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Abstract—In this paper, we estimate the uncertainty in complex per-
mittivity measurements performed in a shielded dielectric resonator, by
using the Monte Carlo Method. We selected this approach since the
theoretical expressions required to interpret the experimental results
are highly non-linear. Furthermore the resonant frequency of the sys-
tem and its quality factor are highly correlated. Thus we propose a
model for the measurement process which considers the major sources
of uncertainty previously reported in published experimental results.
The proposed model combined with the Monte Carlo method was used
to propagate the probability distributions of each uncertainty contri-
bution, obtaining a) the approximate probability density function for
the measured complex permittivity, and b) the estimated expanded
uncertainty for the mode TE011. The results show that this procedure
leads to small uncertainty intervals for the real part of the dielectric
permittivity, while it is not very reliable in the loss tangent measure-
ment. Additionally, for each input quantity, we calculated the standard
deviation in the experimental results produced independently by each
uncertainty contribution.

1. INTRODUCTION

Resonance methods represent one of the most useful techniques for
the measurement of the complex permittivity of low-loss materials [1–
3], offering the highest possible accuracy in measurements of real
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permittivity [4–6]. Resonant cavities having axial symmetry are the
most commonly used resonators in dielectric metrology. In the present
work we chose a cylindrical resonator since the relationship between
sample dielectric permittivity, cavity dimensions, resonant frequency
and unloaded Q factor, can all be derived theoretically by separation
of variables [5–8].

Since measurement uncertainties will affect the experimental
results, the accuracy of the complex permittivity measurements can
only be estimated once the uncertainty sources are identified and their
effect modeled as part of the measurement process.

Some uncertainty sources are associated to geometrical factors
such as resonator size and sample shape and dimensions. Their effect
can be reduced by careful size measurements and careful construction
of the resonators. One fundamental measurement limitation is due to
the inherent measurement accuracy of the Vector Network Analyzer
(VNA). Also, the sensitivity of the measurement system respect to
the input variables must be understood in order to determine the
conditions under which a given method may be used effectively in
electromagnetic measurement characterization [9, 10].

Thus, the estimation of the uncertainty associated to complex
permittivity measurements is a challenging task, previously addressed
using a simplified approach [10] that assumed that all the contributions
are uncorrelated and symmetric, combining them in a linear or
linearized model using the error propagation law within the framework
of the Guide to the expression of Uncertainty in Measurement,
GUM [11]. Since those assumptions may affect the reliability of the
results, it is advisable to use alternative methods, such as Monte
Carlo Method, for the calculation and validation of measurement
uncertainty [12].

The Monte Carlo Method (MCM) is recognized as a practical
alternative by the Joint Committee for Guides in Metrology (JCGM)
of the Bureau International des Poids et Mesures (BIPM), and it
has been included in the GUM as a supplement, since 2008 [12].
It has been widely used within many scientific disciplines, such as
metrology, geodesy, optics, hydrology, electronics, structural mechanics
and electromagnetic compatibility, among others [13–19].

The paper is organized as follows: in Section 2 we describe the
foundations and the general methodology used for the measurement of
complex permittivity in shielded dielectric resonators. In Section 3 we
describe measurement uncertainties using the MCM approach in the
context of GUM. In Section 4 we propose a model for the measurement
process and discuss the different uncertainty contributions. In
Section 5, we present a numerical example based on our measurement
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system that will illustrate the methodology discussed. Finally, we
conclude by discussing the probability distribution of the results and
the confidence intervals achieved in the numerical examples.

2. COMPLEX PERMITTIVITY MEASUREMENTS BY
SHIELDED DIELECTRIC RESONATOR TECHNIQUE

For a specific mode excited in the resonant structure containing the
sample, the measured basic variables are the resonant frequency and
Q-factor for that mode. The complex permittivity of the sample can
be evaluated from these two measured quantities, provided all other
parameters of the structure (dimensions and the surface resistance of
the metallic enclosure) are known [5, 7].

Exact relations among permittivity, sample and cavity dimensions,
measured resonant frequency and the unloaded Q-factor can only be
derived if we can carry out an accurate theoretical analysis for the
resonant structures. Theoretical results (obtained by separation of
variables) can be derived in the case of the shielded dielectric resonator
with cylindrical symmetry, which was selected for our analysis and
measurements. We additionally assume that all metal parts are made
of perfect conductors (infinite conductivity).

Figure 1 shows the case of a cylindrical dielectric resonator
enclosed by a metal shield, where b is the cavity resonator radius, a is
the dielectric rod radius and d is the height of the cavity. This type of
cavity resonator can be analyzed as a cylindrical waveguide enclosing
a central sample of radius a, and terminated in perfectly conducting
plates.

The electromagnetic fields, for TEnmp modes, in both the
dielectric rod and the rest of the inner volume of the cavity resonator
can be determined using the theory of Hertzian potentials [7]. In
the structure, the magnetic Hertzian potential, Πm, in the cylindrical

Figure 1. Cylindrical shielded dielectric resonator.
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coordinate system, is given by [7, 20],

Πm (ρ, ϕ, z) = [Jn (kcρ) + Yn (kcρ)] cos (nφ) sin (βz) âz, (1)

where, Jn (kcρ) is the Bessel function of the first kind evaluated in kcρ,
Yn (kcρ) the Bessel function of the second kind evaluated in kcρ, kc the
cutoff wavenumber, and β is given by,

β =
pπ

d
, (2)

The electric E field and the magnetic H field are calculated using,

E = −jωµ∇×Πm, (3)
H = ∇×∇×Πm. (4)

It is important to note that the magnetic Hertzian potential (1)
is valid for both regions of the shielded resonator, with the clear
understanding that in the dielectric rod (0 ≤ ρ ≤ a) only the Bessel
function of the first kind is allowed as part of the solution since Yn (kcρ)
goes to infinity at the origin.

Then, the boundary conditions of the tangential electric field at
ρ = b and ρ = a and the continuity of the tangential magnetic field at
ρ = b provide the relationship between the resonance frequency of the
loaded cavity resonator and the relative dielectric permittivity of the
measured sample, given by [21],

nkc0
2µ1

akc1
2µ0

− kc0
2µ1

kc1µ0

Jn+1 (kc1a)
Jn (kc1a)

=
nα

a
−kc0

αJn+1 (kc0a)+Yn+1 (kc0a)
αJn (kc0a)+Yn (kc0a)

, (5)

where,

α = −nYn (kc0b)− bkc0Yn+1 (kc0b)
nJn (kc0b)− bkc0Jn+1 (kc0b)

, (6)

and,
k2

c1 + β2

k2
c0 + β2

=
µ1ε1

µ0ε0
, (7)

where the cutoff wavenumber of both media (the unknown dielectric kc1

and the air kc0) is related to the angular resonance frequency, ω = 2πf ,
as follows,

k2
c1 = ω2µ1ε1 − β2, (8)

k2
c0 = ω2µ0ε0 − β2. (9)

The only parameter that must be measured in order to calculate
the real part of the dielectric permittivity is the resonance frequency,
f . Hence, Equations (5) and (7) are numerically evaluated and solved
to obtain the real part of the dielectric permittivity of the unknown
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dielectric medium. Nevertheless, (6) and (7) can be simplified for the
particular case of TE011, as shown in, (10) and (11) [6, 7],

kc0µ1

kc1µ0

J1 (kc1a)
J0 (kc1a)

=
αJ1 (kc0a) + Y1 (kc0a)
αJ0 (kc0a) + Y0 (kc0a)

, (10)

α = −Y1 (kc0b)
J1 (kc0b)

. (11)

On the other hand, if the unknown medium has dielectric losses
(ε1 = ε′1 − jε′′1), it will be necessary to measure the system quality
factor [4], Q, and the loss tangent, tan (δd), both given by,

1
Q

=
1

Qd
+

1
Qu

=
∆f

f
=

fu − fl

f
, (12)

tan (δd) =
1

Qd
=

ε′′1
ε′1

, (13)

where f is the resonant frequency, ∆f the bandwidth of 3 dB, fl the
lower frequency of ∆f , fu the upper frequency of ∆f , Qd the quality
factor associated only to dielectric losses, and Qu the quality factor
of the unloaded cavity associated with the finite conductivity of the
metal enclosure, which is given by,

Qu =
ωW

Pc
, (14)

where W is the total stored energy inside the empty cavity and Pc the
power loss in the conducting walls. For a given TEnmp mode in an
unloaded cylindrical cavity, Qu can be calculated using the following
relation [21],

Qu =
(kb)3η0bd

4(p′nm)2Rs

1−
(

n
p′nm

)2

{
bd
2

[
1+

(
βbn

(p′nm)2

)2
]
+

(
βb2

p′nm

)2
[
1−

(
n

p′nm

)2
]} , (15)

where k and η0 are the wavenumber and impedance of free space, p′nm
the m-th root of the first derivative of the Bessel function of the first
kind, and Rs the surface resistance of the walls:

Rs =
√

ωµ0

2σ
. (16)

3. UNCERTAINTY ESTIMATION USING MONTE
CARLO METHOD

In general, the functional relationship (i.e., measurement model or
equation) between the measurand (quantity intended for measurement)
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Y and the set of input quantities {X1, X2, . . . , XN} determined in a
measurement process is given by,

Y = f (X1, X2, . . . , XN ) . (17)

The measurement model f includes both corrections for
systematic effects and accounts for sources of variability, such as those
due to different observers, instruments, samples, laboratories and times
at which observations are made. Therefore, the general functional
relationship describes a physical law but also describes a measurement
process. Some of the variables involved in the general functional
relation can be controlled directly or indirectly, others can be observed
but not controlled and some cannot even be observed.

An estimate of the measurand Y , denoted by y, is obtained
from (17) using input estimates {x1, x2, . . . , xN} for the values of the
N quantities {X1, X2, . . . , XN}. Thus the output estimate y, which is
the result of the measurement, is given by,

y = f (x1, x2, . . . , xN ) . (18)

The estimated standard deviation associated with the output
estimate or measurement result y, is defined as the combined standard
uncertainty and denoted by uc(y). It is determined from the estimated
standard deviation associated with each input estimate xi, defined as
the standard uncertainty and denoted by u(xi) [11].

Each input estimate xi and its associated standard uncertainty
u(xi) are obtained from a distribution of possible values of the input
quantity Xi. This probability distribution may be experimentally
determined, that is, based on a series of observations Xi,j of Xi,
(determined experimentally) or it may be a distribution defined a
priori. Type A evaluations of standard uncertainty components are
founded on frequency distributions while Type B evaluations are
founded on a-priori distributions [11]. In both cases it must be
recognized that the probability distributions are models that are used
to represent the state of our knowledge [11] about the sources of
uncertainty.

In Monte Carlo techniques, both, the random and the systematic
components of the uncertainty, are treated as having a random nature.
It is important to notice that the systematic component is not modeled
as random, and it is the knowledge about the systematic component
for which a probability distribution is introduced [12].

This method basically involves randomly generating a number
M of Monte Carlo trials (i.e., the number of model evaluations
made) where the distribution function of the output quantity, Y ,
will be numerically approximated. It is further assumed that the
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probability densities of the considered input quantities are known a
priori. Then, a sample vector of the input quantities can be drawn
repeatedly using pseudo random number generators. For each input
sample vector, the corresponding values of the output quantities are
calculated by using the corresponding functional relation. The set
of output sample vectors yields an empirical distribution which can
be used to approximate the distribution of the output quantities.
All required measures (expectation value, variance and covariance) as
well as higher-order central moments such as skewness and kurtosis
can then be derived [14]. Before applying MCM, the conditions for
valid application should be verified [12]. It is recommended to use
M ≥ 106 to estimate a 95% coverage interval for the output quantity
to ensure such that this length is correct to one or two significant
decimal digits [12]. It is also recommended to validate the quality of the
pseudo-random number generator to be used in the calculations [12].

The MCM is implemented using an algorithm that can be
summarized as follows [13]:

(i) There must be generated a set of N input parameters
{x1, x2, . . . , xN}, which are random variables distributed accord-
ing to a probability density function assigned to each input pa-
rameter. This process should be repeated M times.

(ii) The functional relationship that model the measurement system
is then evaluated to obtain the output,

yj = f(x1,j , x2,j , . . . , xN,j), (19)

for j = 1, 2, . . . ,M . From this sample, it is possible to estimate
the probability density function of y.

(iii) The relevant estimates of any statistical quantity can then be
calculated (average, variance, skewness and kurtosis of the output,
among others).

(iv) The output vector {y1, y2, . . . , yN} is sorted in ascending order to
obtain a vector ỹ = {ỹ1, ỹ2, . . . , ỹN}.

(v) The confidence interval [ỹr, ỹs] is found approximately through
the components of ỹ identified by the indexes given by (20) and
(21) [22]:

r = round((M + 1)γ), (20)
s = round((M + 1)(1− γ)), (21)

where, γ is the significance level (γ = 0.025 for 95% of confidence)
and the function round(x) is used to represent the nearest integer
to x.
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4. THE MEASUREMENT PROCESS

The measurement methodology is the following: Qu and f are
measured first with the empty resonator cavity and then with the
dielectric rod in place. The measurements are made with a VNA.
This information is used in (5) and (7) to numerically calculate the
relative dielectric permittivity and in (12) and (13) to calculate the
loss tangent. However, the measurement results are reliable only if
within the measurement process is provided that [5]:
• The unloaded cavity losses are very low, that is, 15000 ≤ Qu ≤

30000.
• The sample is homogeneous and has no magnetic losses.

Therefore, the sample should be carefully selected and well
prepared.

• The dielectric losses do not affect significatively the resonance
frequency, that is, tan (δd) ≤ 0.1.
Finally, it is important to notice that this kind of cavities can be

excited by different modes. The selection of the operation mode must
take into account the type of measurement required (permittivity or
permeability) so as to select the most appropriate magnetic or electric
field geometry for the optimal interaction with the sample.

In practice, it is recommended to choose one of the few first
modes of the frequency spectrum, so that the measurements will be
less sensitive to geometrical imperfections. Finally, the mode selected
should correspond to a simple pattern distribution so as to allow easier
identification. In our case these were the reasons for the selection of
the mode TE011 for the measurement of permittivity.

Taking into account the previous considerations, we now proceed
to identify the significant sources of uncertainty that will contribute to
the overall uncertainty of the experimental results.

4.1. Sources of Uncertainty

The variables needed for the determination of the dielectric
permittivity are affected mainly by the following uncertainty
contributions: a) the accuracy of the instruments used in the
measurements, b) the influence of the resolution of the measuring
instrument and c) the repeatability of the results. In each Monte Carlo
iteration, the combination of all the mentioned uncertainty factors
associated to the nominal specifications is treated as a measurement
error. A summary of the sources of uncertainty in complex permittivity
measurements by shielded dielectric resonator technique is shown in
Table 1.
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Table 1. Sources of uncertainty in complex permittivity measure-
ments by shielded dielectric resonator technique.

Factor Error
Source of

Uncertainty

Type of

evaluation

Probability

Distribution
Parameters

d ed

Accuracy

Resolution

Repeatability

B

B

A

Uniform

Triangular

Normal

MAE

SD

S0

a ea

Accuracy

Resolution

Repeatability

B

B

A

Uniform

Triangular

Normal

MAE

SD

so

b eb

Accuracy

esolution

Repeatability

B

B

A

Uniform

Triangular

Normal

MAE

SD

so

f ef
Calibration

Resolution

B

B

Normal

Uniform

Ucal

SF

The errors associated with the dimensional factors, ed, ea and
eb, are given by the sum of the error related to the accuracy of the
measurement instrument, eα, the error related to the resolution of
the measurement instrument, er, and other errors that affects the
repeatability, eo. The uncertainties contributions due to eα and er are
defined in terms of the maximum allowable error (MAE), and the scale
division (SD), respectively. Hence, the probability density functions of
eα, f (eα) and er, f (er), are given by,

f (eα) =





1
MAE

for − MAE
2

≤ eα ≤ MAE
2

0 for eα < −MAE
2

or eα >
MAE

2

, (22)

and,

f (er) =





4
SD2

er +
2

SD
for 0 ≤ er ≤ SD

2

− 4
SD2

er +
2

SD
for −SD

2
≤ er < 0

0 for er < −SD
2

or er >
SD
2

. (23)

The variable eo is modeled as a random variable with normal
distribution, zero mean and an estimated standard deviation, so, where
so is calculated through the repeated measurement of the length of d,
a, and b.
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On the other hand, ef is obtained as the sum of the error related
to the accuracy of the calibration of the VNA, ecal, and the error due
to rounding the value of the frequency measured in units of gigahertz
to the third significant figure, eSF . ecal is modeled as an unbiased
random variable of normal distribution with a standard deviation
equal to σcal, where σcal (standard uncertainty) is obtained from
the calibration certificate of the VNA as the expanded uncertainty
reported, Ucal, divided by the coverage factor, k (usually k = 2 for a
95% of confidence level). In the same way, eSF is modeled a an unbiased
uniformly distributed random variable taking values within −500 kHz
≤ eSF ≤ 500 kHz. In order to reduce the influence of the repeatability
of the frequency measurements as an uncertainty contribution, it is
recommended to configure the VNA to perform the averaging of the
readings automatically.

Additionally, the effect of the air gap between the dielectric rod
and the cavity bottom is not a source of uncertainty because the
circumferential electric field distribution that characterizes the TE01n

modes [5] allows the air gap to be omitted without affecting the
measurement. Another minor effect is related to the possible lack of
alignment between the vertical axis of the dielectric rod with respect to
the vertical axis of the metallic cylinder. Previous simulations, using
a finite element solver, revealed that this source of uncertainty is not
significant (provided that this misalignment is less than a millimeter)
since the error involved is smaller than the numerical errors incurred
in computing.

Finally, other factors that might contribute to the uncertainty
in complex permittivity measurements, such as sample properties
heterogeneities and eccentricity of the cavity walls, are not considered,
assuming that the sample under test is well prepared and that the
cavity has been carefully constructed.

4.2. A Model of the Measurement Process

In order to estimate the uncertainty in the complex permittivity
measurements obtained by shielded dielectric resonator technique,
we begin by analyzing the measurement process according to the
formulation discussed in Section 2. Starting from a set of nominal
specifications such as the characteristics of a given dielectric for
the sample under test, cavity dimensions (designed to resonate
approximately at a desired frequency for the selected mode), and
conductivity of the metal enclosure; the nominal direct measurement
results are calculated theoretically, as shown in Figure 2.

The random errors associated with the uncertainty contributions
of each influencing factor are added to the nominal specifications
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in order to calculate the new direct measurement results (fm, fum

and flm) and consequently the indirect measurement results ε′1m
and tan (δd) are random variables of unknown Probability Density
Function (PDF). The errors are generated using the pseudo-random
number generators included in MATLABTM, because they meet the
requirements of the Monte Carlo Method as mentioned in Section
3. Figures 3 and 4 show the relationships between the errors in the
measurement process.

It is important to notice that the cavity resonant frequency
depends on the variations in the dimensions of the cavity with respect
to the nominal ones. The measured resonance frequency is also affected
by the measurement errors of the VNA. This situation affects the
experimental results, ε′1m and tan (δdm), in a way that can only be
vealuated after a great number of iterations.

Figure 2. Analysis of the measurement process.
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Figure 3. The model of measurement process of ε′1m.

5. RESULTS

Now, let us consider a TE011 mode of a shielded resonator cavity with
nominal dimensions given by a = 14.24 cm, d = 7.02 cm, used to
measure the complex permittivity of an hypothetic dielectric material
(similar to teflon) of b = 3 cm, characterized by ε′1 = 2 and tan(δd) =
15 × 10−4 at 2.5 GHz. The cavity metal enclosure is made of copper
with a nominal conductivity σ = 5.813× 107 S. The nominal resonant
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Figure 4. The model of measurement process of tan (δdm).

frequency of the empty cavity is 2.5GHz.
Table 2 summarizes the parameters that define the PDF of the

sources of uncertainty considered in this numerical example.
In the presence of the dielectric rod, the resonant frequency usually

decreases. This frequency displacement could represent an important
deviation of the previously calculated cavity losses, included indirectly
in the system quality factor, introducing a higher uncertainty in the
determination of the dielectric loss tangent. However, for our example,



114 Páez et al.

the resonant frequency of the TE011 mode moves close to 2.45GHz
representing a low deviation. For this reason, the accuracy of resonant
methods are related to materials with low loss.

The model presented in the previous section was run for 106

Monte Carlo trials. Figures 5 and 6 show the absolute frequency
histograms of the measured relative dielectric permittivity and loss
tangent, respectively.

The approximated PDF of ε′1m shows a quasi-symmetrical
behavior around its nominal value while tan(δdm) exhibits a highly
asymmetrical distribution around its nominal value. As expected,
both output distributions are not normal. This behavior corresponds
mainly to the nonlinearity of (15) with variations of the cavity
dimensions above and below than the nominal dimensions and the
corresponding frequency shifts near 2.5 GHz. The total uncertainty in
the measurement of the loss tangent becomes higher with the increasing
of the conductivity losses in the cavity walls.

The 95% confidence bound related to the real part of the dielectric
permittivity is [1.9849, 2.0139] that is, 2+0.7%

−0.76%, and for the loss tangent

is [11.31×10−4, 20.84×10−4] that is,
(
15× 10−4

)+24.6%

−38.9%
. These results

show that the relative uncertainty in the determination of the loss
tangent is much greater than relative uncertainty in the measurement
of the dielectric permittivity.

Table 2. Values of all sources of uncertainty.

Factor Error Source Parameter Value

d ed

eα MAE = 1 mm
er SD = 1 mm
eo so = 1 mm

a ea

eα MAE = 1 mm
er SD = 1 mm
eo so = 1 mm

b eb

eα MAE = 1 mm
er SD = 1 mm
eo so = 1 mm

f ef
ecal Ucal = 8 kHz
eSF SF = 1 MHz
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Figure 5. Frequency histograms of the measured relative dielectric
permittivity.
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Figure 6. Frequency histograms of the measured loss tangent.

5.1. Contribution of Each Input Quantity

In order to determine which variable contributes the most to the total
uncertainty in the results, the standard deviations in the results (sε

and stan(δ)) were calculated running the MCM independently for each
input magnitude, a, b, d and f . The results are shown in Figures 7 and
8 for the dielectric permittivity and for the loss tangent, respectively.

Figures 7 and 8 show that all input variables, approximately
contribute equally to the total variability, denoted by the bar t. This
means that special care should be taken on the overall measurement
process.
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Figure 7. Contribution of each input quantity to the variability of
ε′1m.
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Figure 8. Contribution of each input quantity to the variability of
tan(δdm).

6. CONCLUSIONS

We have shown the suitability of the Monte Carlo method in the
estimation of the uncertainty associated to the complex permittivity
measurements using a dielectric resonator technique inside a metallic
cylindrical cavity. This procedure could also be adapted to any systems
where the behavior of the electromagnetic field is known through exact
equations, provided that the significant sources of uncertainty can be
identified and included in the measurement model. It is important to
point out that a sufficient number of runs of the Monte Carlo algorithm
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should be performed in order to estimate with sufficient accuracy the
uncertainty intervals of the dielectric permittivity and the loss tangent
for a given confidence level.

The results presented in this paper show the advantages
and disadvantages of these kinds of methods in electromagnetic
characterization of materials where the experimental results for the
real part of the dielectric permittivity are robust and stable while
the measurement results of the loss tangent are very sensitive to the
input errors. The confidence bound for the dielectric constant was
approximately 1.5% wide while the loss tangent was about 65% wide,
thus proving the previous statement.

We also notice that the conventional GUM analysis would not
be adequate in the estimation of the uncertainty in the measurement
results because the results are not normally distributed and are not
symmetrical, thus justifying the Monte Carlo approach as a valid
method in the uncertainty estimation. The distribution of the results
attached to the sources of uncertainty identified in the measurement
system used here might not be valid if other system configuration
or measurement methods are use. This would be the case for
transmission/reflexion methods.

Another important result, which MCM has revealed, is the
sensibility of the measurement system to each input source variations.
The example discussed in this paper shows that the final uncertainty
is equally sensitive to all input variables, suggesting that special care
must be taken in the overall process. Nevertheless, this kind of analysis
is very useful in order to establish which contribution most affects the
uncertainty of measurements.
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for quantifying uncertainty in RF immunity testing due to eut
presence,” Progress In Electromagnetics Research B , Vol. 29, 175–
190, 2011.

20. Stratton, J. A., Electromagnetic Theory, McGraw-Hill Book
Company, Inc., 1941.

21. Pozar, D. M., Microwave Engineer , John Wiley & Sons, 2005.
22. Willink, R., “On using the Monte Carlo method to calculate

uncertainty intervals,” Metrologia, Vol. 43, L39–L42, 2006.


