca
exti

∣∣∣ , (42)

where η = {x, y, z} indicates the cartesian component, ξ = {s, m}, the
letters s, m, a denote standard, modified and analytical solution, and
Nλ is the number of wavelengths at which Cext has been evaluated. The
values in Table 2 were obtained with 12000 time iterations simulations.
For the gold resonance the error parameters (40) and (41) are reported
as a function of the number of FDTD iterations (Fig. 2). We can
observe that the convergence is reached after the same number of
FDTD time iterations than in the standard case and in all the cases
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Figure 4. Total field Ex, Ey, Ez for Au nanosphere (DFT at
λ = 480 nm) along the y axis (x = 150, z = 150).

Figure 5. Total field Ex, Ey, Ez for Au nanosphere (DFT at
λ = 480 nm) along the z axis (x = 150, y = 170).
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Figure 6. Cext for a gold nanosphere (r = 96 nm) modeled by Drude
dispersion.

Figure 7. LCξ comparison for gold in the total frequency range, and
in the region of Cext minimum and maximum.
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the level of accuracy is better. The better numerical accuracy is also
evidenced with a comparison of the total electric field extracted from
the lattice along one direction in x, y and z (Figs. 3–5). In each figure
the three components of the electric field (Ex on the left, Ey in the
middle and Ez on the right) are represented. The sharp peaks are due
to the field inside the sphere, that is very low (metallic sphere), and to
some symmetry planes where the field is zero. For gold and silver the
extinction coefficient has been calculated and the error parameter (42)
at the resonance frequencies (Table 2) and over the total frequency
range are reported (Table 3). For gold moreover the Cext comparison
is shown in Fig. 6, while in Fig. 7 the error parameter (42) is evaluated
for the total frequency range and in the peak regions (λ = 400 nm and
λ = 480 nm) varying the number of time iterations.

4. CONCLUSION

We proposed a modified Recursive Convolution algorithm for the
FDTD analysis of Drude dispersive media. The algorithm has been
tested by comparing the electric field and the extinction coefficient
deviation from the analytical solution for gold and silver nanospheres.
It evidences an accuracy improvement with respect to the standard
RC method. The better precision is observable in particular at the
plasmonic resonance frequencies and makes the modified algorithm
suitable for plasmonic simulations.
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