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Abstract—In this paper, a new decoupled Unitary ESPRIT algorithm
for two-dimensional (2-D) direction-of-arrival (DOA) estimation is
presented. By exploiting the centro-symmetric array configurations
of two parallel uniform linear arrays (TP-ULAs) and utilizing the
via rotational invariance techniques, the proposed algorithm has
advantages as listed below. First, the algorithm enables decoupling the
estimation problem into a two-step estimation problem and obtains the
automatically matched 2-D DOAs. Second, employing the elements
of the array fully, the algorithm can estimate 2-D DOAs up to
2(M − 1), where 2M is the sensor number of the array. Besides,
the computational complexity of the proposed algorithm is lower than
other representative 2-D DOA estimation methods. Simulation results
are presented to show the effectiveness of the proposed method.

1. INTRODUCTION

During the past three decades, the problem of two-dimensional (2-
D) direction-of-arrival (DOA) estimation based on passive array has
attracted much attention, especially in field as radar, sonar, seismology,
and radio communication systems. Many 2-D DOA estimation
algorithms have been proposed. The most popular methods for
distinguishing sources are maximum Likelihood (ML) method [1]
and subspace methods [1–3]. The ML method can obtain optimum
parameters; however, the computational load of it is so heavy that it
is not amenable to real-time implementations. The subspace methods,
although not optimal, are computationally more attractive than ML
method. But some subspace methods need multidimensional searching
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for spectral peaks or the elevation and azimuth angles pair-matching
in 2-D DOA estimation. Since these steps cause heavy computational
load, the subspace methods can hardly be put to effect. Therefore, it
is essential to find an estimator that can overcome the computation
burden and have the merits of high resolution and capability to
estimate more sources.

Based on the two parallel uniform linear arrays (TP-ULAs), many
methods have been presented. Utilizing the geometry of TP-ULAs,
Yin et al. [4, 5] proposed a DOA matrix algorithm which has a lower
computational load than 2-D MUSIC; however, its performance is poor.
It needs to be improved when compared to the CRB [6, 7]. Wu et al. [8]
presented a fast estimation method, propagator method(PM), which
only uses linear operations to obtain the signal subspace. The method
avoids the computational load of eigen-decomposition. Unfortunately,
PM for the TP-ULAs fails to work when elevation angles or azimuth
angles are between 70◦ and 90◦. Furthermore, additional pair-matching
procedure is needed. By exploiting the geometry of TP-ULAs, Xia [9]
suggested a 2-D root MUSIC method. This method exploits the array
elements fully; therefore, it can achieve high accuracy. Moreover, no
pair-matching procedure is needed. TP-ULAs is a special case of
uniform rectangle arrays (URA). For the URA, Zoltowski et al. [10]
proposed a new 2-D Unitary ESPRIT method, named URA ESPRIT
in this paper, which exploits via rotational invariance of URA. The
computation of the method is efficient; however, for TP-ULAs, the
maximum number of sources that the URA ESPRIT can estimate is
only M − 1, where the sensor number of TP-ULAs is 2M .

In this paper, a decoupled Unitary ESPRIT method for 2-D DOAs
estimation using TP-ULAs is proposed. The proposed method utilizes
the centro-symmetric geometry of TP-ULAs and exploits ESPRIT-
like structure in terms of real-valued computations throughout. It
decouples the 2-D DOA estimation problem into a two-step estimation
problem and estimates the elevation and azimuth angles without pair
matching procedure. These procedures can reduce computational
complexity. Comparison shows that the algorithm has a lower
computational load than the URA ESPRIT or Xia’s method. Besides,
the proposed method has better performance than the DOA matrix
algorithm and can estimate 2-D DOAs of up to 2(M − 1) uncorrelated
sources as well as Xia’s method.

In the following sections, details of the proposed method are
described. In Section 2, the definition and properties of the centro-
Hermitian matrix are presented. Then a model of the proposed
algorithm is depicted in Section 3.1. Based on TP-ULAs, the
decoupled Unitary ESPRIT is derived in Section 3.2. Afterwards,
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the procedures of the proposed method are summarized, and its
computation complexity is analyzed and compared. In Section 4,
simulation results of the algorithm are presented. Finally, some
conclusions are drawn in Section 5.

2. CENTRO-HERMITIAN MATRIX

In this section, the centro-Hermitian matrix [11] and its property are
reviewed.

Throughout the paper, Πp denotes the p× p exchange matrix as

Πp =




0 0 . . . 1
0 0 . . . 0
...

...
. . .

...
0 1 . . . 0
1 0 . . . 0



∈ Rp×p. (1)

Obviously, Π2
p = Ip.

Lee defined the centro-Hermitian matrices [11] as:

Definition 1 A complex matrix M ∈ Cp×q is called centro-Hermitian
if

ΠpM∗Πq = M (2)
where (·)∗ denotes the complex conjugation of the matrix.

Lee defines left Π-real matrices [11] as follow to show how centro-
Hermitian matrices can be mapped to matrices with real entries

Definition 2 Matrices Q ∈ Cp×q satisfying
ΠpQ∗ = Q (3)

are left Π-real.

For example, the left Π-real unitary matrices of even and odd
orders are

Q2n =
1√
2

[
In jIn

Πn −jΠn

]
(4)

Q2n+1 =
1√
2




In 0 jIn

0T
√

2 0T

Πn 0 −jΠn


 . (5)

Other left Π-real matrices Qs can be gained by multiplying the
left Π-real Q by a real matrix R, which means that all the matrices
Qs = QR are left -real.

The main results of Lee [11] and Haardt and Nossek [12] are
described as:
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Theorem 1 Let M ∈ Cp×q be centro-Hermitian, and the matrices
QH

p MQq form from M are real, that means QH
p MQq ∈ Rp×q, where

Qp and Qq are left Π-real matrix define by (4) or (5).

Theorem 2 Let M ∈ Cp×q be centro-Hermitian, and assume that the
SVD of ϕQ(M) = QH

p MQq ∈ Rp×q is given by ϕQ(M) = UΣVH ∈
Rp×q, the SVD of M is obtained as

M = (QpU)Σ(QqV)H (6)

where Qp and Qq are left Π-real matrix defined by (4) or (5). The left
and right singular vectors of M can be easily proofed to be left Π-real.

3. DECOUPLED UNITARY ESPRIT ALGORITHM

3.1. Data Model

Consider that the model of TP-ULAs is depicted in Figure 1 and that
the sensors are located on the x-y plane. The subarray along the x-
axis is denoted as ULA1, while the ULA paralleling ULA1 is denoted as
ULA2. Each of the ULA contains M sensors with spacing d1, and the
displacement between ULA1 and ULA2 is d2. Suppose that N far-field
narrowband uncorrelated plane sources sn(t) (n = 1, 2, . . . , N) impinge
on the array from different DOA (αn, βn) (n = 1, 2, . . . , N , 0 < αn < π,
0 < βn < π), where αn and βn denote the elevation and azimuth angles
between the sources and x-axis together with y-axis positive direction,

1 M-1 M
ULA2

(t)ns

nβ

nα

z

y

x

1d

2d

ULA1

2

Figure 1. Two parallel uniform linear arrays.
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respectively. The observed signals of the tth snapshot measured by
ULA1 and ULA2 are{

x1(t) = A(α)s(t) + n1(t)
x2(t) = A(α)A(β)s(t) + n2(t)

(7)

where,

x1(t) = [x11(t), x12(t), . . . , x1M (t)]T

x2(t) = [x21(t), x22(t), . . . , x2M (t)]T

A(α) = [a(µ1),a(µ2), . . . ,a(µN )]

a(µn) = [1, ejµn , . . . , ej(M−1)µn ]T

µn = 2πd1 cosαn/λ

A(β) = diag[a(β1), a(β2), . . . a(βN )]
a(βn) = exp(j2πd2 cosβn/λ)

s(t) = [s1(t), s2(t), . . . , sN (t)]T

n1(t) = [n11(t), n12(t), . . . , n1M (t)]T

n2(t) = [n21(t), n22(t), . . . , n2M (t)]T .

(8)

(·)T denotes the transpose. xim(t) represents the mth array data in
subarray i (m = 1, 2, . . . , M , i = 1, 2). A(α) and A(α)A(β), which
contain the 2-D DOA information of sources and denote the array
response vectors of ULA1 and ULA2, respectively. n1(t) and n2(t)
are the temporal and spatial additive white gaussian noise (AWGN)
vectors, with zero mean and variance σ2.

For simplicity, s(t), xi(t) and ni(t) are marked as s, xi and ni,
where i = 1, 2. The output X measured by the array is

X =
(

x1

x2

)
=

(
A(α)

A(α)A(β)

)
s +

(
n1

n2

)
= Bs + n (9)

where B ∆=
(

A(α)
A(α)A(β)

)
.

For utilizing the rotational invariance techniques, the partition
method of the array is considered as depicted in Figure 2. To choose
the subarray1 and subarray2, the chosn matrix J is defined as

J =
[

J1

J2

]
(10)

where J1 =
[

1 0
0 1

]
⊗J′1, J2 =

[
1 0
0 1

]
⊗J′2, J′1 =

[
IM−1 0(M−1)×1

]
,

J′2 =
[
0(M−1)×1 IM−1

]
.

⊗
presents the Kronecker product.
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Figure 2. The subarray partition of the array.

Then the new steering matrix can be obtained by multiplying the
steering matrix B with the chosen matrix J on the left. It can be
obtained {

A1 = J1B
A2 = J2B

(11)

where A1 and A2 present the steering matrices of the subarray1 and
subarray2. Therefore,

A1 =
[

A1:M−1 (α)
A1:M−1 (α)A (β)

]
(12)

A2 =
[

A2:M (α)
A2:M (α)A (β)

]
=

[
A1:M−1 (α)
A1:M−1 (α)A (β)

]
Φ = A1Φ (13)

where A1:M−1 (α) denotes the steering matrix of the first M − 1 array
along the x axis, while A2:M (α) denotes the steering matrix of the
last M − 1 array along the x axis. Φ = diag

{
ejµn

}N

n=1
, where

µn = 2πd1 cosαn/λ, and µn only contains the information of elevation
angles. The symbol diag (·) represents the diagonal matrix.

Consider that the output data X is noiseless for simple derivation.
Premultiplying X by J yields the following equation:

JX =
[

X1

X2

]
=

[
A1

A2

]
s =

[
A1

A1Φ

]
s (14)

where X1 and X2 are the outputs measured by the subarray1 and the
subarray2.

3.2. Decoupled Unitary ESPRIT Algorithm

According to (8) and (10), the steering matrix of the TP-ULAs satisfies

Π2MB∗ = BΛ (15)
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where Λ = diag
{(

ej(M−1)pia(βi)
)N

i=1

}
is a diagonal matrix.

With the hypothesis that no additive noise exists, the Unitary
ESPRIT data matrix is defined as

Z = [X Π2MX∗] . (16)

Multiply (16) by J from the left, we can obtain

JZ =
[
X1 ΠMX2

∗
X2 ΠMX1

∗
]

=
[

A1

A1Φ

] [
s Φ−1Λs∗

]
= BJ

[
s Φ−1Λs∗

]
(17)

where BJ = (AT
1 , (A1Φ)T )T . Obviously, rank(Z) = rank(X) = N ,

thus Z is rank-deficient. Equations (13), (16) and (17) imply that the
equivalent measurements of array double from L to 2L, where L is the
snapshot number. Therefore, compared to the standard ESPRIT, the
estimation accuracy of the proposed algorithm will increase.

Then, define a matrix

Z′=[X Π2MX∗ΠL]=[X Π2MX∗]
[

IL

ΠL

]
=ZG. (18)

Clearly, G =
[

IL

ΠL

]
, GGT = I2L, thus G−1 = GT = GH .

Furthermore,

Π2M

(
Z′

)∗Π2L = Π2M (ZG)∗Π2L = Z′. (19)

Hence, Z′ is a centro-Hermitian matrix.
According to Theorem 1, the matrix

P = QH
2MZ′Q2L (20)

is real matrix.
And it can be written as

P = QH
2M [X Π2MX∗ΠL]Q2L = [<{Y} ,={Y}] (21)

where Y = QH
2MX.

The autocorrelation matrix of P is

RP = E
[
PPH

]

= E
[(

QH
2MZ′Q2L

) (
QH

2MZ′Q2L

)H
]

= E
[
QH

2MZGQ2LQH
2L(ZG)HQ2M

]
(22)

where E [·] denotes the expectation. With Q2LQH
2L = I, GGH = I

and (18), (22) can be simplified as

RP = QH
2MRZQ2M (23)
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where RZ = E
[
ZZH

]
.

The singular value decomposition (SVD) of P is

P = UΣVH (24)

where U is the matrix whose columns are the left singular vectors of
P, V the matrix whose columns are the right singular vectors of P,
and Σ the diagonal matrix constructed by the singular values of P.

Rewrite the autocorrelation matrix of RP,

RP = E
[
PPH

]
= [ Us Un ]

[
Σs

Σn

] [
Us

Un

]H

(25)

where Us is the signal subspace spanned by the left singular vectors
corresponding to the N largest singular values of P, while Un is
the noise subspace spanned by the rest singular vectors. Σs and
Σn are the diagonal matrix of the N largest singular values and the
rest smallest singular values. Because it has been considered that no
additive noise exists, the noise subspace and its transform must be null.
To keep consistent with most subspace methods, the noise subspace
presentation is reserved in the following derivation.

Combining (23) with (25), it yields

QH
2MRZQ2M = [ Us Un ]

[
Σs

Σn

] [
Us

Un

]H

. (26)

Therefore,

RZ = Q2MUsΣs(Q2MUs)
H + Q2MUnΣn(Q2MUn)H . (27)

With (17), it is gained

RJZ = E
[
(JZ) (JZ)H

]
= JE

[
ZZH

]
JH = JRZJH . (28)

Combining (28) with (27), it is obtained

RJZ = JQ2MUsΣs(JQ2MUs)
H + JQ2MUnΣn(JQ2MUn)H . (29)

Clearly, JQ2MUsΣs(JQ2MUs)
H is the signal subspace, while

JQ2MUnΣn(JQ2MUn)H is the noise subspace.
With the definition of (17), (28) can be written as

RJZ = E
[
(JZ) (JZ)H

]

= BJE
[
ssH + Φ−1ΛssHΛH

(
Φ−1

)H
]
BJ

H .
(30)

Obviously, E
[
ssH + ΦΛssHΛH

(
Φ−1

)H
]

is a diagonal matrix.
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Thus, the signal subspace JQ2MUsΣs(JQ2MUs)
H must satisfy,

JQ2MUs = BJT = JBT (31)

where T is a N ×N dimensional non-singular matrix.
Accordingly,

Q2MUs = BT. (32)

Equation (32) denotes the relationship between the signal subspace Us

of data matrix Z and the steering matrix B.
Substituting (11) into (32), we can obtain

[
J1

J2

]
Q2MUs =

[
J1

J2

]
BT =

[
A1

A1Φ

]
T. (33)

Thus, {
J1Q2MUs = A1T
J2Q2MUs = A1ΦT = (A1T)T−1ΦT.

(34)

And it can be rewritten as

J2Q2MUsT−1 = (J1Q2MUs)T−1Φ. (35)

Multiplying both sides of (35) by QH
2(M−1) on the left, it is obtained

QH
2(M−1)J2Q2MUsT−1 = QH

2(M−1)J1Q2MUsT−1Φ. (36)

With Equations Π2(M−1)J2Π2M = J1, J∗2 = J2, Π2(M−1)Q2(M−1)

= Q∗
2(M−1) and Π2(M−1)Π2(M−1) = I2(M−1), QH

2(M−1)J1Q2M can be
rewritten as [10]

QH
2(M−1)J1Q2M = (QH

2(M−1)J2Q2M )∗. (37)

Then, the elevation angles α can be estimated using the method
for ULA in [10]

K2Us = K1UsT−1ΩT (38)

where Ω = diag {tan (µn/22)}N
n=1, µn = 2πd1 cosαn/λ, K1

∆=

<
{
QH

2(M−1)J2Q2M

}
, K2

∆= =
{
QH

2(M−1)J2Q2M

}
.

Thus, it is implied that

(K1Us)†K2Us = T−1ΩT (39)

where, the superscript
(†) denotes Moore-Penrose inverse.

Then, using the singular value decomposition, (K1Us)†K2Us can
be written as

(K1Us)†K2Us = UKΛKU−1
K (40)
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where, ΛK = diag (γ1, γ2, . . . , γN ) is the diagonal matrix constructed
by the eigenvalues γ1, γ2, . . . , γN of (K1Us)†K2Us, and UK is
the matrix constructed by the eigenvectors corresponding to the
eigenvalues γ1, γ2, . . . , γN . Therefore, the eigenvalues of (K1Us)†K2Us

are equal to diagonal elements of Ω, and the columns of T−1 are
eigenvectors of (K1Us)†K2Us.

T−1 = UK (41)

µn = 2tan−1(γn) , n = 1, 2, . . . , N . (42)

Accordingly, the elevation angles α can be obtained by solving the
following equation

αn = cos−1

[
λµn

2πd1

]
, n = 1, 2, . . . , N. (43)

With (32) and the estimated matrix T−1, we can obtain

B̂ = Q2MUsT−1. (44)

The matrix B̂ can be divided into two submatrices with the same
dimension defined by B̂ =

[
B̂T

1 , B̂T
2

]T
.

With the definition of (9), B̂ can be rewritten as

B̂ =
[

B̂1

B̂2

]
=

[
A (α)

A (α)A (β)

]
. (45)

Rearrange Equation (45) as:

A (β) = (A (α))†A (α)A (β) =
(
B̂1

)†
B̂2. (46)

Thus, the azimuth angles can be estimated,

βn = cos−1

(
λ arg (a(βn))

2πd2

)
n = 1, . . . , N . (47)

where, a(βn) is the nth diagonal element of matrix A (β).
Because of the one-to-one correspondence between the eigenvalues

and the eigenvectors of (K1Us)†K2Us, estimated elevation angles and
azimuth angles will match each other automatically.

3.3. Summary of the Proposed Method

Procedures of the proposed estimation method are summarized as
follows.



Progress In Electromagnetics Research C, Vol. 29, 2012 229

(i) Calculate the sample autocorrelation matrix RP according to (21)

R̂P =
1

2Ns

(
PPT

)

=
1

2L

(
(<{Y}) (<{Y})T + ={Y} (={Y})T

)

where, Y = QH
2MX, L is the number of snapshots.

(ii) Extract the N eigen-vectors associated with the biggest singular
values of RP to form the 2M×N dimensional signal subspace Us.

(iii) Compute the diagonal matrix Ω̂ and eigenvector matrix T̂ by
eigenvalue decomposition of the unitary matrix (K1Us)†K2Us.

(iv) Estimate the steering matrix B according to the equation B =
Q2MUsT−1.

(v) Estimate elevation angles and azimuth angles by (43) and (47).

The computational loads of the proposed method with DOA
matrix algorithm, URA ESPRIT and Xia’s method are compared.
Generally, the number L of snapshots is much greater than the
number of sensors 2M . The number of flops required for the complex
product is more than four times of the real product required, where
a flop is defined as a real floating-point addition or multiplication
operations. Calculating the sample covariance matrix requires the
order of M2L [13]. The eigenvalue decomposition or singular value
decomposition of a M × M matrix is about O

(
M3

)
[13]. The flops

of the rooting steps are assumed to be not higher than O
(
M3

)
[13].

Table 1 shows the computational complexity of different methods for
2-D estimation. The proposed method is more efficient than DOA
matrix algorithm, URA ESPRIT and Xia’s method.

4. COMPUTER SIMULATION RESULTS

Computer simulations are carried out to illustrate the performance of
the proposed algorithm. The simulation results of the DOA matrix

Table 1. Computational complexity.

Operation Real Complex

DOA matrix algorithm – 2M2L + O
(
M3

)

URA ESPRIT O
(
(2M)3

)
O

(
((2M)− 1)3

)

Xia’s method – (2M)2L + O
(
(2M)3

)

The proposed method 2 (2M)2L + O
(
(2M)3

)
–
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algorithm, URA ESPRIT method, and Xia’s method are included in
contrast to the performance of the proposed algorithm. The sensors of
the array are assumed to be lying along x-y plane as shown in Figure 1.
The number of sensors in each ULA is M = 5, with sensor displacement
d1 = d2 = λ/2. λ is the wavelength of incident signals.

Example 1: The simulation results of these algorithms are
presented in the presence of noise firstly. Assume that a narrow-band
signal impinges upon the array from the 2-D angles (α, β) = (50◦, 60◦).
The number of snapshots is L = 512. The SNR varies from −10 dB to
20 dB. The performance of the estimators can be obtained from 10000
times individual computer simulations, by calculating the root mean
square errors (RMSE) of the estimated 2-D DOAs. The RMSEs are
defined as

RMSE (α) =
√

E
[
(α̂− α)2

]

RMSE (β) =

√
E

[(
β̂ − β

)2
]
.

And the total RMSE is defined as

RMSE (α, β) =
√

E[(α̂− α)2 + (β̂ − β)
2
] .

Figure 3, Figure 4, and Figure 5 show RMSEs for the elevation
angle α, azimuth angle β, and the total RMSE of azimuth and elevation
angles, respectively, versus different SNR conditions. Clearly, the
performance of the proposed method is similar to the URA ESPRIT
and Xia’s method, and better than the DOA matrix algorithm. The
RMSE of elevation angle α of the proposed method and URA ESPRIT
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Figure 3. The RMSE (α) for the
signal versus SNR.
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Figure 4. The RMSE (β) for the
signal versus SNR.
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Figure 7. The RMSE (β) for the
signal versus snapshot number.
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are a little weaker than Xia’s method, because Xia’s method is a root-
finding-based method. And the RMSEs of azimuth angle β of the
proposed method and Xia’s method are better than URA ESPRIT. The
proposed method can achieve the same performance as Xia’s method
and is applicable with computational advantages compared to other
algorithms.

Example 2: This experiment is included to compare the
performance of the proposed method with DOA matrix algorithm,
URA ESPRIT and Xia’s method against different snapshots. SNR
= 10 dB, and the other conditions are the same as in Example 1.

Figure 6, Figure 7, and Figure 8 show the RMSEs of elevation



232 Jiang and Gan

20 40 60 80 100 120 140 160
30

40

50

60

70

80

90

100

110

120
URA ESPRIT

α (deg)

β
 (

de
g)

Figure 9. The hash map of URA
ESPRIT (The blue symbol ‘¤’
denotes theoretical values of the
angles, while the red symbol ‘©’
denotes the estimated values).
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Figure 10. The hash map of
Xia’s method (The blue symbol
‘¤’ denotes theoretical values
of the angles, while the red
symbol ‘©’ denotes the estimated
values).

angle α, azimuth angle β, and the total RMSE of azimuth and elevation
angle, respectively, versus different snapshots number conditions. As
shown in Figure 7, Figure 6, and Figure 8, the proposed method can
obtain a similar performance to URA ESPRIT and Xia’s method in
the present of different snapshots, while the DOA matrix algorithm
achieves poor performance. It is noted that the proposed method has
a considerable resolution with very few snapshots.

Example 3: The maximum number of sources that these
algorithms can estimate is checked out in the following simulation.

In the example, the number of snapshots at each sensor is assumed
512 and SNR = 10 dB. The uncorrelated narrowband signals are
generated with (25◦, 75◦), (40◦, 70◦), (55◦, 90◦), (75◦, 80◦), (85◦, 70◦),
(110◦, 110◦), (130◦, 40◦), and (145◦, 40◦), which are the same as in
Xia’s paper. The performance of the estimators is obtained from 100
Monte-Carlo simulations. The hash maps of estimated angles show as
follows.

Figure 9 shows that the URA ESPRIT method fails to estimate
DOAs when the sources number is 2(M − 1). But Xia’s method and
the proposed method can handle up to 2(M − 1) source signals, as
shown in Figure 10 and Figure 11. When the azimuth angles share the
same angle 40◦, the two methods still work well. It is ascribed that
the proposed method and Xia’s method employ the array elements
efficiently.
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Figure 11. The hash map of the proposed method.

5. CONCLUSIONS

A new Unitary ESPRIT algorithm for 2-D DOA estimation is
proposed. The procedure in terms of real-valued computations
throughout the algorithm can reduce the computational load efficiently,
especially the cost of the complex SVD. The proposed method can
handle 2-D DOAs up to 2(M − 1) uncorrelated sources even if some
of them share a common azimuth angle or elevation angle. Besides,
the pair-matching procedure of the angles is automatic, which can
also reduce the computational load. The proposed method brings
about so many computational superiorities relative to the existing 2-
D estimation approaches, without a reduction of estimation accuracy.
Computer simulations are carried out to demonstrate the performance
of the proposed method.
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