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Abstract—In this paper, we focus on the adaptive prior detection
threshold setting problem to optimize the overall performance of
the joint detection-tracking system for maneuvering target tracking
in clutter. It is shown that our problem can be reduced to the
information reduction factor (IRF) maximization by Gaussian fitting
of maneuvering target Markovian switching dynamics via moment
matching, even for the case with the nonlinear measurement equation.
Our proposed adaptive threshold setting method outperforms the
conventional threshold setting approaches greatly and also exhibits a
mildly improvement in comparison with the earlier method for this
problem in terms of tracking performance, especially in track loss
percentage (TLP). However the computational burden of our method
is reduced significantly because in our method generally only one
IRF corresponding to the common validation region, not the every
IRF corresponding to the individual model-conditioned validation
region, is needed for threshold optimization at each time step and an
approximate closed-form solution can also be obtained for the special
case of the Neyman-Pearson (NP) detector.

1. INTRODUCTION

It is well understood that the tracking performance depends
significantly on the quality of the measurement data [1, 2], which
is provided by the upstream detection subsystem, in terms of both
the measurement noise covariance and signal processing parameters,
primarily the probabilities of detection and false alarm, when
measurement-origin uncertainty occurs [3, 4]. Evidently the detection
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and false alarm probabilities, which are absolutely interdependent via
the receiver operating characteristic (ROC) curve given the signal-to-
noise ratio (SNR), are adjustable. However in the conventional radar
or sonar design and processing, detection and tracking subsystems are
often treated as the separate entities [5–9] and typically false alarm
probability is predetermined and kept constant or selected so that the
expected number of false alarms within the validation region equals
a predetermined value in consideration of the trade-offs between false
alarms and missed detections. The effect of false alarm probability
setting on data association performance and tracking error statistics is
not accounted for.

Several efforts have been devoted to establishing a link between
signal processing subsystem and data processing subsystem. The
assumption of the joint detection-tracking system allows a feedback
from the downstream tracker to the detector to optimize the overall
system performance. Note that detection threshold need not be
the actual optimized parameter since detection threshold depends
entirely on false alarm probability. In fact false alarm probability is
often used as a substitute for detection threshold in the procedure
of optimization for convenience sake. In reference [1], the steady-state
optimization of detection threshold is investigated by iterating forward
the modified Riccati equation (MRE) to convergence and a graphical
method is suggested to determine the receiver operating point that
optimize tracker performance. However the graphical method is
inefficient and also inappropriate for time-varying systems or when
the SNR is time varying. To overcome the deficiencies of graphical
method, the detection threshold optimization procedure is rigorously
formulated and two adaptive detection threshold optimization schemes,
namely prior and posterior threshold optimization which depend on
measurements up to the previous and current time step respectively,
are proposed by minimizing the tracking mean square error (MSE)
in [10]. In particular, the prior optimization method requires a single
line search for the optimal detection threshold because IRF in the MRE
must be evaluated numerically. A satisfactory empirical approximation
to IRF in the MRE for a given scenario presented in [11] leads to a
closed form solution for the prior threshold optimization scheme in the
case of NP detector [12]. It is also demonstrated in reference [13] that
the technique of hybrid conditional averaging (HYCA) can be used
for adaptive detection threshold optimization. However the studies
in references [1, 10, 12, 13] are all preformed for the probabilistic data
association filter (PDAF). The prior threshold optimization method
is extended to the scenario of maneuvering target tracking [16, 21]
in clutter and multiple model (MM) filtering method in [14]. The
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simulation results show that track loss percentage (TLP) decreases
notably at a cost of increased computational load due to a line search
when the proposed extension in [14] is used.

In literature [14], the expected posterior covariance matrix of
MM filtering method is evaluated as a weighted sum of that of
elemental filters which can be further substituted by either MRE or
HYCA approximations. Although this seems reasonable, it is only
a heuristic one since the data dependent stochastic terms in the
posterior covariance matrix of MM filtering method that accounts
for the coupling among the elemental filters is neglected. Another
important issue we have to keep in mind is that typical radar
epoch duration may allow only a very short time for threshold
optimization. In this paper, further focuses are devoted to prior
threshold optimization for the maneuvering target tracking in clutter.
Our work differs from that in [14] in that we compute the objective
function of threshold optimization by approximating the multi-
modal prior target probability density function with a best-fitting
Gaussian (BFG) distribution [15] at each time step to estimate the
performance measure for tracking maneuvering targets with linear
Markovian switching dynamics. A more reasonable and efficient
adaptive detection threshold optimization method for maneuvering
target tracking in clutter is proposed and extended to the case with the
nonlinear measurement equation. A closed-form solution for the NP
detector can be also obtained by the functional approximation to the
IRF. Obviously the proper choice of the detection threshold is related
to the data association method and the method of tracking evaluation.
Efficient use of data from a lowered detection threshold may require
the more effective data association methods [17]. The probabilistic
data association (PDA) is chosen to select measurements for use in the
tracking filter in this work.

The rest of the paper is organized as follows. In Section 2 we
describe problem formulation and review some close relevant details
of interacting multiple model (IMM) estimator with PDAF modules,
i.e., IMMPDAF [18]. In Section 3 we develop the adaptive detection
threshold optimization method. The simulation results are presented
in Section 4, and some concluding remarks are given in Section 5.

2. PROBLEM FORMULATION

2.1. Target Dynamics and Measurement Model

Consider a discrete-time hybrid system described by the state and
observation equations
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x(k + 1) = F(k, Mk)x(k) + G(k, Mk)v(k,Mk) (1)
z(k) = Hx(k) + w(k) (2)

with known initial model probabilities and time-homogeneous
Markovian transition probability of system modes

pij = P {Mk+1 = j |Mk = i} , ∀i, j ∈ Ms (3)

where x(k) is n-dimensional state vector that typically includes
position and velocity variables, z(k) is M -dimensional measurement
vector, v(k,Mk) and w(k) are mutually uncorrelated zero-mean white
Gaussian process and measurement noise vectors with covariance
matrices Q(k,mk) and R(k), respectively. The two noise sequences
and the initial state are also assumed mutually independent. F(k,Mk),
G(k,Mk), H, Q(k,mk), R(k) are assumed known with appropriate
dimensions. Mk is modal state (system mode index) which denotes
the mode in effect during the time interval between the epoch k and
k + 1, Ms ∈ {1, 2, . . . r} is the finite set of all modal states, P{·| ·}
denotes a conditional probability.

In practice, a set of candidate measurements, which are threshold
exceedances of matched filter outputs, are provided to the tracking
filter due to imperfect target detection and false alarms and only ones
in the validation region are considered for updating the target track,
namely validated measurements. Ordinarily, the validation region is
taken to be an M -dimensional hyperellipsoid centered at the predicted
measurement ẑ(k|k−1). Given an arbitrary measurement zl(k), it will
be in the validation region provided

[zl(k)− ẑ(k|k − 1)] TS−1(k) [zl(k)− ẑ(k|k − 1)] ≤ g2 (4)

where S(k) is the covariance of the predicted measurement, g, referred
to as the number of sigmas for the gate, is the threshold for ensuring
that the target-originated measurement falling inside the validation
region with a probability of PG if detected. The volume of validation
region is given by

V (k) = cMgM |S(k)| 12 (5)

where cM = πM/2
/

Γ(M/2 + 1), with Γ(·) being gamma function, is
the volume of the M -dimensional unit hypersphere.

Let Zk = {zl(k)}mk
l=1 denote the set of validated measurements

at time step k, where mk is number of validated measurements.
The true measurement originated from the target of interest may be
among Zk with detection probability. A typical model for false alarm
measurements is that they are uniformly spatially distributed within
the validation region and independent across time assuming that the
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number of them accords with a Poisson distribution with mean λV (k),
where λ is the spatial clutter density. The relationship between λ and
false alarm probability Pfa can be expressed by

λ(k)V (k) = Pfa(k)Nc(k) = Pfa(k)
V (k)
Vc

(6)

where Nc(k) = V (k) /Vc , with Vc being the volume of resolution cell, is
number of resolution cells enclosed by the common validation region.
Then it follows that λ(k) = Pfa(k)/Vc.

2.2. IMMPDAF Estimator

The optimal estimator for above hybrid system has exponentially
increasing complexity with respect to time due to the need to consider
all “histories” [19]. For the problem considered here, IMMPDAF,
a well-known suboptimal (yet practical) multiple model filter, is
employed to estimate the target state in this paper. For r models in
the IMMPDAF, there will be r validation regions, one for each model,
and r sets of validation measurements. Thus a common validation
region is necessary to compute the model-conditioned likelihoods. A
common validation region can be obtained by taking the union of the
r sets of model-conditioned validation regions. Typically the “largest”
innovation covariance matrix corresponding to “noisiest” model covers
the others and therefore can be used in (4) and (5) to determine
the common validation region [18]. For the details and steps of the
IMMPDAF, see reference [22].

2.3. Prior Detection Threshold Optimization

Prior detection threshold optimization problem can be formulated as
follows. We attempt to minimize an objective function, e.g., the
tracking mean square errors (MSE), by seeking an optimum operating
false alarm probability. However when this optimization is carried out,
we have no access to the observation and the target state at the next
sampling instant. We therefore have to minimize its expected value,
that is, we select an operating false alarm probability such that

P ∗
fa = arg

Pfa

min
{

E
{
‖M [x(k + 1)− x̂(k + 1|k + 1)]‖2 |Zk

}}
,

subject to Pd = fROC(Pfa, η) and 0 ≤ Pfa ≤ 1 (7)
where M is a positive semi-definite weighting matrix that ensures the
units of the objective function are consistent [23] or is used to facilitate
individual component penalization, η is SNR and fROC denotes the
ROC curve that links Pfa with Pd.
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The objective function can be rewritten as

J(Pfa) = E
{
‖M [x(k + 1)− x̂(k + 1|k + 1)]‖2 |Zk

}

= E
{

tr
[
MP(k + 1|k + 1)MT

] |Zk
}

= tr
{

E
[
MP(k + 1|k + 1)MT |Zk

]}

= tr
{
ME

[
P(k + 1|k + 1)

∣∣∣Zk
]
MT

}
(8)

where tr{·} is the trace operator. Equation (8) shows that the key
point to quantify the utility of a particular operating Pfa is the
calculation of the expected posterior covariance matrix of the state
estimator since it contains all information to evaluate the objective
function. The posterior covariance matrix P(k+1|k+1) of IMMPDAF
is measurement dependent. And hence evaluation of its expected
value, i.e., its predictive value, without recourse to time-consuming
Monte Carlo simulations is quite difficult due to the coupling between
the elemental filters and three types of uncertainties involved: the
continuous-valued uncertainty in target states, the discrete-valued
uncertainties in switching modal state and in the origin of the
measurements. However we will show that the problem can be
converted into a tractable one by considering Gaussian approximation
to the target dynamics.

3. ADAPTIVE DETECTION THRESHOLD
OPTIMIZATION

3.1. Gaussian Fitting of Target Dynamics Via Moment
Matching

The dynamics of the linear jump Markov system described by (1) can
be approximated, using moment matching [20], by that of a linear
Gaussian system that obeys a single model

x(k + 1) ≈ Φ(k)x(k) + ε(k) (9)

for all time steps, where ε(k) is zero-mean white Gaussian noise
vectors with covariance Qε(k). Φ(k) and ε(k) are chosen so that
at each time step the distribution of x(k + 1) has the same mean
and covariance under each system. Although it is clearly that the
above approximation does not fully capture the characteristics of the
distribution of the true target state, which may be multi-modal due
to model switching, it is demonstrated in [15] that the corresponding
moment-matched state distribution fits the true distribution well and
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can be used to provide predictive measures that is in close agreement
with the performance of state-of-the-art multiple model estimator with
a very low computational load, which is important in time critical
scenarios.

Let M j(k) denote the event that Mk = j, the predicted model
probability µj(k + 1| k) can be computed by

µj(k + 1| k) = P{M j(k + 1)
∣∣Zk} =

r∑

i=1

pijP{M i(k)
∣∣Zk}. (10)

Using the total probability theorem, we can obtain

E
[
x(k + 1)

∣∣∣Zk
]

=
r∑

j=1

E
[
x(k + 1)

∣∣M j(k + 1) ,Zk
]
P

{
M j(k + 1)|Zk

}

=
r∑

j=1

F(k,M j
k)E

[
x(k)

∣∣∣Zk
]
µj(k + 1|k)

=
r∑

j=1

F(k,M j
k)µj(k + 1|k) · E

[
x(k)

∣∣∣Zk
]

(11)

for the linear jump Markov system. And trivially for the single model
system expressed by (9), we have

E
[
x(k + 1)|Z k

]
= Φ(k) · E

[
x(k)|Zk

]
(12)

Cov
[
x(k + 1)|Z k

]
= Φ(k)Cov

[
x(k)|Zk

]
ΦT (k) + Qε(k). (13)

It follows that

Φ(k) =
r∑

j=1

F
(
k, M j

k

)
µj(k + 1| k) (14)

and

Qε(k) = Cov
[
x(k + 1)|Zk

]
−Φ(k)Cov

[
x(k)|Zk

]
ΦT (k). (15)

Note that the single model system described by (9) is merely
utilized for efficiently calculating the specified objective function and
determining the detection threshold to optimize the performance of the
joint detection-tracking system, while the state estimator still relies
on the linear jump Markov system given by (1). So, to calculate
Φ(k) and Qε(k), µj(k + 1| k) in (14) and Cov

[
x(k)|Zk

]
in (15) can
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be replaced with the corresponding filter-calculated value obtained
from the procedure of state inference. Cov

[
x(k + 1)|Zk

]
can be

approximated by the error variance of the combined model-conditioned
state prediction, which can be obtained according to the Gaussian
mixture equations:

Cov
[
x(k + 1)

∣∣∣Zk
]

= P(k + 1 |k )

=
r∑

j=1

µj(k + 1|k)
{
Pj(k + 1|k)

+
[
x̂j(k + 1|k)− x̂(k + 1|k)

] [
x̂j(k + 1|k)− x̂(k + 1|k)

]T
}

(16)

x̂(k + 1|k) =
r∑

j=1

x̂j(k + 1|k)µj(k + 1|k) (17)

where x̂(k + 1| k) is the combined state prediction, x̂j(k + 1| k), and
Pj(k + 1| k) denote model-conditioned state prediction and associated
error variance. The calculations of x̂(k + 1| k) and P(k + 1| k) can be
inserted into the IMMPDAF procedure naturally, though they are not
parts of the IMMPDAF algorithm recursions.

3.2. Solution to Adaptive Detection Threshold Optimization

For the linear Gaussian system described by the state Equation (9) and
observation Equation (2), MRE [1] (modified Riccati equation) and
HYCA [24] (hybrid conditional averaging) technologies are available
at the time step k for quantifying the effect of measurement-origin
uncertainty and provide two methods to obtain a deterministic
approximation for the predicted posterior covariance matrix at the next
time step when the PDA is used. MRE is obtained by replaced the
measurement dependent terms with their conditional expectations over
both the locations and the numbers of possible validated measurements
in the covariance update recursion equation. And it differs from the
original Riccati equation only by multiplying a scalar information
reduction factor. Since MRE yields a significantly simpler global
averaging approximation to the posterior covariance matrix update,
MRE is used here to calculate the objective function efficiently. For
the case of MRE, the expected posterior covariance matrix in (8) can
be approximated by [1]

E
[
P(k + 1 |k + 1)|Zk

]

∼= P(k + 1 |k) − q2 (Pfa(k + 1))K(k + 1)S(k + 1)KT (k + 1) (18)
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where S(k + 1) = HP(k + 1| k)HT + R(k), K(k + 1) =
P(k + 1| k)HTS−1(k+1) is Kalman filter gain for the system described
by Equations (9) and (2), q2 (Pfa(k + 1)) is IRF and lies between 0 and
1. The Pfa dependent expression for q2 (Pfa(k + 1)) follows directly
from [1, 12], namely

q2 (Pfa(k + 1)) =
Pd(k + 1)cM

(2π)M/2

·
∞∑

mk+1=1

e−Pfa(k+1)Nc(k+1) [Pfa(k + 1)Nc(k + 1)] mk+1−1

(mk+1 − 1)!

·
(

M

gM

)mk+1−1

I2 (Pfa(k + 1),mk+1) (19)

with

I2 (Pfa(k + 1),mk+1)

=
∫ g

0
. . .

∫ g

0

exp(−r2
1)r

2
1

b (Pfa(k + 1)) +
∑mk+1

j=1 exp(−r2
j

/
2)

·(r1r2 . . . rmk+1
)M−1dr1dr2 . . . drmk+1

(20)

b (Pfa(k+1))=(2π)M/2 Pfa(k+1)Nc(k+1)
cMgM

· [1−Pd(k+1)PG]
Pd(k+1)

. (21)

Substituting Equation (18) into Equation (8) and simplifying
yields

J(Pfa) = tr
[
MP(k + 1|k)MT

]

−q2 (Pfa(k + 1)) tr
[
MK(k + 1)S(k + 1)KT (k + 1)MT

]
. (22)

It can be seen from Equation (22) that q2 (Pfa(k + 1)) is the only
term that depends on Pfa(k + 1). Since MK(k + 1)S(k + 1)KT (k +
1)MT ≥ 0 implies tr

[
MK(k + 1)S(k + 1)KT (k + 1)MT

] ≥ 0, J(Pfa)
will be minimized by maximizing q2 (Pfa(k + 1)). Thus our problem
becomes

P ∗
fa = arg

Pfa

max {q2 (Pfa(k + 1))} ,

subject to Pd = fROC(Pfa, η) and 0 ≤ Pfa ≤ 1 (23)

which has the same form as in [10, 12] though our focuses are on the
detection threshold optimization for tracking maneuvering target in
clutter and a weighting matrix is considered to equalize the components
in the tracking MSE. Note that in essence the final form of the detection
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threshold optimization for maneuvering targets tracking in clutter in
reference [14] is maximization of a weighting sum of model-conditioned
IRFs, which are different only due to different model-conditioned
validation regions. However the actual effective validation region is
the common one in IMMPDAF estimator, which makes our proposal
of (23) seem more reasonable.

We cannot solve (23) analytically because evaluation of IRF given
by Equation (19) has to be performed numerically since mk-fold
integration is involved, e.g., Monte Carlo integration scheme. However
a satisfactory empirical approximation for q2 (Pfa(k + 1)) suggested
by [11] can be used to further simplify our analysis. In the case of
M = 2 and g = 4, q2 (Pfa(k + 1)) can be approximated by

q2 (Pfa(k + 1)) ∼= 0.997Pd(k + 1)
1 + 0.37[Pd(k + 1)]−1.57Pfa(k + 1)Nc(k + 1)

(24)

where λ(k)V (k) = Pfa(k)Nc(k) is used. To find the single maximum
of strictly unimodal [10] q2 (Pfa(k + 1)), we can set the derivative of
q2 (Pfa(k + 1)) with respect to Pfa(k + 1) equal to zero recalling some
specific ROC curve for various types of detectors. For the case of NP
detector whose ROC curve is expressed by

Pd = (Pfa)
1

1+η , (25)

the optimum false alarm probability for the problem described by
Equation (23) is given by [12]

Pfa(k + 1) =





[0.37Nc(k + 1)(η − 1.57)]
1+η

0.57−η ,

η ≥ 1.57 +
1

0.37Nc(k + 1)
1, otherwise.

(26)

Note that the optimum operating false alarm probability is suggested
to be equal to 1 under the condition of η < 1.57 + 1/[0.37Nc(k + 1)],
that is, the track before detect (TBD) approach [25] is suggested for
the case of extreme low SNR.

3.3. Extension to the Case With the Nonlinear
Measurement Equation

When measurement equation involves nonlinearities, e.g., range and
range rate are provided to the tracker [23], the unscented Kalman
filter (UFK), which exhibits many performance improvements over the
extended Kalman filter (EKF), can be used as elemental filter in the
IMM algorithm. However PDA can still be used to deal with the
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measurement-origin uncertainty. Then the measurements that are not
target-originated still increase the covariance of the state estimate. It
has been shown that the expected posterior covariance matrix of the
state in this scenario can be given by [23]

E
[
P(k+1| k+1)|Zk

]∼=P(k+1| k)−q2 (Pfa(k+1))Pc(k+1| k+1) (27)

where Pc(k + 1| k + 1) is a covariance reduction that reduces the
uncertainty in the prediction covariance due to the true target-
originated measurement, which can be obtained using the unscented
transform and is given by

Pc(k + 1| k + 1)=Pxz(k + 1| k)S−1(k + 1)Pxz
T(k + 1| k) (28)

where Pxz(k + 1| k) is the cross covariance between the predicted
state and the predicted measurement. Clearly Pc(k + 1| k + 1) is
independent of the measurement value and the false alarm probability.
q2 (Pfa(k + 1)) is still the only term that depends on the false alarm
probability. Thus the problem of the detection threshold optimization
reduces to (23) again. But the dimension of measurement vector may
be not equal to 2, and then the existence of the satisfactory analytic
functional approximation for IRF is still an open problem. Therefore
a close-form solution to the optimum alarm probability may not exit.
In general, a line search algorithm that requires only the values of
the objective function, such as Golden-Section or Fibonacci Search
methods, can be applied to solve (23) [10].

Recalling the results in [10, 12], an interesting conclusion can
be summarized. That is, the detection threshold optimization is
equivalent to IRF maximization for single target tracking in clutter, no
matter how the target dynamics evolve and whether the measurement
equation is linear. It seems that IRF elegantly and effectively quantifies
the information reduction due to the measurement-origin uncertainty
and missed data. The smaller it is, the greater the degradation of the
estimation performance is.

4. SIMULATION RESULTS

A maneuvering target tracking scenario in air traffic control (ATC) that
is very similar to the one in [14] is considered for comparisons among
our method, the method proposed in [14] (referred to as “method
2”) and the conventional detection threshold setting methods where
the operating false alarm probability are fixed. Here, an aircraft flies
straight for 90 s in the (x, y) plane, starting from (13 500 m, 8 594 m)
with an initial velocity (0 m/s, 150m/s) at time t = 0 s. And then
it executes a 90◦ right turn with turn rate of 1◦/s (which amounts to



368 Wang et al.

an acceleration of 0.26 g at this speed). The center of the coordinated
turn is approximately the location of the radar. After the turn, the
aircraft continues straight at the constant velocity for 120 s. The target
trajectory is shown in Fig. 1. The radar with an NP detector, located
at (0m, 0m)T , provides direct position only measurements (after the
polar-to-Cartesian conversion) for every sampling period T = 3 s with
a rectangular resolution cell of 50 m in each coordinate. Assuming the
true measurement is uniformly distributed within the resolution cell
that registers a hit [22], the covariance of measurement noise is

R(k) =
[ (

∆rx/
√

12
)

2 0
0

(
∆ry/

√
12

)
2

]
(29)

where ∆rx and ∆ry, both assumed to be equal to 50 m, are resolutions
in x and y directions, respectively.

For the true dynamics, the constant velocity uniform motion (UM)
is implemented as a white noise acceleration (WNA) [20] model with
low level process noise due to winds, etc. and the maneuver (turn)
is obtained via a coordinated turn (CT) [20] model with a constant
turn rate. In both WNA and CT models,the standard covariance of
process noise is assumed to be 0.01m/s2 for the linear portion of the
state transition.

The range-dependent SNR at the radar is modeled according to

η(r) =
(r0

r

)4
η0 (30)

where r is the range between the target and the radar, η0 is the SNR
for the target at the range r0. Note that all other factors except range
in the SNR equation are assumed to be constant in the simulation and

Figure 1. The target trajectory.
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Figure 2. The SNR evolving over time for r4
0η0 = 0.5× 1018 m4.

their effects are accounted by r4
0η0 for simplicity. The SNR evolving

over time is illustrated in Fig. 2 for r4
0η0 = 0.5× 1018 m4†.

The IMMPDAF estimator used in this scenario consists of
two elemental PDAFs corresponding to the nonmaneuvering mode
(mode 1) and maneuvering mode (mode 2), which both use WNA
model and differ only in the process noise levels. The one with the
lower noise level with standard deviation 0.01 m/s2 is used to model the
uniform motion and the other one with standard deviation 3 m/s2 for
the maneuver. The initial mode probabilities are set to be 0.5 equally.
Note that the mode transition probabilities have an impact on the peak
estimation errors at the onset of the maneuver and the estimation
errors during the uniform motion. They are suggested in [20] to be
matched with the mean sojourn time in units of the sampling interval
in each mode. Here, the mode transition probability matrix is designed
to be

π =
[

0.99 0.01
0.03 0.97

]
. (31)

For the conventional detection threshold setting method, typical
false alarm probability values of 10−8, 10−6, 10−4, 10−2 are used and
kept constant in the simulations. 500 Monte Carlo runs are performed
for each considered method.

The comparisons of the various detection threshold setting
methods in terms of tracking performance metrics are shown in Table 1
and Fig. 3 ∼ Fig. 4 for r4

0η0 = 0.5× 1018 m4. A track is accepted as a
lost track when the average estimation error for that Monte Carlo
run exceeds the measurement error [14]. All estimation errors are
† The scenarios with other different values of r4

0η0 are also investigated, however the similar
results are obtained and not presented here for brevity.
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Table 1. The tracking performance for the various detection threshold
setting methods.

Average Average Maneuver Average UM

TLP/% position velocity detection probability

RMSE/m RMSE/m/s delay/scans error

Our method 54 17.1642 3.9281 2 0.1257

Method 2 59 17.2507 3.9177 2 0.1262

Pfa = 10−8 100 – – – –

Pfa = 10−6 99 17.7932 3.8554 2 0.1366

Pfa = 10−4 85 18.1244 4.1469 2 0.1304

Pfa = 10−2 71 17.4399 3.9644 2 0.1236

Figure 3. The optimum false alarm probabilities suggested by
adaptive detection threshold optimization scheme.

obtained from Monte Carlo runs for which the track is converged. The
root mean squared errors (RMSEs) of position and velocity estimation
are coordinate-combined. The average position/velocity RMSE is
calculated by taking the mean of the position/velocity RMSEs through
all time steps. The maneuver detection delay, measured in sampling
periods, is defined to be the latency from the maneuver onset time
to the time when the probability of the mode 2 exceeds 0.5. Average
UM probability error denotes the average mode 2 probability when the
target is in uniform motion (mode 1). The following observations can
be made:

1) Compared with the conventional threshold setting method,
the TLP decreases significantly when the adaptive detection threshold
optimization scheme is used. However the position and velocity RMSEs
only exhibit marginal reductions, which is probably because the tracks
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that have considerable estimation errors are recognized as lost ones
and have not been taken into account during calculating the errors.

2) When SNR is at a high level, the optimum false alarm
probability should decrease as SNR increases and vice versa. However
our proposed method for dynamic threshold setting also suggests the
optimum value of Pfa decrease mildly as SNR continues decreasing
when the sufficiently low SNR is reached, as can be seen from Fig. 3.
In fact, this reflects the requirement that the number of false alarm
measurements, potentially corrupting the track, should be limited due
to low detection probability on a low SNR [17]. Note that this trend
also cannot hold, i.e., the optimum Pfa should still be increased in the
extremely difficult SNR scenarios.

3) The optimum Pfa should decrease when the target is in the
maneuver mode. Since the volume of validation region increases due
to the larger estimation errors of the estimator during maneuvers, this
seems reasonable to avoid the track loss.

4) The detection threshold setting has imperceptible effect on the
maneuver detection capability and mode estimation error, which is
true at least in the scenario considered.

(a) (b)

(c) (d)
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(e) (f)

Figure 4. Comparisons of coordinate-combined position RMSEs,
velocity RMSEs and mode 2 probabilities for the adaptive and
conventional detection threshold setting methods. (a) Position RMSEs
for adaptive threshold scheme. (b) Position RMSEs for constant
threshold scheme. (c) Velocity RMSEs for adaptive threshold scheme.
(d) Velocity RMSEs for constant threshold scheme. (e) Mode 2
probabilities for adaptive threshold scheme. (f) Mode 2 probabilities
for constant threshold scheme.

5) Our proposed adaptive detection threshold optimization
method is immoderately better than method 2 in terms of tracking
performance metrics, but the computational load is dramatically
reduced since only one IRF corresponding to the common validation
region is needed for threshold optimization and no search is involving
for the special case of the NP detector. Furthermore, our method
suggests a lower optimum false alarm probability, which implies fewer
false alarm measurements, relative to method 2 at almost every
time step, which makes our method more appealing in view of the
computational capacity of radar processor in handling the number of
false alarm measurements.

5. CONCLUSION

We have investigated the adaptive prior detection threshold opti-
mization for tracking the maneuvering targets with linear Markovian
switching dynamics in clutter to improve the overall performance of
the joint detection-tracking system in the paper. Previous work for
this problem suggested maximization of a weighting sum of all model-
conditioned IRFs to search for the optimum threshold [14]. A more
reasonable and efficient method is proposed and extended to the sce-
nario with the nonlinear measurement equation. It is shown that the
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computational burden of our method is reduced significantly with slight
improvements in tracking performance, especially in terms of TLP.

Note that uncertainty in the estimate of target SNR may preclude
use of an optimal threshold based on target SNR [17]. However the
same can be said for the constant false alarm rate (CFAR) approaches
which also need the target SNR to determine the receiver operating
point. A practical approach is to use the measured target SNR
for the adaptive threshold setting (maybe not the best) given that
the SNR is monitored. Future work includes scheduling the radar
waveform in addition to detection threshold so as to optimize the
overall tracking performance since the transmitted waveform is crucial
for the measurement accuracy.
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