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Abstract—This research introduces compressed sensing (CS) prin-
ciple into inverse synthetic aperture radar (ISAR) imaging of non-
uniform rotation targets, and high azimuth resolution can be achieved
with limited number of pulses. Firstly, the sparsity of the echoed signal
of radar targets with non-uniform rotation in certain matching Fourier
domain is analyzed. Then the restricted isometry property (RIP) and
incoherence of partial matching Fourier matrices are checked, following
which an ISAR imaging method based on CS for both random sparse
aperture and short aperture cases is proposed. In particular, consid-
ering the dependence of the sparse dictionary on the relative rotation
parameter, a parameter estimation method by the optimal search in
fractional Fourier domain is presented. Simulation experiments verify
the effectiveness as well as superiority of the proposed imaging method
over traditional methods in terms of imaging performance.

1. INTRODUCTION

Inverse synthetic aperture radar (ISAR) imaging technique is of great
importance in air/space surveillance and ballistic missile defense.
Generally, high range resolution is obtained by transmitting wide
bandwidth signal and high azimuth resolution is obtained by enough
large rotation angle during the coherent processing interval (CPI) [1].
In practice, ISAR targets are usually noncooperative and of strong
maneuverability, which may bring great difficulty to the azimuth
compression of ISAR imaging for lack of sufficient echo data. In
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addition, some pulses may be interfered or used for other radar
functions, such as target searching and tracking. All the phenomena
may induce incomplete or gapped sampling, which motivates high
resolution ISAR imaging methods with very limited pulse echo, and
that resolving the contradiction between limited pulse echo and
azimuth resolution becomes necessary.

The recently arisen compressed sensing (CS) theory [2, 3] breaks
through traditional signal acquisition conception, it argues that sparse
or compressible signal can be recovered exactly or approximately
via nonlinear optimization from just a few incoherent projections,
and has got rapid development in the collection and reconstruction
of sparse or compressible signal. It is well known that the
electromagnetic characteristics of radar target in high frequency
domain can be characterized by a few isolated scattering centers, this
provides possibility for the application of CS to radar imaging [4–
9]. Recently, the CS-based short aperture and sparse aperture ISAR
imaging methods have already attracted extensive attention and made
preliminary progress [10–17]. However, all the above-mentioned work
are under the assumption that the target’s rotation during the CPI
is uniform, so the echoed signal in a range cell is composed of single
frequency components, and the corresponding sparse dictionary is a
discrete Fourier matrix. In fact, the uniform rotation is just a kind
of coarse approximation, the non-stationary motion which results in
non-uniform rotation often accompanies our interested targets, such as
missiles and aircraft with high speed or maneuverability, and warships
with complex pendulum motion. In this instance, the echoed signal
cannot achieve energy concentration in Fourier domain [18].

In general, the CPI of ISAR imaging is not long, so that
it is feasible to approximate the non-uniform rotation of target
by uniformly accelerated rotation. According to the radar echo
characteristics of non-uniform rotation targets, especially uniformly
accelerated rotation targets, ISAR imaging methods based on discrete
chirp-Fourier transform (DCFT), fractional Fourier transform (FRFT)
and matching Fourier transform (MFT) have been proposed and
studied [18–22]. In light of the good energy concentration property of
MFT to non-stationary signal, MFT-based ISAR imaging method is
discussed in [21, 22], where MFT is utilized for azimuth compression,
and only once parameter estimation is needed in the entire imaging
process. Inspired by their work and combine with CS principle,
we introduce CS into the ISAR imaging problem of non-uniform
rotation targets [23]. The major contribution of this paper is that we
improve the imaging performance of previous methods for non-uniform
rotation targets by more reasonable sparsity analysis and parameter
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optimization, especially for the case of limited pulses corresponding to
sparse apertures and short apertures.

In Section 2, we introduce the radar echo model of non-uniform
rotation targets and analyze the sparsity of range cell echo in
matching Fourier domain. In Section 3, we establish the compressive
measurement model in azimuth direction, and the restraint condition
on the effective measurement matrix for CS reconstruction is checked,
including the Restricted Isometry Property (RIP) and incoherence.
After that, a CS-based imaging method for non-uniform rotation
targets is proposed and the detailed procedures are presented in
Section 4. Particularly, in view of the fact that the range cell echo
of uniformly accelerated rotation targets is multi-component linear
frequency modulation (LFM) signal, and the ratio of the quadratic
phase coefficient to the linear phase coefficient is a constant depending
on the relative rotation parameter, which must be pre-estimated for the
sparse dictionary construction, we propose to estimate the parameter
based on the energy concentration property of LFM signal in FRFT
domain. In Section 5, the effectiveness of the proposed imaging method
and its superiority over traditional methods are demonstrated via
simulation experiments. Finally, the whole paper is summed up.

2. RADAR ECHO MODEL OF NON-UNIFORM
ROTATION TARGETS AND SPARSITY ANALYSIS

2.1. Radar Echo Model

For analytical simplicity, motion compensation is assumed to have
been accomplished. As illustrated in Figure 1, the distance from
the target to radar is R0, the target rotation angle at time t is θ(t)
and 0 ≤ t ≤ Tobs, where Tobs denotes the CPI. Under the far field
assumption, the instantaneous distance from the ith scattering center
(xi, yi) of the target to radar is given by

Ri(t) = R0 + xi sin θ(t) + yi cos θ(t) (1)

Suppose the radar transmits LFM signals with pulse width Tp and
band width B, namely

ST

(
t̂, tm

)
= rect

(
t̂

Tp

)
exp

{
j2π

(
fct +

1
2
γt̂2

)}
(2)

where rect (·) denotes the unit rectangular function, fc, γ = B/Tp, t̂
and tm are the carrier frequency, chirp rate, fast-time and slow-time,
respectively. Assuming that the target to be imaged consists of P
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Figure 1. Geometric model of ISAR.

scattering centers, δi is the backward scattering intensity of the ith
scattering center, then the echoed signal in the range-Doppler domain
after range compression can be expressed as

S (r, t) = rect
(

t

Tobs

) P∑

i=1

δiTp sinc
{

2γTp

c
[r−xi sinθ(t)−yicos θ(t)]

}

·exp
{
−j

4π

λ
[xi sin θ(t) + yi cos θ(t)]

}
(3)

where c is the light velocity, and λ = c/fc is the wavelength.
Generally, the rotation angle during the CPI satisfies the small

angle approximations that sin θ(t) ≈ θ(t), cos θ(t) ≈ 1, θ(t) can be
expanded into Taylor series as θ (t) = Ω0t + Ω1t

2
/
2! + Ω2t

3
/
3! + . . ..

In most applications, the CPI of ISAR is usually not long, generally
several seconds, it is advisable to take the second-order approximation,
i.e., the target approximately rotates with a constant acceleration.
Suppose the initial angular velocity is Ω0, the angular acceleration
is α, then (3) can be approximated by

S (r, t) = rect
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(4)

Assuming that there is no migration through range cell (MTRC) or
the MTRC has been removed, the nth range cell contains Pn scattering
centers with different cross-range locations, then the echoed signal in
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this range cell can be expressed as

Sn (t) = rect
(

t

Tobs

)Pn∑

i=1

δ′i exp
{
−j

4π

λ
xi

(
Ω0t+

1
2
αt2

)}
(5)

where δ′i = δiTp exp
{−j 4π

λ n∆r
}
, ∆r = c/2B is the range resolution.

Till now, we establish the radar echo model in the range-Doppler
domain of uniformly accelerated rotation targets. As can be noted from
(5), the echoed signal in a range cell is the linear superposition of Pn

LFM components with center frequency fi = −2Ω0xi/λ and chirp rate
µi = −2αxi/λ, each component corresponds to the echoed signal in
the range cell from a strong scattering center, and the signal parameter
reflects the target rotational characteristic. Both the initial frequency
and chirp rate are different for scattering centers with different cross-
range locations, which cannot be discriminated by simple Fourier
transform (FT). However, both fi and µi are in direct proportion to
the scattering center cross-range location xi, and their ratio satisfies

µi/fi = α/Ω0 = η0 (6)

2.2. Sparsity Analysis in Matching Fourier Domain

As a generalization of conventional FT, MFT is an effective signal
processing tool for non-stationary signal [24, 25], which can achieve
energy concentration in matching Fourier domain by selecting a proper
basis function. Compared with FT, the key point of MFT lies in that
it considers the integral path, also known as the frequency modulation
function. The same signal has distinct transform results with respect
to different integral paths, i.e., the projections of the same signal in
different orthogonal systems are dissimilar. The signal energy can be
concentrated in the matching Fourier spectrum only when the integral
path matches well with the signal.

Let ωi = 4π
λ xiΩ0, φ (t) = t + 1

2η0t
2, then φ (t) is a monotonously

bounded function and φ (0) = 0. Taking φ (t) = t + η0t
2
/
2 as the

integral path, the MFT of Sn(t) is given by

Sn (ω) =
∫ Tobs

0
rect

(
t

Tobs

) Pn∑

i=1

δ′i exp{−j (ωi+ω) φ (t)} (1+η0t) dt (7)

According to the linear property of MFT and let fd = ω/2π, we
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can get

Sn (fd) =
Pn∑

i=1

δ′i · φ (Tobs) · sinc
[
φ (Tobs)

(
fd +

2xiΩ0

λ

)]

· exp
{
−jπ

(
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2xiΩ0

λ

)
φ (Tobs)

}
(8)

Obviously, Sn(t) is transformed into sinc pulses with a narrow
width of 1/φ(Tobs) by MFT and achieves energy concentration. The
cross-range distribution of the target reflectivity can be determined
from peak positions of the sinc pulses, the peak value position fdi and
the scattering center cross-range location xi satisfy xi = −fdi·λ/2Ω0,
so the corresponding azimuth resolution is ∆x = λ/(2θ (Tobs)),
where θ (Tobs) = Ω0φ (Tobs) is the total rotation angle during the
CPI. Therefore, the azimuth resolution of MFT method is consistent
with conventional Range-Doppler (RD) algorithm. Consequently, the
representation of range cell echo in certain matching Fourier domain
can characterize the cross-range distribution of the target reflectivity.
In other words, the echoed signal in the range-Doppler domain of
uniformly accelerated rotation targets is sparse in matching Fourier
domain, and each component corresponds to a prominent scattering
center in the range cell.

To facilitate the forthcoming analysis, we prefer to express the
echo model in matrix form. Denoting the vector form of Sn(t) as
sn, σ is the sparse coefficient of sn in matching Fourier domain and
represents the spatial distribution of the target scattering centers in
the nth range cell. Let Fη be the normalized MFT matrix, then

Fηsn = σ (9)

The basis function set {e−jωφ(t)} of MFT is orthogonal after
taking the integral path into consideration [25], and the existence
of the matching Fourier orthogonal set ensures that the interested
signal can achieve energy concentration by MFT. As the discrete MFT
takes the integral path into account, the corresponding MFT matrix
is approximately orthogonal, hence FH

η Fη ≈ I, FH
η ≈ F−1

η , where FH
η

denotes the conjugate transpose matrix of Fη. Then, (9) can be recast
as

sn = FH
η σ = Ψσ (10)

where Ψ = FH
η is just the sparse dictionary of range cell echo sn. In

essence, it means that Ψ transforms the sparsity in Doppler domain
into a sparse vector via MFT operation.
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Figure 2. Linear measurement sketches of sparse aperture and short
aperture data. (a) Sparse aperture case. (b) Short aperture case.

3. COMPRESSIVE DATA ACQUISITION AND
MEASUREMENT MATRIX EVALUATION

The state-of-art multifunction radar system usually provides gapped
and short interval observation, the corresponding sampling pattern in
Doppler domain can be considered in the construction of the azimuth
sparse dictionary [13], thereby the super-resolution image can be
obtained via CS algorithm. Suppose the compressive sampling matrix
is Φ, in the short aperture case, the action of Φ is equivalent to
selecting partial rows of Ψ in series, thus Φ is a matrix consisting
of partial sequential rows of an identity matrix. In the random sparse
aperture case, the action of Φ is equivalent to selecting partial rows
of Ψ randomly, thus Φ is a matrix consisting of partial random rows
of an identity matrix. Figure 2 illustrates the linear measurement
process in both cases of sparse aperture and short aperture. Assuming
that the noise vector in the nth range cell is n, then the compressive
measurement model can be expressed as

yn = ΦΨσ + n = ΦFH
η σ + n = Θσ + n (11)

where Θ = ΦΨ = ΦFH
η denotes the effective measurement matrix,

also called reconstruction matrix. Here Θ is a partial matching Fourier
matrix with more columns than rows in essence.

CS theory indicates that, when Θ obeys the so-called RIP or
incoherence condition, the target reflectivity distribution σ in a range
cell can be recovered by resolving the `1 norm minimization problem
with relaxation constraint as follows:

σ̂ = arg min ‖σ‖1 s.t. ‖y −Θσ‖2 ≤ ε (12)

where ε is a threshold determined by the noise level. Designing a
sensing matrix Φ such that the resulting effective measurement matrix
Θ = ΦΨ has the RIP is a fundamental problem in CS. Both random
Gaussian matrix and partial Fourier matrix are well known to obey
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the RIP with high probability under certain sparsity condition [11, 26].
To check the validity and stability of the CS-based imaging method
using limited pulse echo, the RIP and incoherence of matrix Θ should
be evaluated in priority.

A matrix Θ is said to satisfy the RIP of order K with the
Restricted Isometry Constants (RIC) δK ∈ (0, 1) if

(1− δK) ‖v‖2
2 ≤ ‖Θv‖2

2 ≤ (1 + δK) ‖v‖2
2 (13)

for any K-sparse signal v (‖v‖0 ≤ K). The RIP essentially states that
all subsets of K columns taken from Θ are in fact nearly orthogonal,
and the smaller the RIC, the better the approximation. A related
condition is known as incoherence. The incoherence of Θ requires
that the rows of Φ cannot sparsely represent the columns of Ψ and
vice versa, it can be measured by the mutual coherence µ which is
defined as the maximum of the correlation coefficients between any two
normalized columns of Θ [27]. Equivalently, once the columns of Θ
have been normalized, µ can be viewed as the largest off-diagonal entry
of the Gram matrix G = ΘHΘ. Generally, smaller µ is propitious to
sparse recovery, the matrix Θ is said to be incoherent when µ is small.

Suppose the support of a K-sparse signal v ∈ CM is Ω, and ΘΩ is
a submatrix of Θ containing only partial columns of Θ indexed by Ω.
Theoretically, to check whether Θ satisfies K-RIP, we need to check
whether the eigenvalues of ΘH

Ω ΘΩ are in the interval (1− δK , 1 + δK)
(sufficiently close to 1) for all CK

M possible Ω, which is computationally
difficult. To facilitate analysis, considering the signal rather than the
measurements stochastically, we take the statistical average value of
the extremal eigenvalues of ΘH

Ω ΘΩ as a quality measure as in [26].
Suppose the dimension of the sparse signal to be recovered is M = 256,
the available sample amount is 64, then the size of corresponding
Θ is 64×256. We perform 1000 Monte Carlo trials to analyze
the eigenvalue statistics of ΘH

Ω ΘΩ, the means of the maximum and
minimum eigenvalues of ΘH

Ω ΘΩ for varying K is shown in Figure 3(a),
and different sets Ω are generated uniformly random over all CK

M
sets for every value K. For comparison, the statistical results of
random Gaussian matrix and partial Fourier matrix are also given.
Thereinto, ‘MFT1’ and ‘MFT2’ respectively represent the partial
matching Fourier matrices under the circs of sparse aperture and short
aperture, ‘Gaussian’ denotes the random matrix with Gaussian entries
of zero mean and 1/64 variance, while ‘FT1’ and ‘FT2’ correspond to
the partial Fourier matrices in the sparse aperture and short aperture
cases [10, 15], respectively.

As seen from Figure 3(a), our partial matching Fourier matrix
has similar statistical results to partial Fourier matrix, this implies
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Figure 3. Analysis on the constraint condition of CS reconstruction.
(a) Eigenvalue statistics of ΘH

Ω ΘΩ. (b) Autocorrelation matrix of Ψ.

they have similar RIP property. Moreover, the eigenvalues of ΘH
Ω ΘΩ

with respect to MFT matrix and FT matrix are, on average, closer to 1
compared to the Gaussian measurement case, which means that smaller
RICs can be obtained in a statistic sense. As a special case, Figure 3(a)
tell us that when |Ω| ≤ 18, the deviations of the eigenvalue statistics
from one with respect to MFT matrix and FT matrix are smaller than
1, while the critical condition in Gaussian case is |Ω| ≤ 15. Therefore,
if Gaussian matrix satisfy any K-RIP condition, our Θ will also be
able to recover a random K-sparse signal with high probability.

To check the incoherence of Θ, the autocorrelation matrix of the
sparse dictionary Ψ is computed and depicted in Figure 3(b). Notably,
the autocorrelation matrix is close to an identity matrix, of which the
diagonal entries are dominant, this fact means that Ψ is approximately
orthogonal and satisfies the constraint condition of signal recovery from
a small number of measurements, the corresponding Θ is essentially
a kind of subsampled incoherent bases that can be used as a CS
reconstruction matrix [28].

4. RADAR IMAGE FORMATION

4.1. Parameter Estimation

ISAR targets are often noncooperative, the rotation parameters cannot
be obtained directly so as to determine the optimal integral path. From
the analysis in Subsection 2.2, only the relative rotation parameter η0

is required to define φ(t), i.e., as long as the phase coefficients of the
echoed signal from a certain scattering center are estimated, η0 can
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be calculated to determine φ(t). For our specific case of imaging with
limited pulses corresponding to short apertures and sparse apertures,
the range cell echo data is length limited and/or incontinuous, we
propose to perform the detection and estimation of LFM signal via
sparse component analysis, then the relative rotation parameter can
be calculated and utilized to construct the MFT dictionary.

As a novel time-frequency analysis method, the completely time-
domain analysis and linear transform property of FRFT make it
having particular superiority in the processing of LFM signal [29].
FRFT can be viewed as a rotation of the time-frequency plane, the
rotation angle α and the transform order p satisfy α = pπ/2. The
FRFT of a LFM signal with finite length can achieve the best energy
concentration in a proper fractional Fourier domain, this property
has already been used in the separation of multi-component LFM
signal [19]. As mentioned before, the range cell echo of uniformly
accelerated rotation targets with multiple scattering centers is multi-
component LFM signal, and both the initial frequency and chirp
rate of each component are different, thereby appears as multiple
noncrossing slant lines in the time-frequency plane, the echoed signal
corresponding to each scattering center will concentrate to a peak of
sinc function in the fractional frequency spectrum perpendicular to
it. When one component achieves the best energy concentration in
a certain fractional Fourier domain, the energy of other components
will disperse, as shown in Figure 4. For clarity purpose, only the
projections with the optimal energy concentration in the fractional
frequency domain u1 and u2 are depicted.

In fact, we only need to estimate the LFM signal parameters
of a strong scattering center in a range cell, i.e., estimate the LFM

f

t

1
u

2
u

1v

2v
1 2α α

Figure 4. FT and FRFT sketch of range cell echo data.
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parameters of the strongest component. The energy concentration
property of LFM signal in fractional Fourier domain can be measured
by the fourth-order origin moment of the fractional frequency
spectrum, the better the energy concentration, the larger the origin
moment. Therefore, given the rotation angle or transform order
interval within which we perform parameter optimization, the optimal
rotation angle α0 can be found taking the maximum origin moment of
the recovered fractional spectrum as search criteria, thus the chirp rate
estimation is µ̂ = − cotα0. Afterwards, the peak value position of the
obtained fractional spectrum is searched to get the initial frequency
f̂0 = u/sin α0, accordingly the relative rotation parameter η̂0 = µ̂

/
f̂0.

Note that there is a tradeoff between computation complexity and
search precision, the golden section method [30] is adopted for efficiency
purpose in this paper.

4.2. Imaging Process

Once the relative rotation parameter η̂0 is obtained, we substitute
it into φ(t) to determine the optimal integral path, then the MFT
dictionary can be constructed, and the azimuth compression can
be realized via nonlinear optimization. Taking both the operation
efficiency and reconstruction precision into consideration, we adopt
the smoothed L0 (SL0) algorithm [31] in the following experiments,
and the superiority of matrix operation of SL0 algorithm in multiple
sparse recovery is utilized for efficiency purpose.

To avoid the estimation error of η̂0 getting too large and improve
the reconstruction performance, we take the result of FT dictionary [10]
as a comparison and make adjustment in time. In theory, since our
MFT dictionary matches better with the echo model of non-uniform
rotation targets, its result is superior to, or at least comparable with
the result of FT dictionary, otherwise, we are again in a demand
to select a new range cell to estimate the parameter η0. If the
reconstruction result is relatively preferable, we proceed with further
search within a small range around η̂0, and choose the optimal result
as our final imaging output. In the comparison process, the sparsity of
the reconstructed cross-range profile measured by `1 norm is taken as a
quality metric, the smaller the `1 norm, the sparser the reconstruction
result.

In summary, the proposed CS-based imaging method for non-
uniform rotation targets can be described as follows:

1) Preprocessing. With the limited pulse echo data after range
compression and motion compensation, construct the FT dictionary
F and calculate the corresponding effective measurement matrix Θ̃ =
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ΦF, then perform azimuth compression via SL0 algorithm and store
the result for the comparison in step 4).

2) Parameter estimation. Choose a certain range cell and
estimate the strongest LFM component parameters based on the
sparse representation in FRFT domain, thereby determine the relative
rotation parameter η̂0.

3) Azimuth compression. Construct the MFT dictionary FH
η in

light of η̂0, and perform azimuth compression via SL0 algorithm with
the effective measurement matrix Θ = ΦFH

η .
4) Comparison processing. Compare the energy concentration

effect with the result in step 1), if the result corresponding to FH
η

is inferior, go back to step 2) and select a new range cell, otherwise,
proceed with the next step.

5) Refined optimal search. Set a small change range around η̂0

and search the optimal reconstruction result further within the refined
interval, take the sparsest result as the output, consequently a clear
ISAR image is obtained from limited pulses.

It is worth pointing out that, since the MTRC of scattering center
may occur and different targets have diverse reflectivity distribution,
the rotation parameter estimation approach by directly selecting a
certain range cell needs the active participation of human. We can
consult the idea in [18] and estimate η0 based on all echo data, i.e.,
integrate (4) with respect to the radial range r, and then proceed
based on the integrated result. In practical implementations, the
proposed algorithm maintains the insensitivity of traditional MFT-
based imaging method [22] to the parameter estimation precision, thus
step 5) often can be omitted.

5. SIMULATION EXPERIMENTS

Here we use both simulated data and measured data in anechoic
chamber to verify the effectiveness of the proposed imaging method.
For simplicity, conventional FFT method is utilized for range
compression in the following simulations, the difference among different
imaging schemes mainly lies in the azimuth direction processing.

5.1. Simulated Data

Suppose the radar transmits LFM signals with carrier frequency
10GHz, bandwidth 1 GHz and pulsewidth 100µs, the pulse repetition
frequency is 400 Hz, the sampling amount within a pulse time is
256, amounting to 256 transmitted pulses. As shown in Figure 5(a),
the simulated target consists of 16 scattering centers with a uniform
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intensity, it rotates with an initial angular velocity of Ω0 = 0.15 rad/s
and an acceleration of α = 0.45 rad/s2, then η0 = 3. In addition, we
add complex white Gaussian noise to the simulated radar echoes, the
signal-to-noise ratio (SNR) is 15 dB.

Figure 5(b) shows the imaging result of traditional RD method
with the full aperture data, Figures 5(c) and (d) present the results
of MFT-based method with the full aperture and 1/4 short aperture
data, respectively, and the rotation parameters are assumed to be
known exactly in both cases. Notably, the ISAR image produced
by RD algorithm is heavily defocused in the cross-range direction,
and the farther the scattering center away from the rotating center,
the severer the defocusing and distortion effect. This fact occurs as
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Figure 5. Simulated target model and imaging results of traditional
methods. (a) Simulated target model. (b) Full aperture RD imaging.
(c) Full aperture MFT imaging. (d) Short aperture MFT imaging.
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Figure 6. CS-based imaging results of the simulated target with
sparse aperture and short aperture data. (a) Sparse case with MFT
dictionary. (b) Sparse case with FT dictionary. (c) Short case with
MFT dictionary. (d) Short case with FT dictionary.

a result of the Doppler time-varying property of scattering centers
induced by the non-uniform rotation of the target. In contrast, the
ISAR image obtained by MFT method focuses very well and has
remarkably improved quality. However, except for the demand of
parameter estimation, MFT method also requires sufficient pulses to
get high azimuth resolution. When the effective aperture is sparse
or short, MFT method cannot achieve the expected result, and even
become invalid in the sparse aperture case. Due to space limitations,
the completely distorted imaging result with respect to sparse aperture
is not displayed.

To verify the effectiveness of the proposed CS-based imaging
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method for non-uniform rotation targets, suppose that part of the
transmitted 256 pulses are missed and only the echo data from 64
wideband pulses are collected randomly. The CS reconstruction results
based on MFT dictionary and FT dictionary are shown in Figures 6(a)
and (b), respectively, where the parameter estimation η̂0 = 3.1769.
Figures 6(c) and (d) present the CS results based on the two sparse
dictionaries with the short aperture data of 64 continuous pulses,
respectively, where the parameter estimation η̂0 = 2.9831. As can
be seen, the proposed method can achieve high azimuth resolution
with limited number of pulses, the scattering center distribution in the
image correctly reflects the actual distribution of the target reflectivity.
Both CS-based methods with the two dictionaries can overcome the
defocusing effect in azimuth direction of non-uniform rotation targets.
However, there is a cross-range scaling in the results of CS method
with FT dictionary due to its mismatch to the target echo model,
while the results of our method which matches better with the target
motion model are more preferable in comparison. In addition, as
traditional FFT method is used for range compression, relative high
side lobes appear in the range direction, while CS-based method avoids
the problem of high side lobes accompanying traditional methods
effectively.

To compare the imaging performance of our CS-based method
with several traditional methods more visually, the profiles of the
111th range cell of the imaging results are shown in Figure 7, where
FFT method and MFT method utilize the full aperture data (since
traditional methods cannot get well-focused results with limited pulse
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Figure 7. Range cell profiles of azimuth compression. (a) Random
sparse aperture. (b) Continuous short aperture.
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data), while both CS-based methods utilize 1/4 pulse echo data.
From the comparison, we can find that the CS-based methods have
better side-lobe suppression effect than traditional methods, and the
reconstruction result of the proposed method is more consistent with
the target reflectivity, thus it can get more focused ISAR image even
with less measurement data.

5.2. Measured Data

The observation radar in anechoic chamber operates in the frequency
scanning mode, and its work frequency ranges from 8 GHz to 12 GHz
with a step size of 20MHz. As shown in Figure 8(a), the measured
target is a scaled model of warhead, the pitching angle is 0◦, and the
azimuth angle varies from 0◦ to 90◦ with a step size of 0.2◦. Suppose
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Figure 8. Measured target model and imaging results of traditional
methods. (a) Outline of the measured target. (b) RD imaging.
(c) MFT imaging.
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Figure 9. CS-based imaging results of the measured target with
sparse aperture and short aperture data. (a) Sparse case with MFT
dictionary. (b) Sparse case with FT dictionary. (c) Short case with
MFT dictionary. (d) Short case with FT dictionary.

that the initial azimuth angle is 0◦, the target rotation parameters are
Ω0 = 1 rad/s and α = 4 rad/s2, then η0 = 4. The sampling frequency
in azimuth direction is 300, amounting to 51 pulses, thus the total
rotation angle is 12.7◦. Figures 8(b) and (c) illustrate the imaging
results of traditional RD method and MFT method with the full
aperture data. As shown, owing to the non-uniform sampling in cross-
range induced by non-uniform rotation, the defocusing phenomenon
occurs in azimuth direction of the RD image, while MFT method takes
the non-uniform rotation into consideration, better focusing result is
obtained, but there still exist relatively high side lobes.
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The imaging results of CS methods based on the two sparse
dictionaries in the sparse aperture and short aperture cases are given
in Figure 9, where only 26 pulses are used for imaging. Obviously,
the CS-based imaging method can achieve high azimuth resolution
with limited pulse echo data. By contrast, the reconstruction results
corresponding to MFT dictionary exceed the results of FT dictionary in
quality, especially in the circs of sparse aperture, the target reflectivity
distribution in the image obtained by our method is more explicit, and
has less background clutters, which is beneficial to feature extraction
and target recognition. The conventional FT dictionary has better
results in the short aperture case than the sparse aperture case, this is
because that the target motion characteristic can be simplified properly
in the short aperture case. Consequently, the results of anechoic
chamber data verify the effectiveness and superiority of the proposed
method for non-uniform rotation targets.

It should be noted that, since the azimuth sampling interval (0.2◦)
of the measured data in anechoic chamber is relatively large, the
equivalent sampling points of the target with non-uniform rotation
may be off the measurement points in overwhelming probability,
thereby most sampling points are taken approximation processing,
which inevitably will bring some errors to the synthesized data.
These errors produced by approximation processing may not have
negative influence on traditional imaging methods, but will make the
performance of the proposed method degrade in a certain extent,
because the corresponding echo model varies slightly.

6. CONCLUSIONS

The non-uniform rotation of ISAR targets can be reasonably
approximated by uniformly accelerated rotation during the CPI. In
light of the superiority of CS on processing sparse or compressible
signal, a novel strategy for ISAR imaging of non-uniform rotation
targets with limited pulses has been studied in this paper. The
sparsity of the range cell echo in certain matching Fourier domain
is analyzed, then the RIP and incoherence of the corresponding
effective measurement matrix are checked, after which a CS-based
ISAR imaging method is proposed. As the sparse dictionary for
reconstruction depends on the relative rotation parameters of radar
target, in view of the fact that the range cell echo of uniformly
accelerated rotation targets is multi-component LFM signal, and the
energy concentration property of FRFT to LFM signal, a parameter
estimation method based on sparse representation and optimal search
is presented. Compared to the existing imaging methods for non-
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uniform rotation targets, the proposed method can achieve high
azimuth resolution with sparse aperture or short aperture data, it
performs better in terms of imaging performance, and can be easily
extended to targets with higher order rotation motion. The difference
lies in that the polynomial phase coefficients of the echoes of a
strong scattering center should be estimated in advance, which can
be implemented by choosing a proper basis function and incorporating
evolution algorithms. However, there are still many issues need further
study, such as lower computational efficiency and higher sensitivity to
the signal-to-noise ratio for the current Algorithms.
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