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Abstract—In this paper, we present a new synthesis method for
a generalized symmetric multiple band bandpass filter. By using
frequency transformations on the low pass prototype, the poles and
zeros of the single/dual band filtering function are obtained. These
poles and zeros are combined and re-arranged to get the multiband
filtering function. The coupling matrix is obtained from this multiband
filtering function. A variety of filters are synthesized in order to
validate the proposed theory. A triple band and quadruple band filters
have been designed, fabricated and measured. The measured results
have good agreement with the simulated results.

1. INTRODUCTION

In modern microwave communication systems one frequently requires
a complex arrangement of frequency plans that have spatial coverage.
Non-contiguous channels might need to be amplified and transmitted
through a single beam. Multiple pass band filters can make
the system simpler in comparison to the power divider/combiner
configuration and circulator chain structures. For applications in
satellite communication, dual-pass band elliptic waveguide filters of
in-line type and canonical type have been reported [1, 2]. In case
of cellular radio communication systems, dual bandpass filters of a
canonical structure with a single mode technique have been designed
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and realized [3]. In [4], triple and quad band bandpass filters based on
lumped-element coplanar waveguide resonators are designed. It uses
the concept of multiband resonator.

The multiband bandpass filter is realized by either placing
transmission zeros within the passband of a wideband filter or
employing higher order resonances [5, 6]. In [7, 8], an equivalent
lumped network is introduced in order to achieve the multiband
filtering. This network simplified the design procedure for dual band
or multiband filters through iterative method. The problems such
as need for optimization for roots finding and inability to achieve
equiripple response occurred while applying the equivalent networks.
Also, the optimization techniques might end up at a local minimum
and they have poor rate of convergence, i.e., they require more number
of iterations to obtain a reasonable convergence. Such problems can
be minimized if the frequency transformation method is used for the
design of multiband filters.

In [9–13], the multiband bandpass filters based on frequency
transformation have been investigated. The complexity of the
frequency transformation increases with the number of passband in
multiband bandpass filters. A complex frequency transformation is
required for the triple band bandpass filter [11]. In order to obtain a
frequency response having multiple passbands, a new network called
multiband block concept is proposed [13]. A multiband block uses
the frequency mapping. The multiband block is formed by the
connection of n resonators, where n is the number of passbands in the
filter. In multiband block, one of the resonator is the original single
band resonator, while the additional resonators are coupled to the
original resonator through couplings or admittance inverters. As the
number of passbands in the multiband filter increases, the number of
coupling coefficients from original single resonator to other resonators
increases. Therefore, it is very difficult when it comes to hardware
implementation.

Another frequency transformation based multiband filter design
has been discussed [12]. The response of the multiband filter is
generated via the proper combination of the single-band filtering
functions; those single band filtering functions can be obtained by using
Cameron’s advanced coupling matrix synthesis technique [14]. In case
of symmetrical dual band filter, the multiband filter response can be
generated by properly combining two single band frequency responses.
Additional transmission zero at 0 rad/s is introduced to meet the phase
requirement of two single band filtering functions.

In this paper, an analytical method is proposed for the synthesis of
symmetrical multiple passband filters. The multiband filter response



Progress In Electromagnetics Research B, Vol. 42, 2012 117

is generated from the multiband filtering function. The frequency
transformations have been used for transforming the lowpass prototype
to the required multiband configuration. The proposed method
simplifies the generalized synthesis of symmetrical multiple passband
filters. This multiband filtering function is generated by combining
the poles and zeros of single/dual band filtering function obtained by
the frequency transformation method. Different methods are proposed
for the filters having even and odd number of passbands. In case
of multiple band filter having even number of passbands, the overall
filter response is divided into M = N/2 number of dual passbands.
The filtering function for these M dual passbands are evaluated and
are combined together to form a multiband filtering function. The
poles and zeros of M dual passbands are used for the construction of
multiband filtering function. Once the poles and zeros of the multiband
filtering function are known, one can obtain the fractional forms of
the scattering parameters in terms of the PN (s), FN (s) and EN (s)
polynomials. It is possible to obtain the transversal coupling matrix
from these polynomials [14].

The transversal coupling matrix can be converted into wheel
matrix using Bell’s technique [15]. This wheel matrix can, in turn, be
converted into multiband filter matrix with the desired coupling scheme
for the hardware implementation. This desired coupling scheme can
be either in canonical form or N -tuplets form.

The steps for the synthesis of multiple passband filters are
discussed in Section 2. Sections 3 and 4 present the synthesis of filters
having even and odd number of passbands. To verify the proposed
method, a triple and a quad band bandpass filters are realized using the
open loop resonators. The cascaded quadruplets are used for realizing
the transmission zeros.

2. THEORY AND DESIGN PROCEDURE

In this section, we have introduced a procedure for designing multiple
passband microwave filters using frequency transformations. The
frequency responses for the filter having even number of pass bands
in three different frequency domains are shown in Fig. 1. Ω-domain
is the normalized frequency domain for the lowpass prototype filter,
Ω′-domain is the intermediate frequency domain which is used design
of multiple passband filters, whereas ω-domain is the actual frequency
domain in which the filter operates.

The transfer and reflection functions for any two port lossless filter
network consisting of a series of N -coupled resonators can be expressed
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Figure 1. (a) Low-pass prototype response. The frequency response
of the filter having an even number of the passband in (b) Ω′ and
(c) ω-domain.

as [14]:

S21 (S) =
PN (S)
εEN (S)

(1)

S11 (S) =
FN (S)
EN (S)

(2)

where S = j Ω. For a Chebyshev filtering function, ε is a constant
normalizing S21 to the equi-ripple level at S = ±j as follows:

ε =
1√

10RL/10 − 1

PN (S)
FN (S)

∣∣∣∣∣
S=j

(3)

where RL is the prescribed return loss level in dB and it is assumed
that all the polynomials have been normalized such that their highest
degree coefficients are unity. Once PN and FN are defined, the unitary
condition of S-parameter requires that

EN (S) E∗
N (−S) =

PN (S) P ∗
N (−S)

ε2
+ FN (S)F ∗

N (−S) (4)
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where E∗
N (S), P ∗

N (S) and F ∗
N (S) denotes the complex conjugate of

EN (S), PN (S) and FN (S) respectively.
The poles of S11(S) or S21(S) can be obtained by evaluating the

roots of the Equation (4) and by selecting those having the negative
real part. Again, here EN (s) is generated from the poles of S11(S) or
S21(S) by imposing the highest degree coefficient equal to unity.

Using Equations (1), (2) and (4), we get,

|S11 (S)|2 =
ε2C2

N (S)
1 + ε2C2

N (S)
(5)

|S21 (S)|2 =
1

1 + ε2C2
N (S)

(6)

where CN (S) = FN (S)
PN (S) is known as the filtering function of degree N .

PN (S′), FN (S′), EN (S′) and ε can be evaluated by using the
poles and zeros of the multiband filtering function after the frequency
transformation in Ω′-domain, where S′ = jΩ′. The coupling matrix
for a given topology can be calculated using the polynomials PN (S′),
FN (S′), EN (S′) and ε by using Cameron’s method [14]. The steps for
building the coupling matrix are given below.

2.1. For Even Number of Passbands

Step 1: Choose the lowpass prototype as per the required attenuation
in the stopband.

Step 2: Divide N passbands into M dual passbands where M =
N/2. The dual passbands are paired as (1, 1′), (2, 2′), . . ., (M , M ′).
(1, 1′) represents the outermost passbands and (M , M ′) the innermost
passbands as shown in Fig. 1(b).

Step 3: Transform the lowpass prototype filter to the outermost
dual passbands (1, 1′). Also, transform the lowpass prototype filter to
other dual passbands such as (2, 2′), . . ., (M , M ′).

Step 4: Evaluate all the poles and zeros of filtering function for
each frequency transformation in each of the dual passbands.

Step 5: Combine the poles and zeros of all the transformed
functions for the construction of multiband filtering function.

Step 6: Remove the overlapped poles and rearrange the poles and
zeros of the multiband filtering function using either optimization or
error and trial method [16].

Step 7: Construct the polynomials PN , FN , EN and ε in S′-plane
using the poles and zeros of the multiband filtering function.

Step 8: Obtain the transversal coupling matrix from these
polynomials [14].
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Step 9: Convert the transversal coupling matrix into Bell’s wheel
matrix form [15].

Step 10: Generate the desired coupling matrix from wheel matrix
for hardware implementation [17].

The frequency transformations from Ω-domain to Ω′-domain
convert the lowpass prototype into normalized dual passband filter [10].
The frequency transformation is given as:

For (1, 1′) bands:

S =
(

S′

c1
+

c′1
S′

)
for Ω′ > Ω′12 (7)

S = −
(

S′

c1
+

c′1
S′

)
for Ω′ < −Ω′12 (8)

For (2, 2′) bands:

S =
(

S′

c2
+

c′2
S′

)
for Ω′23 < Ω′ < Ω′12 (9)

S = −
(

S′

c2
+

c′2
S′

)
for − Ω′12 < Ω′ < −Ω′23 (10)

For (M , M ′) bands:

S =
(

S′

cM
+

c′M
S′

)
for 0 < Ω′ < Ω′M,M−1 (11)

S = −
(

S′

cM
+

c′M
S′

)
for − Ω′M,M−1 < Ω′ < 0 (12)

where S = jΩ and S′ = jΩ′.
Since 1 and −1 in the Ω-domain are transformed to p1 and Ω′1

in the Ω′-domain for Ω′ > Ω′12, respectively, and 1 and −1 in the Ω-
domain are transformed to −p1 and −Ω′1 in Ω′-domain for Ω′ < −Ω′12,
respectively. In order to carry out the transformations, we must enforce
the following

p1 =
c1

2


1 +

√
1 + 4

c′1
c1


 (13)

Ω′1 =
c1

2


−1 +

√
1 + 4

c′1
c1


 (14)

Similarly, for all the dual pass band pairs, we must enforce p’s and Ω′’s
for calculating the constants c’s. From Equations (13) and (14), the
constants in the Equations (7) and (8) can be expressed in terms of
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the band edge frequencies of the first dual band pair in Ω′-domain as
follows:

c1 = p1 − Ω′1, c′1 =
p1Ω′1

p1 − Ω′1
(15)

Similarly, other remaining constants can be expressed in Ω′-domain as
follows:

c2 = p2 − Ω′2, c′2 =
p2Ω′2

p2 − Ω′2
(16)

. . .

cM = pM − Ω′M , c′M =
pMΩ′M

pM − Ω′M
(17)

The band edge frequencies in the Ω′-domain to be transformed to the
actual ω-domain are as follows:

p1→ ω11′

Ω′1→ ω21′

p2→ ω12′

Ω′2→ ω22′

. . .

pM→ ω1M ′

Ω′M→ ω2M ′

−Ω′M→ ω2M

−pM→ ω1M

. . .

−Ω′2→ ω22

−p2→ ω12

−Ω′1→ ω21

−p1→ ω11

The values of ω11, ω21, ω11′ , ω21′ , . . . can be expressed in terms of band
edge frequencies in Ω′-domain.

The transformation used for Ω′-domain to ω-domain for the
outermost dual passbands (1, 1′) is

S′ =
(

s

d1
+

d′1
s

)
(18)

Similarly, for the (2, 2′) dual passbands, the transformation is

S′ =
(

s

d2
+

d′2
s

)
(19)
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For (M , M ′) dual passbands, the transformation is

S′ =
(

s

dM
+

d′M
s

)
(20)

where s = jω.
The values of d1 and d′1 are as follows:

d1 =
ω11′ − ω11

p1
, d′1 =

ω11ω11′

ω11′ − ω11
p1 (21)

and similarly the other values of d’s are

d2 =
ω21′ − ω21

p2
, d′2 =

ω21ω21′

ω21′ − ω21
p2 (22)

. . .

dM =
ωM1′ − ωM1

pM
, d′M =

ωM1ωM1′

ωM1′ − ωM1
pM (23)

2.2. For Odd Number of Passbands

In this section, the synthesis method for the design of multiple band
bandpass filters having odd number of pass bands is discussed.

'
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Figure 2. (a) Low-pass prototype response. The frequency response
of the filter having an odd number of passband in (b) Ω′ and (c) ω-
domain.
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Step 1: Choose the lowpass prototype as per required attenuation
in the stopband.

Step 2: Divide the N -passbands into 2M + 1 discrete passbands
where M is the number of dual-passbands. The dual passbands are
designated in pairs as (1, 1′), (2, 2′), . . ., (M , M ′) and the single
passband as 0th or central passband as shown in Fig. 2.

Step 3: Transform the lowpass prototype filter to dual bandpass
filters (1, 1′), (2, 2′), . . ., (M , M ′) using similar frequency
transformations discussed earlier. Also, transform the lowpass
prototype to the central passband.

Steps from 4 to 10 are the same as that of even number of
passbands.

The transformation for the central passband is given as

S =
(

S′

c0

)
for − p0 < Ω′ < p0 (24)

where c0 = p0.
The frequency transformations from Ω′-domain to ω-domain for

dual passband pairs discussed in the context of even number of
passbands hold good in the present case. The transformation for
central passband is given as:

S′ =
(

s

d0

)
(25)

where s = jω.
The additional band edge frequencies in the Ω′-domain to be

transformed to the actual ω-domain are as follows:

p0→ω10

−p0→ω20

3. SYMMETRICAL EVEN NUMBER OF PASSBAND
FILTER SYNTHESIS

In this section a 16-pole quadruple band and 24-pole hexa band
bandpass filters are synthesized in order to validate the present
approach of filter synthesis.

3.1. A 16-pole Quadruple Band Bandpass Filter

In order to get a four pole passband response in each passband a four
pole lowpass prototype with finite transmission zeros at S = ±j2.0 is
chosen for synthesis. The location of the transmission zeros depends
upon the attenuation requirement over the stopband. The reflection
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zeros of the filter can be calculated using the process described in [18]
according to the specified transmission zeros, return loss and number of
poles. In order to synthesize a symmetrical quadruple band bandpass
filter we have chosen p1 = 1, Ω′1 = 0.80, p2 = 0.40, Ω′2 = 0.20 and
the corresponding values of c’s are c1 = 0.20, c′1 = 4.0, c2 = 0.20
and c′2 = 0.40. After using all the transformations described in the
Section 2.1, the final poles and zeros of the multiband filtering functions
are obtained and they are presented in Table 1.

As has been discussed in the Section 2.1, the next step in synthesis
is the removal of the overlapped transmission zeros (poles of multiband
filtering function). The removal of transmission zeros may disturb the
frequency response of the filter. To preserve the desired frequency
response, some additional transmission zeros may be introduced and
the poles and zeros of the filtering function are rearranged. But, here

Table 1. Poles and zeros of quad band filtering function.

Poles Zeros
±j1.1165 ±j0.9926
±j0.7165 ±j0.9360
±j0.5464 ±j0.8547
±j0.1464 ±j0.8060
±j0 ±j0.3912
±j0 ±j0.3263

±j0.2451
±j0.2045

Table 2. Poles and zeros of quad band filtering function after removal
of overlapped TZs and rearrangement.

Poles Zeros
±j1.1165 ±j0.9926
±j0.7165 ±j0.9360
±j0.6410 ±j0.8547
±j0.5464 ±j0.8060
±j0.1464 ±j0.3912
±j0 ±j0.3263

±j0.2451
±j0.2045
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in this case, the removal of poles at ±j0 and addition of poles at
±j0.6410 do not distrub the response. That means, the frequency
response remains the same. The poles and zeros of the multiband
filtering function after the rearrangement are given in Table 2. The
polynomials FN , PN , EN and ε can be constructed using the poles
and zeros of the multiband filtering function. The coefficients of the
polynomials are shown in Table 3.

Table 3. 16-pole symmetric quad-band bandpass filter: coefficients of
transfer and reflection polynomials.

sn n = PN FN EN

0 0 1.67e–5 1.67e–5
1 0 0 9.79e–5
2 0.0017 0.0010 0.0013
3 0 0 0.0052
4 0.0926 0.0235 0.0340
5 0 0 0.0890
6 0.7115 0.2511 0.3633
7 0 0 0.6303
8 2.0615 1.3437 1.8326
9 0 0 2.0867
10 2.4895 3.6355 4.6416
11 0 0 3.4432
12 1 5.1234 6.0950
13 0 2.7441
14 3.6029 3.9559
15 0 0.8402
16 1 1

and ε = 41.57.

S

L

1 2 3 4 5 6 7 8

910111213141516

Figure 3. Canonical topology of Quadruple band bandpass filter.
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parameters. (b) Group delay.

From the polynomials FN , PN , EN and ε, the coupling matrix of
the canonical prototype filter, shown in Fig. 3, is obtained.

The coupling matrix is given of quadruple band bandpass filter is
given as:

        0

M =

  0

     0.5647      0

       0    0.0661      

  -0.4246
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0 0 0 00 0 0 0 0.2543  0 0

0000 0.0097

0.2814 00

0 0 0 0 

0 0 0 0.5647 
0 0 0

0.7164 0 

0

The frequency response and normalized group delay respone of the
quadruple band bandpass filter are shown in Fig. 4(a) and Fig. 4(b)
respectively. It is clear from Fig. 4(a) that the stopband attenuation
between the passbands is 30 dB. The quadruple band bandpass filter
has an equi-ripple response in the passbands and the return loss of
each passband is 20 dB.
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3.2. A 24-pole Hexa Band Bandpass Filter

Since the requirement is to get a four pole passband response, a four
pole lowpass prototype is chosen. A pair of transmission zeros are
located at s = ±j2.0 and return loss is set to be 20 dB. The reflection
zeros are computed as s = ±j0.9333 and s = ±j0.4060. We have chosen
p1 = 1.0, Ω′1 = 0.875, p2 = 0.625, Ω′2 = 0.5, p3 = 0.25, Ω′3 = 0.125
in order to synthesize a symmetrical hexa band filter response. The
corresponding values of c’s are c1 = 0.125, c′1 = 7, c2 = 0.125, c′2 = 2.5,
c3 = 0.125, c′3 = 0.25. Using the frequency transformation described
in Section 2.1, the poles and zeros of the multiband filtering function
in Ω′-domain are obtained and they are presented in Table 4.

There are three pairs of repeated transmission zeros at ±j0.
We can remove two such pairs of transmission zeros. In order to
preserve the frequency response, some new transmission zeros can be
introduced. In this synthesis, ±j0.7610 and ±j0.4027 are the new
transmission zeros introduced in the multiband filtering response. The
introduction of new transmission zeros will require re-arrangement of
poles and zeros of the filtering function. The poles and zeros of filtering
function can be rearranged either optimization method [16] or by error
trial method. We have used error and trial method for rearranging
the poles and zeros. The rearranged poles and zeros of the filtering
function are shown in Table 5. The polynomials FN , PN , EN and
ε can be obtained using the poles and zeros of the filtering function.
The coefficients of the polynomials are shown in Table 6. From the

Table 4. Poles and zeros of
Hexa band filtering function.

Poles Zeros
±j0 ±j0.9956
±j0 ±j0.9611
±j0 ±j0.9104

±j1.0687 ±j0.8789
±j0.8187 ±j0.6204
±j0.6978 ±j0.5850
±j0.4478 ±j0.5342
±j0.3415 ±j0.5037
±j0.0915 ±j0.2445

±j0.2040
±j0.1532
±j0.1278

Table 5. Poles and zeros of Hexa band
filtering function after rearrangement.

Poles Zeros
±j0 ±j0.9956

±j1.0687 ±j0.9620
±j0.8187 ±j0.9104
±j0.7610 ±j0.8783
±j0.6978 ±j0.6204
±j0.4478 ±j0.5850
±j0.4027 ±j0.5342
±j0.3415 ±j0.5037
±j0.0915 ±j0.2445

±j0.2040
±j0.1532
±j0.1278
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Table 6. 24-pole symmetric Hexa-band bandpass filter: Coefficients
of transfer and reflection polynomials.

sn n = PN FN EN

0 0 5.3e−9 5.33e−9

1 0 0 6.17e−8

2 6.85e−6 8.65e−7 1.22e−6

3 0 0 9.2e−6

4 0.0010 0.0001 0.0001

5 0 0 0.0004

6 0.0230 0.0016 0.0027

7 0 0 0.0094

8 0.2231 0.0249 0.0418

9 0 0 0.1031

10 1.1105 0.2222 0.3536

11 0 0 0.6484

12 3.0112 1.1950 1.7973

13 0 0 2.4910

14 4.4619 4.0455 5.7361

15 0 0 6.0024

16 3.3660 8.7855 11.7066

17 0 0 9.0665

18 1 12.1671 15.1853

19 0 8.3025

20 10.3553 12.0602

21 0 4.2007

22 4.9243 5.3283

23 0 0.8989

24 1 1

and ε = 124.7609.

polynomials FN , PN , EN and ε, the coupling matrix of the canonical
prototype filter, shown in Fig. 5, is obtained.

The topology of the symmetrical hexa band bandpass filter is
shown in Fig. 5. The cross couplings are present in addition to inline
coupling for the realization of the transmission zeros. This hexa band
bandpass filter has nine pairs of transmission zeros. The synthesized
frequency response of the hexa band bandpass filter is shown in Fig. 6.
The return loss in some of the passbands is slightly greater than 20 dB.
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Figure 5. Canonical topology of Hexa band bandpass filter.

(a) (b)

-100

-80

-60

-40

-20

0

-2 -1
Normalized Frequency

S
-P

ar
am

et
er

s 
(in

 d
B

) S 21
S11

0

20

40

60

80

100

120

140

Normalized Frequency

N
or

m
al

iz
ed

 G
ro

up
 D

el
ay

 (
s)

1 20 -2 -1 1 20

Figure 6. Frequency response of a 24 pole hexa band passband. (a) S-
parameters. (b) Group delay.

The minor re-arrangment of poles and zeros of the filtering function is
done using error and trial method. One can get equi-ripple response
in all the pass-bands, if minor re-arrangment of the poles and zeros of
the filtering function is done by optimization method [16].

The coupling matrix of hexa band bandpass filter is as follows:

       0   -0.6722     0         0         0         0     0         0         0         0         0  0        0   0 0   0   0
 -0.6722   0 0.6728     0         0         0     0         0         0         0         0  0        0   0 0   0 0

 0    0.6728     0    0.5678     0         0    0         0         0         0         0 0       0   0  0  0 0
 0   0    0.5678     0    0.5277     0    0         0         0         0         0 0        0   0  0 0 0
 0   0   0    0.5277     0   -0.4785     0         0         0         0         0  0        0   0 0   0 0
 0   0     0         0   -0.4785   0    0.4551  0         0         0         0  0        0   0 0 0 0
 0   0     0         0         0    0.4551     0    0.5312     0         0         0 0       0   0  0 0 0
 0   0     0         0   0         0    0.5312     0   -0.5820   0         0  0         0 0  0 0 0
 0   0     0         0   0        0         0   -0.5820    0    0.2926      0  0        0   0  0  0 0
 0   0     0         0   0        0         0         0    0.2926    0   -0.4274     0        0 0  0   0   -0.0090  
 0   0     0         0   0        0         0         0         0   -0.4274     0   -0.2775    0   0  0    0.2222 0
 0   0     0         0  0      0         0         0         0         0   -0.2775     0    0.2102     0    0.1481     0        0
 0   0     0         0   0        0         0         0         0         0         0    0.2102     0    0.0174    0         0        0
 0   0     0         0   0         0         0         0         0         0         0   0    0.0174     0   0.2113     0         0
 0   0     0         0   0         0         0         0         0         0         0    0.1481 0    0.2113     0    0.2793   0
 0   0     0         0   0         0         0         0         0         0    0.2222 0        0         0    0.2793     0    0.4258
 0   0     0         0   0         0         0         0         0   -0.0090     0         0         0        0         0    0.4258    0
 0   0     0         0   0         0         0         0    0.1328     0         0         0         0        0  0         0   -0.2912
 0   0     0         0   0         0         0    0.1247     0         0         0         0         0        0  0   0  0
 0   0     0         0   0         0   -0.1009     0       0         0         0         0        0         0   0   0  0
 0   0     0         0   0   -0.0363     0   0   0         0         0         0        0         0   0  0  0
 0   0     0         0    0.0767     0      0   0   0         0         0         0         0       0  0  0 0
 0   0     0   -0.0608   0         0         0   0   0         0         0         0         0         0  0  0  0
 0   0     0         0         0        0         0   0   0         0         0         0         0        0  0  0  0
 0   0     0         0       0         0         0   0   0         0         0         0         0         0  0  0 0
 0   0     0         0         0         0         0   0   0         0         0         0         0         0  0 0 0

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
   

      0  0         0         0         0         0         0  0         0
      0  0         0         0         0         0         0  0         0
      0  0         0         0         0         0         0  0         0
      0  0         0         0         0   -0.0608     0     0         0
      0  0         0         0    0.0767     0 0  0         0
      0  0         0   -0.0363     0         0    0    0         0
      0  0   -0.1009     0         0         0   0    0         0
      0   0.1247   0         0         0         0   0  0         0

 0.1328   0         0         0         0         0     0  0         0
    0   0         0         0         0         0   0  0         0

      0   0         0         0         0         0       0  0         0
      0    0         0         0         0       0      0  0         0
      0    0         0         0         0         0       0  0         0
      0    0         0         0         0         0      0  0         0
      0    0         0         0         0         0     0  0         0

   0    0         0         0         0         0       0  0         0
-0.2912   0         0         0         0         0     0    0         0

    0    0.5825   0         0         0         0       0  0         0
 0.5825     0   -0.5309     0         0         0       0     0         0
      0   -0.5309     0    0.4560     0         0         0    0         0
      0         0    0.4560     0    0.4789     0         0  0         0
      0         0         0    0.4789     0    0.5259   0    0         0
      0         0         0         0    0.5259     0    0.5686  0         0
      0         0         0         0         0    0.5686     0    0.6733     0
      0         0         0         0         0         0    0.6733  0    0.6704
      0         0         0         0         0         0         0    0.6704     0

 
 
 
   

M =
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4. SYMMETRICAL ODD NUMBER OF PASSBAND
FILTER SYNTHESIS

In this section, synthesis of the multiple band bandpass filter having
an odd number of passbands is presented.

4.1. A 12-pole Triple Band Bandpass filter

Here again, we have chosen the four pole lowpass prototype having
transmission zeros at S = ±j2.0. A symmetrical triple band response
can be divided into a dual band and a single band response. The dual
band response is in the outer bands of the triple band bandpass filter
whereas the single band lies in the middle. We have chosen p1 = 1.0,
Ω′1 = 0.60, p0 = 0.20 for the symmetrical triple band bandpass filter
and the corresponding values of c’s are c1 = 0.40, c′1 = 1.5 and
c0 = 0.2. Using the frequency transformations,the poles and zeros
of the dual band have been obtained and are given in Table 7. For

Table 7. Poles and zeros of outer dual band.

Poles Zeros

±j1.2540 ±j0.9845

±j0.4943 ±j0.8683

±j0 ±j0.7140

±j0.6298

Table 8. Poles and zeros of central single band.

Poles Zeros

±j0.40 ±j0.1867

±j0.0812

Table 9. Poles and zeros of triple band filtering function after
rearrangement.

Poles Zeros

±j1.5543 ±j0.9845

±j0.4943 ±j0.8683

±j0.3890 ±j0.7140

±j0.3890 ±j0.6298

±j0.1867

±j0.0812
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Table 10. 12-pole symmetric triple-band bandpass filter: coefficients
of transfer and reflection polynomials.

sn n = PN FN EN

0 0.0135 3.4e–5 0.0004
1 0 0 0.0038
2 0.2396 0.0064 0.0261
3 0 0 0.1135
4 1.4183 0.1902 0.4017
5 0 0 0.8593
6 2.9628 1.1149 1.9697
7 0 0 2.5020
8 1 2.6042 3.9888
9 0 2.9828
10 2.6711 3.4044
11 0 1.2111
12 1 1

and ε = 36.0857.

12 11 10

1 2 3 4 5 6

8 79
L

S

Figure 7. Canonical of triple band bandpass filter.

the single band also, the poles and zeros are obtained and are given
in Table 8. Removing the transmission zeros present at the origin
and rearranging the poles and zeros of the filtering function by error
and trial method [16], we have obtained the desired triple pass band
response shown in Fig. 8. The poles and zeros of the multiband filtering
function after the rearrangement are given in Table 9. From these poles
and zeros, the coefficients of the polynomials PN , FN , EN and ε are
calculated and are given in the Table 10. From the polynomials FN ,
PN , EN and ε, the coupling matrix of the canonical prototype filter,
shown in Fig. 7, is obtained.

The topology of the triple band bandpass filter is shown in Fig. 7.
The frequency response of the 12-pole triple band bandpass filter and
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Figure 8. Frequency response of a 12 pole triple band bandpass filter.
(a) S-parameters. (b) Group delay.

its normalized group delay is shown in Fig. 8.
The coupling matrix of 12-pole triple band bandpass filter is given

as:

      0    0.7782  

0.7582 

M =

0 0.7582  0.5661 -0.0398 0

    0  0.5661 0.2133             0

  0         0   0.4388 0

0.5211   0.2485     0   -0.0126 0

  0         0         0         0         0    0.2485     0   -0.2908     0         0         0         0         0       0

  0         0         0         0         0         0   -0.2908     0    0.2485   0
  0         0         0         0         0   -0.0126 0

  0         0         0         0    0.2523     0         0         0    0.5211     0    0.4388     0         0         0

  0         0         0    0.2133 0

  0         0   -0.0398  0         0         0         0         0         0         0    0.5661     0 0.7582    0

  0         0         0         0         0         0         0         0         0         0         0  0.7582    0  

  0         0         0         0         0         0         0         0         0         0         0.7782  0

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   

      
00 0 0 0 0 0 00 00 0

0.7782 0 0 0 0 0 00 0 00 00 

0 0 0 0 0 0 00 0

0 0.43880 0 0 0 00 0 0

0 0.5211 0 0 0
 0.2523 0 00 

0 0 0 0 0 0 00 0

0

0 0 0 00  0.4388 0 0.5661 0

0 0 00 

0 0.2485 0 0.5211 0 0 0

00

  0.7782

5. REALIZATION OF MULTIBAND BANDPASS
FILTERS

In order to verify the present approach, we have designed two multiple
band bandpass filters: one triple band and one quadruple band
bandpass filters. For the purpose of demonstration, we have removed
the outer transmission zeros. This, in turn, reduces the number of
cross couplings. The specifications of the triple band bandpass filter
are as follows:

Center Frequency: 3.56 GHz



Progress In Electromagnetics Research B, Vol. 42, 2012 133

Overall Bandwidth: 400 MHz
Passband Return Loss > 20 dB
Using the synthesis method described in Section 2, the coupling

matrix of the triple band bandpass filter is generated and is given
below:

  0       0.8576         0           0            0            0            0            0            0            0            0      0            0            0
 0.8576    

M=

 0       0.7801        0            0            0            0            0            0            0            0            0            0            0
  0       0.7801         0       0.5738       0            0            0            0            0            0            0            0            0            0
  0            0       0.5738        0       0.4987        0            0            0            0            0            0            0            0            0
  0            0            0       0.4987        0       0.4695        0      -0.4016   0            0       0            0            0            0
  0            0            0            0       0.4695        0       0.3449        0            0            0            0        0            0            0
  0            0            0            0            0       0.3449        0       0.1516        0            0            0            0            0            0
  0            0            0            0      -0.4016   0       0.1516        0       0.6727        0            0            0            0            0
  0            0            0            0            0            0            0       0.6727        0       0.2166        0 -0.4253        0            0
  0            0            0            0            0            0            0            0       0.2166        0       0.2548        0            0            0
  0            0            0            0            0            0            0            0            0       0.2548        0       0.3851    0            0
  0            0            0            0            0            0            0            0      -0.4253        0       0.3851        0       0.7801        0
  0            0            0            0            0            0            0      0            0            0            0       0.7801         0       0.8576
  0            0            0            0            0            0            0            0            0            0            0            0       0.8576        0

  
  
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

This 12-pole triple band bandpass filter is realized using open
loop microstrip resonators. The coupling topology, shown in Fig. 9,
has cascaded quadruplets (CQ) structures. Each CQ structure realizes
a pair of transmission zeros. The physical dimensions of the filter are
calculated using the group delay method [19]. The finite Q-factor of
the open loop resonator has been incorporated in the design of the filter
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8 g12g11Port 1

g 2

s 12
s23 s34 s89
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Port 2

Figure 9. Layout of triple band bandpass filter. The filter physical
dimensions are: a = 9.71mm, g1 = 1.58mm, g2 = 1.72 mm, g3 =
1.42mm, g4 = 1.56 mm, g5 = 1.56mm, g6 = 1.6mm, g7 = 1.56mm,
g8 = 1.56 mm, g9 = 1.54mm, g10 = 1.56mm, g11 = 1.72mm,
g12 = 1.58mm, s12 = 0.37mm, s23 = 0.7mm, s34 = 0.71mm,
s45 = 1.03mm, s56 = 0.9mm, s67 = 2.08mm, s78 = 0.45mm,
s89 = 1.38mm, s9,10 = 1.15mm, s10,11 = 1.38mm, s11,12 = 0.37mm,
s47 = 1.1mm, s8,11 =1.01mm.
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(Q = 240). Open loop resonator has been chosen because it provides
electric, magnetic and mixed couplings and these couplings can be used
for realizing both negative as well as positive couplings [20]. This filter
is fabricated on the RT Duroid 5880 substrate which is having the
dielectric constant of 2.2 and substrate thickness of 0.787mm. The
photograph of the fabricated triple band bandpass filter is shown in
Fig. 10(a). The frequency response of the filter is synthesized using
Agilent ADS and is shown in Fig. 10(b). During this synthesis, the
finite Q-factor of the resonator is taken as 240. The chemical etching
method is used for the fabrication of the filter. The full wave EM-
simulator Agilent Momentum has been used for the design of the
filter. The frequency response of the filter is measured on Agilent PNA
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Figure 10. (a) Fabricated triple band bandpass filter. (b) Synthesized
frequency response of triple band bandpass filter considering the finite
Q-factor of the resonator Q = 240.
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Figure 11. Simulated and measured frequency response of the triple
band bandpass filter. (a) S21. (b) S11.
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E8363B Network Analyzer. The simulated transmission and reflection
characteristics have a very good agreement with the measurement
results except in the first band of the filter as shown in Fig. 11. The
measured return loss of the triple band bandpass filter is nearly 6 dB in
the first passband and 15 dB in the other two passbands. The measured
in-band insertion loss is about 5 dB in the first passband and 3.5 dB
in the other two passbands. The measured isolation between the two
passbands is better than 18 dB. The overall measured bandwidth of this
filter is 450 MHz. The size of the filter is 28 mm × 110mm. One of the
possible reasons for these discrepancies is fabrication errors resulting
from the over etching of the filter.

Similarly, a quadruple band bandpass filter is realized using open
loop resonator. The coupling topology of the quad band bandpass
filter is shown in Fig. 12. There are two CQs in the topology for
the realization of four transmission zeros. The coupling matrix of the
quadruple band bandpass filter is as follows:

  0    0.7376      0         0         0         0         0         0         0         0         0         0         0         0         0         0     0         0
    0.7376 0    0

M =

.7037      0         0         0         0         0         0         0         0   0         0         0         0         0         0         0
  0    0.7037      0    0.4666     0       0         0         0         0   0         0         0         0         0         0         0         0
  0         0    0.4666      0    0.4999     0         0         0         0         0         0    0         0         0         0         0     0         0
  0         0         0     0.4999     0    0.2837     0         0         0         0         0    0         0         0         0         0         0         0
  0         0   -0.3654      0    0.2837     0    0.7094     0         0         0         0         0         0         0         0    0         0         0
  0         0         0          0         0    0.7094     0    0.4013     0         0         0    0         0         0         0         0    0         0
  0         0         0          0         0         0    0.4013     0    0.1213     0   -0.4378     0         0         0         0         0         0         0
  0         0         0          0         0         0         0    0.1213     0    0.4307     0         0         0         0         0         0     0         0
  0         0         0          0         0         0         0         0    0.4307     0    0.5101     0         0         0         0         0     0         0
  0         0         0          0         0         0         0   -0.4378     0    0.5101     0    0.4847     0         0         0         0         0         0
  0         0         0          0         0         0         0         0         0         0    0.4847     0   -0.4858     0         0         0         0         0
  0         0         0          0         0         0         0         0         0         0         0   -0.4858     0    0.2272     0    0.4741     0         0
  0         0         0          0         0         0         0         0         0         0         0         0    0.2272      0    0.1918    0         0         0
  0         0         0          0         0         0         0         0         0         0         0         0         0    0.1918      0    0.3556    0         0
  0         0         0          0         0         0         0         0         0         0         0         0    0.4741      0    0.3556     0       0
  0         0         0          0         0         0         0         0         0         0         0         0         0          0         0   -0.7037    0   0.7376
  0         0         0          0         0         0         0         0         0         0         0         0         0          0         0         0        0

 
 
 
 
 
 
 
 
 
 
 
 
 

  
  

 
 
 
 
 
 
 
 
 
 
 
   

 -0.3654

0.7376

-0.7037

This filter is also fabricated on the RT Duroid 5880 substrate having
the dielectric constant of 2.2 and thickness of 0.787mm. The fabricated
quadruple band bandpass filter is shown in Fig. 13(a). The synthesized
frequency response of the quad band bandpass filter using the coupling
matrix is shown in Fig. 13(b). The simulated and measured frequency
responses are in good agreement with each other and they are shown in
Fig. 14. The overall size of the filter is 28 mm× 135 mm. The measured
insertion loss of the quad band bandpass filter is nearly 5 to 6 dB in each
of the passbands. This filter has poor return loss which varies from 5
to 8 dB in each of the passbands. The stopband isolation is better than
20 dB between each of the passbands. The overall measured bandwidth
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Figure 12. Layout of quadruple band bandpass filter, The physical
dimensions of the filter are: a = 9.71mm, g1 = 1.38 mm, g2 = 1.73mm,
g3 = 1.56mm, g4 = 1.56mm, g5 = 1.56mm, g6 = 1.91mm, g7 =
1.56mm, g8 = 1.56 m, g9 = 1.39mm, g10 = 1.56mm, g11 = 1.55mm,
g12 = 1.73mm, g13 = 1.74mm, g14 = 1.39mm, g15 = 1.56mm,
g16 = 1.56mm, s12 = 0.35mm, s23 = 0.89mm, s34 = 0.86mm,
s45 = 1.74mm, s56 = 0.52mm, s67 = 1.21 mm, s78 = 1.73mm,
s89 = 1.04mm, s9,10 = 1.22mm, s10,11 = 0.87mm, s11,12 = 0.69mm,
s12,13 = 1.22mm, s13,14 = 1.56 mm, s14,15 = 0.87 mm, s15,16 =
0.52mm, s25 = 1.39 mm, s7,10 =0.69mm, s12,15 = 0.52mm.
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Figure 13. (a) Fabricated quadruple band bandpass filter. (b)
Synthesized frequency response of quadruple band bandpass filter
considering the finite Q-factor of the resonator Q = 240.

in this filter is about 410 MHz. The asymmetry in the filter response
may be due to the limitation of proposed theory which is valid for the
narrow band filter.
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Figure 14. Simulated and measured frequency response of the
quadruple band bandpass filter. (a) S21. (b) S11.

6. CONCLUSION

A generalized synthesis of symmetrical multiple passband filters is
presented in this paper. This synthesis is based on the frequency
transformation method. It can be used for the multiple passband filters
having any number of passbands. Using this frequency transformation,
the poles and zeros of the multiband filtering function have been
derived. The coupling matrix is derived from the poles and zeros of
the multiband filtering function. A couple of filters having different
number of passband have been synthesized using the coupling matrix in
order to validate the present approach of the multiband filter synthesis.
Two multiple band bandpass filters have been synthesized, designed,
fabricated and tested to validate the multiple passband filter synthesis.
These frequency response of the fabricated filters has good agreement
with simulated results.

Our main aim in this paper is to present the generalized frequency
transformation technique for the synthesis of multiband filter. The new
technique is proposed in order to replace the conventional optimization
method. The theory of symmetric multiple band bandpass can be
further modified and extended to asymmetric multiple band bandpass
filters.
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